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Abstract: The broadcast channel may experience unequal link coherence times due to a number of
factors including variation in node mobility or local scattering conditions. This means the block fading
model for different links may have nonidentical block length, and the channel state information for the
links may also not be identical. The faster the fading and the shorter the fading block length, the more
often the link needs to be trained and estimated at the receiver, and the more likely that channel state
information (CSI) is stale or unavailable at the transmitter. This paper investigates a MISO broadcast
channel where some receivers experience longer coherence intervals and other receivers experience
shorter coherence intervals and must estimate their receive-side CSI (CSIR) frequently. We consider
a variety of transmit-side CSI (CSIT) conditions for the abovementioned model, including no CSIT,
delayed CSIT, or hybrid CSIT. To investigate the degrees of freedom region, we employ interference
alignment and beamforming along with a product superposition that allows simultaneous but
noncontaminating transmission of pilots and data to different receivers. Outer bounds employ the
extremal entropy inequality as well as a bounding of the performance of a discrete, memoryless,
multiuser, multilevel broadcast channel. For several cases, inner and outer bounds are established that
either partially meet, or the gap diminishes with increasing coherence times.

Keywords: broadcast channel; channel state information; coherence time; coherence diversity;
degrees of freedom; fading channel; product superposition

1. Introduction

A typical wireless network is required to serve multiple users with different channel coherence and
possibly also different quality of channel state information (CSI). For simplicity, most of the literature
assumes similarity in CSI and channel coherence; with this assumption, the network capability
and performance are limited by the users with the least CSI and channel coherence. In this paper,
the assumption of uniformity in CSI and channel coherence is relaxed, allowing new gains in the
network to be exploited.

The degrees of freedom (DoF) of a MIMO broadcast channel with similar CSI and channel coherence
has been studied extensively. In the literature overview in this section, channels are single-input
single-output (SISO) whenever no reference is made to the number of antennas. Under perfect
instantaneous transmit-side CSI (CSIT) and receive-side CSI (CSIR), the degrees of freedom of a
broadcast channel increase with the minimum of the transmit antennas and the total number of receive
antennas [1,2]. Broadcast channel with perfect CSIR has been investigated under a variety of CSIT
conditions, including imperfect, delayed, or no CSIT [3–8].

In the absence of CSIT, Huang et al. [3] and Vaze and Varanasi [4] showed that the degrees of
freedom collapse to the single-user DoF, since the receivers are stochastically equivalent with respect
to the transmitter. For a MISO broadcast channel, Lapidoth et al. [5] conjectured that as long as the
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precision of CSIT is finite, the degrees of freedom collapse to unity. This conjecture was recently settled
in the positive by Davoodi and Jafar in [6]. Moreover, for a MISO broadcast channel under perfect
delayed CSIT, Maddah-Ali and Tse in [7] showed using retrospective interference alignment that the
degrees of freedom are 1

1+ 1
2+...+ 1

K
> 1, where K is the number of the transmit antennas and also the

number of receivers. A scenario of mixed CSIT was investigated in [8], where the transmitter has
partial knowledge about the current channel state in addition to delayed CSI.

The model of hybrid CSIT has been studied in the literature, where the CSIT with respect to
different links may not be identical [6,9–11]. However, this model has assumed perfect and similar
CSIR as well as identical coherence time for all users. A MISO broadcast channel with perfect CSIT
for some receivers and delayed for the others was studied by Tandon et al. [9] and Amuru et al. [10].
Davoodi and Jafar [6] showed that for a MISO two-receiver broadcast channel under perfect CSIT
for one user and no CSIT for the other, the degrees of freedom collapse to unity. Tandon et al. [11]
considered a MISO broadcast channel with alternating hybrid CSIT to be perfect, delayed, or no CSIT
with respect to different receivers.

With no CSIT for any users, the broadcast channel has been studied under unequal CSIR and
unequal channel coherence time. An achievable degrees of freedom region for one slow-fading and one
fast-fading receiver, the former with CSIR, was given in [12,13] via product superposition, discovering a
gain that is now known as coherence diversity. Coherence diversity gain was further investigated in [14]
for a K-receiver broadcast channel with neither CSIT nor CSIR.

