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Abstract: The variable selection problem in general, and specifically for the ordinary linear regression
model, is considered in the setup in which the number of covariates is large enough to prevent
the exploration of all possible models. In this context, Gibbs-sampling is needed to perform
stochastic model exploration to estimate, for instance, the model inclusion probability. We show
that under a Bayesian non-parametric prior model for analyzing Gibbs-sampling output, the usual
empirical estimator is just the asymptotic version of the expected posterior inclusion probability
given the simulation output from Gibbs-sampling. Other posterior conditional estimators of inclusion
probabilities can also be considered as related to the latent probabilities distributions on the model
space which can be sampled given the observed Gibbs-sampling output. This paper will also compare,
in this large model space setup the conventional prior approach against the non-local prior approach
used to define the Bayes Factors for model selection. The approach is exposed along with simulation
samples and also an application of modeling the Travel and Tourism factors all over the world.

Keywords: covariate inclusion probability; conventional priors; Dirichlet process prior; non-local
prior; ordinary linear regression; variable selection

1. Introduction

The variable selection problem in regression analysis consists of finding a suitable set of predictors
for the response variable y from the columns p of a fixed design matrix Xn×p with n rows (observations).
In a Bayesian setting we have to evaluate the posterior probability π(Mγ|y) of each regression model
Mγ, where with the usual notation γ = (γ1, . . . , γp), with γj = 1 if column Xj, j = 1, . . . , p is in model
Mγ. The aim of this paper is to estimate π(Mγ|y) for all γ ∈ Γ. The main point is that the cardinality
of Γ is of order 2p, huge even for moderate values of p ≈ 1000 even if it were p < n. In what follows,
whatever p is, we only evaluate the evidence for models in which the size is no larger than n including
the intercept and the regression the error variance.

Each π(Mγ|y) can be calculated exactly (not just estimated) by means of all 2p Bayes Factors (BF)
BFγ0, π(Mγ|y) = π(Mγ)BFγ0(1 + ∑∀γ 6=0 BFγ0)

−1, where the marginal distribution of modelMγ is
compared against that of a common null nested modelM0. The reference null model considered here
is the regression model with the intercept only. To obtain π(Mγ|y), a prior on model space Γ, π(Mγ)

must be chosen.
Different priors on Γ have been proposed, starting from the discrete uniform π(Mγ) = 2−p

to fulfill the insufficient reasonable principle requirements, up to the hierarchical uniform prior [1]
π(Mγ) ∝ ( p

pγ
) in which pγ indicates the size of model γ. Under the hierarchical uniform, prior models

of the same sizes receive the same prior probability and this also controls for the false discovery rate in
declaring a covariate important when it is not important. This is relevant for large p and when the
model is sparse [1].
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More than focusing on comparing different definitions of π(Mγ), we consider different
definitions of BFγ0 given by the prior probability of model parameters. In particular, we center on the
semi-conjugate multivariate normal on regression coefficients, which leads to closed-form expression
of BFγ0, which is important for computational feasibility. For instance, the conventional prior approach
in [2] has suitable properties (or desiderata). An important one is the so-called predictive matching
property, which assures that BFγ0 = 1 if there is not enough information in the data to distinguish
betweenMγ andM0. This is obtained by using the concept of effective sample size, which is the
number used to rescale the prior covariance matrix to obtain unit information prior, which is a prior
that bears the same information as one sample. The other approach is that of the non-local priors
detailed in [3]. These priors are non-local in the sense that the minimum prior density is at the null
hypothesis in contrast to other usual approaches. The effect is that such a set of priors, asymptotically
in n, has a larger increment in recognizing the true set of important covariates (the so-called learning
rate) more than the conventional prior approach, although they do not meet the predictive matching
desiderata. In the sequel, we refer to these two sets of priors as conventional and non-local prior
approaches and these are the only two definitions of BFs considered in this work.