In this paper, we consider a multiuser model in which a group of slow-fading receivers
possessing longer block-fading are assumed to have CSIR; and another group of fast-fading receivers
possessing shorter block-fading do not have CSIR a priori. We consider this model under a range of
different CSIT conditions. The results of this paper are cataloged as follows.

In the absence of CSIT, an outer bound on the degrees of freedom region is produced via bounding
the rates of a discrete, memoryless, multilevel broadcast channel [15,16] and then applying the
extremal entropy inequality [17,18]. The outer bound is developed based on an extension to of
the Körner–Marton outer bound ([19] Theorem 5) to more than two users. As a distinct contribution
to this paper—the multiuser, discrete, memoryless, multilevel broadcast channel—we establish the
capacity for degraded message sets, where one common message is communicated to all receivers and
one further private message is communicated to one receiver.

For delayed CSIT, we use the outdated CSI model that was used by Maddah-Ali and Tse [7] under
i.i.d. fading and assuming global CSIR at all nodes. Noting that our model does not have uniform
CSIR, we produced a technique with alignment over super symbols to utilize outdated CSIT but merge
it together with product superposition to reuse the pilots of the fast-fading receivers for the purpose
of transmission to slow-fading receivers. Moreover, we develop an outer bound that is suitable for
block-fading channels with different coherence times, by appropriately enhancing the channel to a
physically-degraded broadcast channel and then applying the extremal entropy inequality [17,18].
For one slow-fading and one fast-fading receiver, our achievable degrees of freedom partially meet our
outer bound, and furthermore, the gap decreases with the fast-fading receiver coherence time.

Under hybrid CSIT, we analyze two conditions: First, we consider perfect CSIT for the slow-fading
receivers and no CSIT with respect to the fast-fading receivers. The achievable degrees of freedom
in this case are obtained using product superposition with the fast-fading receiver’s pilots reused
and beamforming for the slow-fading receivers to avoid interference. Second, we consider perfect
CSIT with respect to the slow-fading receivers and delayed CSIT with respect to the fast-fading
receivers. An achievable transmission scheme is proposed via a combination of beamforming,
interference alignment, and product superposition methodologies. The outer bounds for the two
hybrid-CSIT cases were based on constructing an enhanced physically degraded channel and then
applying the extremal entropy inequality. For one slow-fading receiver with perfect CSIT and one
fast-fading receiver with delayed CSIT, the gap between the achievable and the outer sum degrees of
freedom is the inverse of the dynamic receiver coherence time.
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2. System Model

A taxonomy of the notation of this paper appears in Table 1. Consider a broadcast channel with
multiple single-antenna receivers and the transmitter is equipped with Nt antennas. The expressions
“receiver” and “user” are employed without distinction throughout the paper, indicating the receiving
terminals in the broadcast channel. The channels of the users are modeled as Rayleigh block-fading,
where the channel coefficients remain constant over each block and change independently across
blocks [20,21]. As shown in Figure 1, the users are partitioned into two sets based on channel availability
and the length of the coherence interval: One set contains m fast-fading users with coherence time T
and no CSIR, meaning that the cost of knowing CSI at the receiver—e.g., by channel estimation—is
not ignored. The other set contains m′ slow-fading users having coherence time T′ and perfect
instantaneous CSIR, where T′ >> T. We consider the transmitter is equipped with more antennas
than the number of fast-fading and slow-fading users, i.e., Nt ≥ m′ + m.

Table 1. Notation.

Slow-Fading Users Fast-Fading Users

number of users m′ m
MISO channel gains g1, . . . , gm′ h1, . . . , hm
received signals (continuous) y′1, . . . , y′m′ y1, . . . , ym
DMC receive variables Y′1, . . . , Y′m′ Y1, . . . , Ym
transmission rates R′1, . . . , R′m′ R1 . . . , Rm
messages M′1, . . . , M′m′ M1, . . . , Mm
degrees of freedom d′1, . . . , d′m′ d1, . . . , dm
coherence time T′ T

General Variables

X transmit signal
ρ signal-to-noise ratio
Ui, Vj, W auxiliary random variables
H set of all channel gains
Dx vertex of degrees of freedom region
ei canonical coordinate vector

The received signals y′j(t), yi(t) at the slow-fading user j and the fast-fading user i, respectively,
at time instant t are

y′j(t) = g†
j (t)x(t) + z′j(t), j = 1, . . . , m′,

yi(t) = h†
i (t)x(t) + zi(t), i = 1, . . . , m,

(1)

where x(t) ∈ CNt is the transmitted signal, z′j(t), zi(t) denote the corresponding additive i.i.d.

Gaussian noise of the users, and gj(t) ∈ CNt , hi(t) ∈ CNt denote the channels of the slow-fading
user j and the fast-fading user i whose coefficients stay the same over T′ and T time instances,
respectively. The distributions of gj and hi are globally known at the transmitter and at the users
(Additionally, the coherence times of all channels are globally known at the transmitter and at the
users.). Having CSIR, the value of gj(t) is available instantaneously and perfectly at the slow-fading
user j. Furthermore, the slow-fading user j obtains an outdated version of the fast-fading users’
channels hi, and also the fast-fading user i obtains an outdated version of the slow-fading users’
channel gi (completely stale) [7]. CSIT for each user can take one of the following forms:

• Perfect CSIT: the channel vectors, gj(t), hi(t), are available at the transmitter instantaneously
and perfectly.

• Delayed CSIT: the channel vectors, gj(t), hi(t), are available at the transmitter after they change
independently in the following block (completely stale [7]).
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• No CSIT: the channel vectors, gj(t), hi(t), cannot be known at the transmitter.

Tx

dynamic

static

Figure 1. A broadcast channel with multiple slow-fading and multiple fast-fading users.

We consider the broadcast channel with private messages for all users and no common messages.
More specifically, we assume that the independent messages M′j ∈ [1 : 2nR′i(ρ)], Mi ∈ [1 : 2nRi(ρ)]

associated with rates R′j(ρ), Ri(ρ) are communicated from the transmitter to the slow-fading user j and
fast-fading user i, respectively, at ρ signal-to-noise ratio. The degrees of freedom of the slow-fading
and fast-fading users achieving rates R′j(ρ), Ri(ρ) can be defined as

d′j = limρ→∞
R′j(ρ)
log(ρ) , j = 1, . . . , m′,

di = limρ→∞
Ri(ρ)
log(ρ) , i = 1, . . . , m.

(2)

The degrees of freedom region is defined as

D =
{

(d′1, . . . , d′m′ , d1, . . . , dm) ∈ Rm′+m
+

∣∣ ∃(R′1(ρ), . . . , R′m′(ρ), R1(ρ), . . . , Rm(ρ)) ∈ C(ρ),

d′j = limρ→∞
R′j(ρ)
log(ρ) , di = limρ→∞

Ri(ρ)
log(ρ) , j = 1, . . . , m′, i = 1, . . . , m

}
,

(3)

where C(ρ) is the capacity region at ρ signal-to-noise ratio. The sum degrees of freedom is defined as

dsum = lim
ρ→∞

Csum(ρ)

log(ρ)
, (4)

where

Csum(ρ) = max
m′

∑
j=1

R′j(ρ) +
m

∑
i=1

Ri(ρ). (5)

In the sequel, we study the degrees of freedom of the above MISO broadcast channel under
different CSIT scenarios that could be perfect, delayed, or no CSIT.

Remark 1. Under slow-fading, the degrees of freedom needed for channel training is a small fraction of the total
degrees of freedom available in each fading block. The assumption of free CSIR essentially neglects this small
overhead in the interest of simplicity. The authors in [14] studied the scenario of unequal coherence block length
where no users are provided a priori CSIR. The extension of the results of this paper to two groups of users with
two completely arbitrary fading-block lengths without free CSIR is possible via the methods of [14], but is not
attempted herein in the interest of clarity and focus on the effect of different qualities and quantities of CSIT.