Beyond choices of model parameters prior and/or model prior, the point of this work is that even
under closed-form expression of BFs an exhaustive exploration of Γ is not feasible and thus a stochastic
model search must be employed to obtain an estimation of π(Mγ|y). By estimating π(Mγ|y) and
intending to interpret the nature of the true underlying model, a summary of π(Mγ|y) which is
of particular interest here is the inclusion probability of a covariate j, denoted by τ and defined by
marginalizing π(Mγ|y) overall γ such that γj = 1. τ is necessary to define the median probability
model [4] defined as the model in which covariates have τ > 0.5. If such a model exists, it is proved to
be very near to the true model even under strong collinearity [5].

When Γ cannot be fully explored, a stochastic model search is employed in place of heuristic
algorithms as they allow to approximate π(Mγ|y). In the case of the normal linear regression
model, a popular stochastic approach is that of the well known Gibbs-sampling in [6]. Such an
algorithm implements a Markov chain by jumping from one model to another based on the marginal
distribution of the data (the same that appears in the Bayes Factors). This algorithm returns a
dependent sequence of M(S) =

(
γ(1) ∈ Γ, . . . , γ(S) ∈ Γ

)
assumed to be a sample of size S from

π(Mγ|y). The Gibbs-sampling operates on the space Γ using the fact that a closed-form expression
of the marginal distributions is available for the normal regression model with the above-mentioned
set of conjugate priors (conventional and non-local). The main advantage of Gibbs-sampling over
heuristic approaches is that the theory assures that when the number of steps S→ ∞ all Γ has been
properly explored, whereas heuristic methods (like step-wise methods) may stop at local maxima and
may not bear properly posterior model uncertainty.

The aim of this paper is to useM(S) to obtain an estimation of τ, namely τ̂, and in particular the
new estimators τ̂b and τ̂f , later defined. A different definition of τ̂ derived from the Gibbs-sampling
algorithm has been studied in [7] applying the known concept of sampling theory. In particular,
two estimators have been fully characterized:

(i) The intuitive and popular empirical proportion of the sampled models inM(S) containing covariate
j, τ̂e = S−1 ∑S

γ∈M(S) 1(γ)γj=1, where 1(γ)γj=1 is the usual indicator function for the scalar γj = 1
in the vector γ. This estimator is called the empirical estimator;

(ii) The renormalized proportion of the sampled models containing covariate j, τ̂r =
∑

γ∈M(S) 1(γ)γj=1π(Mγ)BF
γ(s)0

∑
γ∈M(S) π(Mγ)BF

γ(s)0
, called the renormalized estimator.

According to [7] both are consistent estimators of τ for S → ∞ and that the error of τ̂r is the
sum of two components: the error of τ̂e plus (or minus) a term that depends on the correlation
between posterior probability of aMγ and its probability to be a visited model for the Gibbs-sampling
algorithm. Basically, if the Gibbs-sampling moves very little around a modelMγ just because it has
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the highest posterior probability (but not necessarily the largest one), τ̂r will be more biased than τ̂e [7]
otherwise it will be more precise than τ̂e. Moreover, if the model is sparse, the visited models, for finite
S depends on the initial state of the chain (for instance: the null modelM0 or the full model for p < n).

The idea of this paper is to rethink about all these estimators of τ and use a proper Bayesian
approach to analyze the sequenceM(S). In practice,M(S) can be viewed as a sequence of non-ordinal
categorical variables with two levels, which gives rise to representing Γ as the set of a very sparse
contingency table of dimension 2p cells, which are the probabilities π(Mγ|y). Therefore, estimating cell
probabilities is equivalent to the estimate of the posterior model probabilities. The main observation
here is that this is the same setup as in [8] except for the fact that samples M(S) are dependent
instead of being independent as assumed in [8], although for large S and given that this is a
Gibbs-Sampling, dependence becomes mild. Deriving the posterior distribution of cells probability is
the same as deriving an estimation of π(Mγ|y) and thus the τ. That is, from π(τ|M(S)) we define
τ̂b = Eπ(τ|M(S))τ and this is one of the proposed estimators that we will compare against τ̂e and τ̂r
allowing also to properly account for the uncertainty around the obtained value of τ̂.