3. No CSIT for Any Users

The broadcast channel defined in Section 2 is studied without CSIT. Bounding the rates of a
multiuser, multilevel, discrete, memoryless broadcast channel in Section 3.1 provides the tools for
outer bound on degrees of freedom of the channel of interest, in Section 3.2. Achievable degrees of
freedom is obtained in Section 3.3.
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3.1. Multiuser, Multilevel Broadcast Channel

The multilevel broadcast channel was introduced by Borade et al. [15] as a three-user broadcast,
discrete, memoryless broadcast channel where two of the users are degraded with respect to each other.
The capacity of this channel under degraded message sets was established by Nair and El Gamal [16].
Here, we study a multiuser, multilevel broadcast channel with two sets of degraded users (see Figure 2).
One set contains m′ users with Y′j received signal at user j, and the other set contains m users with Yi
received signal at user i. Therefore,

X → Y′1 → Y′2 → · · · → Y′m′
X → Y1 → Y2 → · · · → Ym

(6)

form two Markov chains. We consider a broadcast channel with (m′ + m) private messages and
no common message. An outer bound for the above multilevel broadcast channel is given in the
following theorem.

p(y1’,y1|x)

p(y2’|y1’)

p(y2|y1)

p(y3’|y2’)

p(y3|y2)

p(ym’’|ym’-1’)

p(ym|ym-1)

X

Y1’

Y1

Y2’

Y2

Ym’’

Ym

Figure 2. Discrete, memoryless, multiuser, multilevel broadcast channel.

Theorem 1. The rate region of the multilevel broadcast channel with two sets of degraded users (Equation (6))
is outer bounded by the intersection of

R1 ≤I(Um′ , W; Y1|V1)− I(W; Y′m′ |Um′), (7)

Ri ≤I(Vi−1; Yi|Vi), i = 2, . . . , m, (8)

R′j ≤I(Uj−1; Y′j |Uj), j = 1, . . . , m′ − 1, (9)

R′m′ ≤I(W; Y′m′ |Um′) + I(X; Y′m′ |Um′ , W)− I(X; Y′m′ |Um′−1), (10)

and

Ri ≤I(Ũi−1; Yi|Ũi), i = 1, . . . , m− 1, (11)

Rm ≤I(W̃; Ym|Ũm) + I(X; Ym|Ũm, W̃)− I(X; Ym|Ũm−1), (12)

R′1 ≤I(Ũm, W̃; Y′1|Ṽ1)− I(W̃; Ym|Ũm), (13)

R′j ≤I(Ṽj−1; Y′j |Ṽj), j = 2, . . . , m′, (14)

for some pmf
p(u1, . . . , um′ , ũ1, . . . , ũm, v1, . . . , vm, ṽ1, . . . , ṽm′ , w, w̃, x), (15)
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where
Um′ → · · · → U1 → X → (Y1, . . . , Ym, Y′1, . . . , Y′m′)

Vm → · · · → V1 → (W, Um′)→ X → (Y1, . . . , Ym, Y′1, . . . Y′m′)
Ũm → · · · → Ũ1 → X → (Y1, . . . Ym, Y′1, . . . , Y′m′)

Ṽm′ → · · · → Ṽ1 → (W̃, Ũm)→ X → (Y1, . . . Ym, Y′1, . . . , Y′m′)

(16)

forms Markov chains and U0 = Ũ0 , X.

Proof. See Appendix A.

Remark 2. Theorem 1 is an extension of the Körner–Marton outer bound ([19] Theorem 5) to more than two
users, and it recovers the Körner–Marton bound when m = m′ = 1.

Remark 3. For the multiuser, multilevel broadcast channel characterized by (6), we establish the capacity for
degraded message sets in Appendix B, where one common message is communicated to all receivers and one
further private message is communicated to one receiver.

3.2. Outer Degrees of Freedom Region

We now return to the broadcast channel defined in Section 2.

Theorem 2. An outer bound on the degrees of freedom region of the fading broadcast channel characterized by
Equation (1), without CSIT, is

m′

∑
j=1

d′j ≤ 1, (17)

m

∑
i=1

di ≤ 1− 1
T

, (18)

m′

∑
j=1

d′j +
m

∑
i=1

di ≤
4
3

. (19)

Proof. Equations (17) and (18) are, respectively, outer bounds for the slow-fading users alone and
fast-fading users alone. These are bounds on the sum-DoF of a broadcast channel whose receivers
have the same fading-block length [14,22]. The remainder of the proof is dedicated to establishing (19).
We enhance the channel by giving all users global CSIR. Having no CSIT, the channel belongs to the
class of multiuser, multilevel broadcast channels in Section 3.1. We then use the two outer bounds
developed for the multilevel broadcast channels to generate two degrees of freedom bounds, and merge
them to get the desired result.