The following Section 2 will illustrate the Bayesian model for analyzing M(S) and its
approximation that is used to obtain τ̂b and a τ̂f (specified below). Further, model implementation,
simulation study, and real data application on Travel and Tourism data are considered in Section 3.
Conclusion and final remarks are left for Section 4.

2. The Dirichlet Process Mixture Model for Estimating Posterior Model Probabilities

The Dirichlet process prior model was initially considered for sparse contingency tables in [8]
and here it is applied to the more specific context of covariate selection and consequent estimation of
covariate inclusion probabilities.

Parameters of interest are ß =
{

πγ1γ2···γp , γj = 0, 1, j = 1, . . . , p
}
∈ Π which is the set of all

probabilities tensor on the space Γ of size 2p. These are the joint probabilities of all covariates and thus

of allMγ on space Γ, namely the 2p cells probabilities, where ‖ß‖1 = ∑2
γ1=0 · · ·∑

dp
γp=1

∣∣∣πγ1γ2···γp

∣∣∣ = 1
and every 0 ≤ πγ1γ2···γp ≤ 1.

In the actual setup, these probabilities are attempted to be estimated with the Gibbs-sampling
output,M(S) regarded here as the data used to estimate ß. Specifically, a sample γ

(s)
j ∈ M(S) is a

dichotomous unordered categorical variable and we denote the two categories of γ
(s)
j , by cj = 0, 1.

The key idea in the Dirichlet process mixture model is representing probability ß by decomposing it as
an addictive mixture of k (possibly infinite) sets of probabilities,

ß =
k

∑
h=1

vhΨh, Ψh = ψ
(1)
h ⊗ ψ

(2)
h ⊗ · · · ⊗ ψ

(p)
h

where v = (v1 ≥ . . . ≥ vk)
′ is the probability vector of the h = 1, . . . , k sets of distributions Ψ =

(Ψ1 . . . Ψk), with Ψh ∈ Π1...p, where ψ
(j)
h is the probability for covariate j to be included into the set of

predictors given the probability distribution over all Γ labeled by h.
It is important to note that ψ

(j)
h is the j covariate inclusion probability and its estimator is also an

estimator of τ if the distribution h has high posterior probability vh givenM(S). In particular, if sets of
probabilities are ordered according to their posterior probabilities, and v1 ≈ 1 then estimation of Ψ(j)

1
could be a good candidate for being a conditional (to h = 1) estimator of τ.

For this purpose, we define the estimator

τ̂f = Ψ1,

understood for all j, given that the first component of the mixture has the highest probability of v1.
The likelihood of the two parameters v and Ψ givenM(S) is
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Pr
(

γs
1 = c1, . . . , γs

p = cp|v, Ψ
)
= πc1···cp =

k

∑
h=1

vh

p

∏
j=1

ψ
(j)
hcj

.

Introducing the latent class indicator zs ∈ {1, . . . , k}, the conditional probability to a specific
set h is Pr

(
γs

j = cj|zs = h
)
= ψ

(j)
hcj

and we have that ψs are the inclusion probabilities of covariates
conditional to the latent class indicator.

Thus the marginal distribution of τ is obtained by marginalizing over all latent class indicators,
namely τ = ψ(j) = ∑k

h=1 Pr
(

γs
j = 1|zs = h

)
Pr (zs = h), is the parameter of interest which leads to the

definition of our estimator

τ̂b = Eπ(τ|M(S))τ = E(ψ(j)|M(S)) =
k

∑
h=1

Pr
(

ψ
(j)
hcj
|M(S)

)
Pr
(

vh|M(S)
)

.