We begin with the outer bound described in (7)–(10); we combine these equations to obtain partial
sum-rate bounds on the slow-fading (∑ R′j) and fast-fading (∑ Ri) receivers:

∑m′
j=1 R′j ≤ ∑m′−1

j=1 I(Uj−1; y′j|Uj,H) + I(W; y′m′ |Um′ ,H) + I(x; y′m′ |Um′ , W,H)

−I(x; y′m′ |Um′−1,H)

= ∑m′−1
j=1 h(y′j|Uj,H)− h(y′j|Uj−1,H) + I(W; y′m′ |Um′ ,H) + h(y′m′ |Um′ , W,H)

−h(y′m′ |Um′−1,H) + o(log(ρ))

(20)

=I(W; y′m′ |Um′ ,H) + h(y′m′ |Um′ , W,H) + o(log(ρ)), (21)
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where H is the set of all channel vectors; (20) follows from the chain rule, h(y′j|x,H) = o(log(ρ));
and (21) follows since the received signals of all slow-fading users, y′j, have the same statistics [14,22].
Additionally, using Theorem 1,

∑m
j=1 Rj ≤ I(Um′ , W; y1|V1,H)− I(W; y′m′ |Um′ ,H) + ∑m

j=2 I(Vj−1; yj|Vj,H)

= h(y1|V1,H)− h(y1|Um′ , W,H)− I(W; y′m′ |Um′ ,H) + ∑m
j=2 h(yj|Vj,H)

−h(yj|Vj−1,H)

(22)

=− h(y1|Um′ , W,H)− I(W; y′m′ |Um′ ,H) + h(ym|Vm,H) + o(log(ρ)) (23)

≤− h(y1|Um′ , W,H)− I(W; y′m′ |Um′ ,H) + log(ρ) + o(log(ρ)), (24)

where (22) follows from the chain rule, (23) follows since yj have the same statistics, and (24) follows
since h(ym|Vm,H) ≤ n log(ρ) + o(log(ρ)). Define Y′j,k to be the received signal of user j at time instance
k. From (21) and (24), we can obtain the bound (27) on the rates.

1
2

m′

∑
j=1

R′j +
m

∑
j=1

Rj ≤
1
2

I(W; y′m′ |Um′ ,H) +
1
2

h(y′m′ |Um′ , W,H)− h(y1|Um′ , W,H)

− I(W; y′m′ |Um′ ,H) + log(ρ) + o(log(ρ))

=
1
2

h(y′m′ |Um′ , W,H)− h(y1|Um′ , W,H) + log(ρ) + o(log(ρ))

≤1
2

h(y′m′ , y1|Um′ , W,H)− h(y1|Um′ , W,H) + log(ρ) + o(log(ρ)) (25)

≤
n

∑
k=1

1
2

h(y′m′ ,k, y1,k|Um′ , W,H, y′m′ ,1, . . . , y′m′ ,k−1, y1,1, . . . , y1,k−1)

− h(y1,k|Um′ , W,H, y′m′ ,1, . . . , y′m′ ,k−1, y1,1, . . . , y1,k−1) + log(ρ)

+ o(log(ρ)) (26)

≤ max
Tr{Σx}≤ρ,Σx<0

EH
{1

2
log |I + HΣxH†| − log(1 + h†

1Σxh1)
}
+ log(ρ)

+ o(log(ρ)), (27)

where (25) and (26) follow from the chain rule that conditioning does not increase differential entropy,
and (27) follows from extremal entropy inequality [17,18,23]. In order to bound (27), we use a
specialization of [24] Lemma 3 as follows.