The larger the k is, the better is the representation of ß, thus we allow for k = ∞ by using the
following non-parametric prior:

ß =
∞

∑
h=1

vhΨh, Ψh =  
(1)
h ⊗ · · · ⊗  

(p)
h (1)

 
(j)
h ∼ P0j, independently for j = 1, . . . , p and h = 1, . . . , ∞

v ∼ Q,

where P0j corresponds to a Dirichlet measure and Q to a Dirichlet process.
For the usual stick-breaking stochastic representation of this model, we have

γs
j ∼ Multinomial

(
{0, 1} , ψ

(j)
zi , . . . , ψ

(j)
zidj

)
zi ∼

∞

∑
h=1

Vh ∏
l<h

(1−Vl) δh, Vh ∼ beta(1, α)

ψ
(j)
h ∼ Dirichlet

(
aj1, . . . , ajcj

)
α ∼ Gamma(aα, bα),

where the Multinomial notation is here over-engineered asM(S) observations are indicator variables.
Parameters aj1 = . . . = ajcj = 1 induce non informative a priori information about the probabilities
of each covariate being in the model. α is the usual concentration parameter on the space of latent
classes of model probability distributions. That is for small values of α, the probability of having
many classes of different probability distributions decreases. In what follows we will consider either α

fixed or under another layer of uncertainty by setting a gamma prior with shape aα and scale bα with
aα + bα = 1/2 and aα = 1/4 as in [8].

With this model at hand, we can obtain justification for the popular empirical estimator of τ.
That is, S → ∞ τ̂b ≈ τ̂e as this is a usual regular Bayesian model in which the prior information is
washed out by the sample size S. This is an asymptotic, although not Bayesian, justification of using
τ̂e instead of the proposed τ̂b. In this comparison scenario, τ̂f instead plays the role of a more robust
estimation as it is based on that distribution which has the largest probability. Therefore, comparing
τ̂b against τ̂f is the same as comparing means over modes except that the underlying randomness is
on probability distributions instead of random variables. Finally, comparing τ̂b and τ̂f against τ̂e and
τ̂r is the same as comparing sampling-based estimators against Bayesian ones which incorporate the
shrinkage effect of the prior. The claim here is that such an effect can be arbitrarily large for S finite
and p arbitrary large.
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2.1. Variational Algorithm for Approximate τ̂b

The above stochastic representation suggests to obtain π(Mγ|y) by using another Gibbs-sampling
exposed in [8] and it was used to obtain simulations from the posterior distribution of ψs and vs.
However, this algorithm can be very slow for large p and the benefits of the proposed Bayesian
approach can be compensated by just calculating τ̂e or τ̂r over larger values of S (if these were possible
to be obtained).

To avoid this drawback of the proposed modelling approach we make use of a recent and faster
variational algorithm illustrated in [9] and also implemented in the R package mixdir. The algorithm
relies on using approximated distribution, for the posterior of v and ψ. Such distributions are derived
by applying the mean-field theory to variational inference (see [10]). The approximating q distributions
of the variational approach lay down to be a mixture of Dirichlet distributions. For more details, see [9].
This algorithm is much faster than the initial Gibbs-sampling in [8] and thus may compensate for the
need of a larger S to obtain good estimations of τ.

3. Implementation and Examples

The R implementation of the proposed model is straightforward and it does not even need an ad
hoc appendix because major packages are already available. In particular, the implementation requires
the following packages for Gibbs-samplingM(S): BayesVarSel for BF based on the conventional prior
approach [2] and/or mombf for BF based on non-local priors [11]. Finally, package mixdir contains the
variational Bayes method sketched above in Section 2.1.

The minimal implementation for a response y and a design matrix X with p columns requires
two steps:

1. Obtain a sample ofM(S) use:

• for conventional prior: gammas<- GibbsBvs(y,X)$modelslogBF[,-p+1]
• for non-local prior: gammas<- modelSelection(y,X)$postSample

2. Estimate ß by cellsprob=mixdir(gammas) and calculate, for generic j
covariate, the inclusions probabilities in each of the component of the mixture,
pp=unlist(cellsprob$category_prob[[j]]). Then

• τ̂b is sum(pp[names(pp)==“1”]*cellsprob$lambda)
• τ̂f is pp[names(pp)==“1”][1]

In the examples and simulation studies illustrated below, we will mainly play with the number of
rows S of above-calculated matrix gammas.