Lemma 1. Consider two random matrices H1 ∈ CN1×Nt and H2 ∈ CN2×Nt , where N1 ≥ N2. For a covariance
matrix Σx, where Tr{Σx} ≤ ρ, we have

max
Σx

1
min{Nt, N1}

log |I + H1ΣxH†
1| −

1
min{Nt, N2}

log |I + H2ΣxH†
2| ≤ o(log(ρ)). (28)
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The proof of Lemma 1 is omitted as it directly follows from [24] Lemma 3. Lemma 1 yields the
following outer bound on the degrees of freedom:

1
2

m′

∑
j=1

d′j +
m

∑
i=1

di ≤ 1. (29)

We now repeat the exercise of bounding the sum rates and deriving degrees of freedom, this time
starting from (11)–(14). By following bounding steps parallel to (21), (24), and (27),

m′

∑
j=1

d′j +
1
2

m

∑
i=1

di ≤ 1. (30)

Adding (29) and (30) yields the outer bound (19), completing the proof of Theorem 2.

3.3. Achievable Degrees of Freedom Region

Theorem 3. The fading broadcast channel described by Equation (1) can achieve the following degrees of freedom
without CSIT:

m

∑
i=1

di ≤ 1− 1
T

, (31)

m′

∑
j=1

d′j +
m

∑
i=1

di ≤ 1. (32)

Proof. The achievable scheme uses product superposition [13,22], where the transmitter uses one
antenna to send the super symbol to two users: one fast-fading and one slow-fading ,

x† = xsx†
d, (33)

where xs ∈ C is a symbol intended for the slow-fading user; and

x†
d = [xτ , x†

δ ], (34)

where xτ ∈ C is a pilot and xδ ∈ CT−1 is a super symbol intended for the fast-fading user. Since degrees
of freedom analysis is insensitive to the additive noise, we omit the noise component in the following.

y† = hxs[xτ , x†
δ ]

= [hxτ , hx†
δ ], (35)

where h = hxs. The fast-fading user estimates the equivalent channel h during the first time instance
and then decodes xδ coherently based on the channel estimate. The slow-fading receiver only utilizes
the received signal during the first time instance:

y′1 = gxs. (36)

Knowing its channel gain g, the slow-fading receiver can decode xs. The achievable degrees of freedom
of the two users are

(d′, d) =
( 1

T
, 1− 1

T
)
. (37)

We now proceed to prove that the degrees of freedom region characterized by (31) and (32) can
be achieved via a combination of two-user product superposition strategies that were outlined above,
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and single-user strategies. For clarity of exposition we refer to (31)—which describes the degrees of
freedom constraints of the fast-fading receivers—as the noncoherent bound, and to (32) as the coherent
bound. The non-negativity of degrees of freedom restricts them to the non-negative orthant Rm+m′

+ .
The intersection of the coherent bound and the non-negative orthant is a (m′ + m)–simplex that has
m + m′ + 1 vertices. The noncoherent bound is a hyperplane that partitions the simplex with m′ + 1
vertices on one side of the noncoherent bound and m on the other. Therefore, the intersection of the
simplex with the noncoherent bound produces a polytope with (m′ + 1)(m + 1) vertices (This can be
verified with a simple counting exercise involving the number of edges of the simplex that cross the
noncoherent bound.). For illustration, see Figure 3 showing the three-user degrees of freedom with
two slow-fading users and Figure 4 with one slow-fading user.

Non-coherent bound

Coherent bound

d’1

d’2

d

Figure 3. Achievable degrees of freedom region of one fast-fading and two slow-fading users.

Non-coherent bound

Coherent bound
d’

d2

d1

Figure 4. Achievable degrees of freedom region of one slow-fading and two fast-fading users.

We now verify that each of the (m′ + 1)(m + 1) vertices can be achieved with either a single-user
strategy, or via a two-user product superposition strategy:

• m′ vertices corresponding to single-user transmission to each slow-fading user j achieving one
degree of freedom.

• m vertices corresponding to single-user transmission to each fast-fading user i achieving (1− 1
T )

degrees of freedom.
• m′m vertices corresponding to product superposition applied to all possible pairs of slow-fading

and fast-fading users, achieving 1
T degrees of freedom for one slow-fading user and (1− 1

T )

degrees of freedom for one fast-fading user.
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• One trivial vertex at the origin, corresponding to no transmission, achieving zero degrees of
freedom for all users.

Hence, the number of the vertices is m′ + m + m′m + 1 = (m + 1)(m′ + 1). This completes the
achievability Proof of Theorem 3.

4. Delayed CSIT for All Users

Under delayed CSIT, the transmitter knows each channel gain only after it is no longer valid.
This condition is also known as outdated CSIT. We begin by proving inner and outer bounds when
transmitting only to slow-fading users, only to fast-fading users, and to one slow-fading and one
fast-fading user. We then synthesize this collection of bounds into an overall degrees of freedom region.

4.1. Transmission to Slow-Fading Users

Theorem 4. The degrees of freedom region of the fading broadcast channel characterized by Equation (1),
with delayed CSIT and having m′ slow-fading users and no fast-fading users is

d′j ≤
1

1 + 1
2 + . . . + 1

m′
, j = 1, . . . , m′. (38)

Proof. The case of T′ = 1 was discussed by Maddah-Ali and Tse in [7], where the achievability was
established by retrospective interference alignment that aligns the interference using the outdated CSIT;
and the converse was proved by generating an improved channel without CSIT having a tight degrees
of freedom region against TDMA according to the results in [3,4]. For T′ ≥ 1, the achievability is
established by employing retrospective interference alignment presented in [7] over super symbols,
each of length T′. The converse is proved by following the same procedures in [7] to generate a
block-fading improved channel without CSIT and with identical coherence intervals of length T′.
According to the results of [14,22], TDMA is tight against the degrees of freedom region of the
improved channel.

4.2. Transmission to Fast-Fading Users

Theorem 5. The fading broadcast channel characterized by Equation (1), with delayed CSIT and having m
fast-fading users and no slow-fading users, can achieve the degrees of freedom

di ≤
1

1 + 1
2 + . . . + 1

m
(1− m

T
), i = 1, . . . , m. (39)

An outer bound on the degrees of freedom region is

di ≤1− 1
T

, (40)

m

∑
i=1

di ≤
m

1 + 1
2 + . . . + 1

m
. (41)

Proof. The achievability part can be proved as follows. At the beginning of each super symbol, m pilots
are sent for channel estimation. Then, retrospective interference alignment in [7] over super symbols is
employed during the remaining (T−m) instances to achieve (39). For the converse part, (41) is proved
by giving the users global CSIR, and then applying Theorem 4. Moreover, (40) is the single-user bound
for each fast-fading user that can be proved as follows. For a single user with delayed CSIT, feedback
does not increase the capacity [25]; consequently, the assumption of delayed CSIT can be removed.
Hence, the single-user bound for each fast-fading user with delayed CSIT is the same as the single-user
bound without CSIT [21].
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4.3. Transmission to One Slow-Fading and One Fast-Fading User

Theorem 6. The fading broadcast channel characterized by Equation (1), with delayed CSIT and having one
slow-fading and one fast-fading user, can achieve the following degrees of freedom

D1 : (d′, d) =
(2

3
(1 +

1
T
),

2
3
(1− 2

T
)
)
, (42)

D2 : (d′, d) = (
1
T

, 1− 1
T
). (43)

Furthermore, the achievable degrees of freedom region is the convex hull of the above degrees of freedom pairs.

Proof. From Section 3.3, product superposition achieves the pair (43) that does not require CSIT for
any of the two users. The remainder of the proof is dedicated to the achievability of the pair (42).
We provide a transmission scheme based on retrospective interference alignment [7] along with
product superposition.

1. The transmitter first emits a super symbol intended for the slow-fading user:

X1 = [X1,1, · · · , X1,`], (44)

where ` = T′
T , and each X1,n ∈ C2×T occupies T time instances and has the following structure:

X1,n = [Ūn, ŪnUn], n = 1, . . . , `, (45)

both the diagonal matrix Ūn ∈ C2×2 and Un ∈ C2×(T−2) contain symbols intended for the
slow-fading user. The components of y

′†
1 = [y

′†
1,1, · · · , y

′†
1,`] are

y
′†
1,n = [g†

1Ūn, g†
1ŪnUn], n = 1, . . . , `

= [g̃†
1,n, g̃†

1,nUn],
(46)

where g̃†
1,n = g†

1Ūn. The slow-fading user by definition knows g1, so it can decode Ūn

which yields 2 T′
T degrees of freedom. The remaining T′

T (T − 2) observations in g̃†
1,nUn involve

2 T′
T (T − 2) unknowns, so they require a further T′

T (T − 2) independent observations for
reliable decoding.