3.1. Riboflavin Simulation Study

In what follows we will consider the Riboflavin dataset (see [12]) related to the riboflavin
production by Bacillus subtilis. We have n = 71 observations and p = 4088 predictors (gene expressions)
and a one-dimensional response (riboflavin production), y. We assume that BFγ0 is obtained from the
conventional prior and non-local prior. Priors on models, π(Mγ) is the Uniform prior.

We use the Riboflavin dataset only for fixing Xp and simulating 10,000 times the response vector
y of size n according to y = ∑3

i=1 i× Xpi + ε, ε ∼ N(0, 2) and p1, p2, p3 are three columns of Xp picked
at random for each simulated response (the rest of columns of Xp are supposed to have no effect on y).

The Gibbs algorithm starts at the null model and S has different sizes S = 100, 500, 1000. The goal
is to compare the proposed estimator against existing ones.

Results regarding the estimation of τ over all simulations with the Conventional and Non-Local
priors are shown in Figure 1.
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Figure 1. Riboflavin simulation results. Distributions of τ̂e, τ̂r, τ̂b and τ̂f over the 10,000 datasets for
only covariates inside the model, ordered by the magnitude of their corresponding coefficients and the
prior used to calculate BFs. Coefficients also represent the signal into the data (i.e., the value of the
coefficients) with respect to the residual standard error (the noise).

It is possible to appreciate that when the signal in the data is small (coefficients are 1 or 2) and S is
not large enough, the proposed estimators τ̂b and τ̂f perform better than the existing ones, while the τ̂r
performs better under the non-local prior approach. This is because, as mentioned above, the non-local
prior approach favors the model learning rate which is reflected in the values of the BF used to
renormalize τ̂e.

However, such improvements depend on the specific simulation analysis, that is the design
matrix, the noise in the response (here, two standard deviations) the specific value of the assumed
coefficients (i.e., 1, 2 and 3) and also the values of S. In particular, it seems to disappear when the
value of the coefficient is high (i.e., 2 or 3). To generalize these results concerning the choice of specific
values of coefficients, regression error standard deviation, and S, we analyze the results using probit
regressions (one for each prior). In particular, we transform 10,000 estimators τ̂ on the probit scale
and regress it with respect to the signal into the data (the value of the coefficient) and estimator type
(four in total) with interactions among them (in total we have 12 probit regression coefficients: main
effects plus interactions).

The resulting coefficient regressions that we focus on indicate the improvement to the τ̂e and
the signal when the coefficient is 1. Such an improvement is an increment in the probit scale of the
probability of having τ̂ = 1 for each combination of coefficient and estimator type. These increments
are between 0.62 and 2.14 (all highly significant) and are important if the original point in the probit
scale is low, while they are negligible if the point on the probit scale is large. Such an initial point
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corresponds to a signal in the data and the value of S. The increment on τ̂ and the signal in the data is
reported in Figure 2.
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Figure 2. Riboflavin simulation results. Estimate improvements into the inclusion probabilities
(vertical axis) with respect to the signal in the data and S (horizontal axis) for τ̂e (dashed line), τ̂r,
τ̂b and τ̂f estimated over the 10,000 datasets. For only covariates inside the model, ordered by the
magnitude of their corresponding coefficients and the prior used to calculate BFs.

From Figure 2 we can see that the proposed estimators τ̂b and τ̂f generally outperform the existing
estimator and popular τ̂e as the increment on τ̂ is larger when the signal in the data is lower. The τ̂r
perform better than τ̂f under the non-local prior as the corresponding BFs are very informative for
detecting variables.

3.2. Travel and Tourism Data Set

In this application, we want to explore the determinants of Travel and Tourism (T&T) global
expenditure using data of the World Economic Forum, based on the latest Travel and Tourism
Competitiveness Report (2019). The statistical unit is the country and the response variable is the
log of total tourism expenditure, obtained by multiplying the number of arrivals by the reported
individual expenditure. Data are obtained at http://www3.weforum.org/docs/WEF_TTCR19_data_
for_download.xlsx and further filtered to have a complete dataset https://raw.githubusercontent.
com/scabras/varseldmmp/master/tourism-data.csv The actual code to analyze it is here: https:
//github.com/scabras/varseldmmp/blob/master/s-example-tourism.md.

Tourism worldwide is threatened by the Covid-19 spread and it represents an important source of
income for many countries. For instance, in Spain, Mexico, and France, according to The Organization

http://www3.weforum.org/docs/WEF_TTCR19_data_for_download.xlsx
http://www3.weforum.org/docs/WEF_TTCR19_data_for_download.xlsx
https://raw.githubusercontent.com/scabras/varseldmmp/master/tourism-data.csv
https://raw.githubusercontent.com/scabras/varseldmmp/master/tourism-data.csv
https://github.com/scabras/varseldmmp/blob/master/s-example-tourism.md
https://github.com/scabras/varseldmmp/blob/master/s-example-tourism.md
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for Economic Co-operation and Development (OECD) in 2016, tourism represented more than 7% of
the Gross Domestic Product. The total number of covariates considered here is p = 65 fully observed
in n = 52 countries.

We apply the analysis using Conventional and non-local priors assuming that the number of
latent probability distributions on the model space is k = 10 and a fixed concentration parameter α = 1
to be as parsimonious as possible on determining the median probability model for S = 1000 and a
burn-in of 100 Gibbs-sampling steps.

It is important to note that to reach almost a substantial agreement between the actual
estimators τ̂e, τ̂r on one side and the newly proposed ones τ̂b, τ̂f it is necessary to have S = 10,000,
which corresponds to about seven times more the computational time used to obtain Table 1 which
reports the estimated median probability models.

Table 1. Tourism and Travel (T&T) data set. Estimated median probability models according to
the different estimators τ̂ crossed with BF definitions given by conventional and non-local priors.
In parenthesis, τ̂ is reported when the covariate is in the median probability model.

Name of Covariate Conventional Prior Non-Local Prior
τ̂e τ̂r τ̂b τ̂f τ̂e τ̂r τ̂b τ̂f

number of operating airlines (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
timeliness of providing
monthly/quarterly t&t data (0.95) (1.00) (0.74) (0.93) (1.00) (0.83)
individuals using internet, % (0.91) (0.57) (0.76) (0.72)
purchasing power parity (0.96) (0.51) (0.64) (0.53)
natural tourism digital demand (0.75) (0.68) (0.61)
active mobile broadband internet
subscriptions/100 population (0.82)
openness of bilateral air service
agreements (0.96)
total known species (0.71)

The most important factor is precisely the one most affected by Covid-19, which is the number
of operating airlines. The other factors are less related to Covid-19 but are still important. One is the
organizations of the T&T govern monitoring represented by the timeliness of providing data on T&T.
There are also variables related to country features: infrastructures (connection and power) internet
search of T&T resources and the presence of natural resources (total known species). As observed
above, non-local priors lead to more complex models than the conventional prior, but looking at the
proposed estimators they seem to be more robust with respect to the choice of the prior on model
parameters, in fact, τ̂b reports almost the same covariates regardless of the BF definition.

4. Remarks

This work aims to analyze the Gibbs-sampling output of model exploration according to a genuine
Bayesian analysis and avoid frequentist approaches that are of a critical application for p large and
S finite. Further, this is also the first work on comparing the conventional versus the non-local prior
definition of BFs, which represent at the moment the state of the art in covariate selection under the
normal linear model. The posterior mean of the τ is estimated with τ̂b results to be a robust estimator
of the τ. This is because of the Dirichlet model, which shrinks to zero some of the observed empirical
proportions, resulting from τ̂e, and increases the others. Moreover, it is also clear that the proposed τ̂r,
studied only for conventional prior in [7], seems to work very well under the improved learning rate
of the non-local prior approach.

As a further line of investigation, but beyond the scope of this paper, we note that π(Mγ)

(here, the uniform) can be substituted by the Dirichlet process model illustrated above and thus used
directly as π(Mγ) by incorporating it into the Gibbs-sampling. This is important in order to match ß
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in (1) with π(Mγ). This is incidentally done in [7], with the uniform π(Mγ) when using τ̂r. In general,
the problem of model exploration would deserve more Bayesian methods than the existing ones.
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