The components of y†
1 = [y†

1,1, · · · , y†
1,`] are

y†
1,n = [h†

1,nŪn, h†
1,nŪnUn], n = 1, . . . , `

= [h̃†
1,n, h̃†

1,nUn],
(47)

where h̃†
1,n = h†

1,nŪn is the equivalent channel estimated by the fast-fading user. The fast-fading
user saves h̃†

1,nUn for interference cancellation in the upcoming steps.
2. The transmitter sends a second super symbol intended for the fast-fading user:

X2 = [X2,1, · · · , X2,`], (48)

where
X2,n = [Ũn, ŨnVn], n = 1, . . . , `, (49)
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Ũn ∈ C2×2 is diagonal and includes 2 independent symbols intended for the slow-fading
user, and Vn ∈ C2×(T−2) contains independent symbols intended for the fast-fading user.
The components of y†

2 = [y†
2,1, · · · , y†

2,`] are

y†
2,n = [h†

2,nŨn, h†
2,nŨnVn], n = 1, . . . , `

= [h̃†
2,n, h̃†

2,nVn],
(50)

where h̃†
2,n = h†

2,nŨn is the equivalent channel estimated by the fast-fading user. The fast-fading

user saves h̃†
2,nVn, which includes T′

T (T − 2) independent observations about 2 T′
T (T − 2)

unknowns, and hence, an additional T′
T (T − 2) observations are needed to decode Vn.

The components of y
′†
2 = [y

′†
2,1, · · · , y

′†
2,`] are

y′2,n = [g†
2Ũn, g†

2ŨnVn], n = 1, . . . , `
= [g̃†

2,n, g̃†
2,nVn],

(51)

where g̃†
2,n = g†

2Ũn is the equivalent channel estimated by the slow-fading user; the slow-fading

user saves g̃†
2,nVn for the upcoming steps. Knowing g2, the slow-fading user achieves 2 T′

T further
degrees of freedom from decoding Ũn.

3. The transmitter emits a third super symbol consisting of a linear combination of the signals
generated from the first and the second super symbols.

X3 = [X3,1, · · · , X3,`], (52)

where
X3,n = [Ûn, Ûn(h̃†

1,nUn + g̃†
2,nVn)], n = 1, . . . , `, (53)

Ûn ∈ C2×2 is diagonal and contains 2 independent symbols intended for the slow-fading user,
and hence, the slow-fading user achieves further 2 T′

T degrees of freedom.

The slow-fading user cancels g̃†
2,nVn saved during the second super symbol and obtains h̃†

1,nUn,

which includes the additional independent T′
T (T − 2) observations needed for decoding Un.

Therefore, the slow-fading user achieves 2 T′
T (T − 2) further degrees of freedom. The fast-fading

user estimates the equivalent channel h̃†
3,n = h†

3,nÛn, cancels h̃†
1,nUn saved during the first super

symbol, and obtains g̃†
2,nVn which contains the additional observations needed for decoding Vn.

Hence, the fast-fading user achieves 2 T′
T (T − 2) degrees of freedom.

In aggregate, over 3T′ time instants, the slow-fading and fast-fading user achieve the degrees
of freedom

d′ = 6
T′

T
+ 2

T′

T
(T − 2), d = 2

T′

T
(T − 2). (54)

This completes the proof of Theorem 6.

Theorem 7. An outer bound on the degrees of freedom region of the fading broadcast channel characterized by
Equation (1), with one slow-fading and one fast-fading user having delayed CSIT, is

d′

2
+ d ≤ 1, (55)

d′ +
d
2
≤ 1, (56)
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d ≤ 1− 1
T

. (57)

Proof. The inequality (57) represents the single-user outer bound [21]. We prove the bound (55) as
follows. We enhance the original channel by giving both users global CSIR. In addition, the channel
output of the fast-fading user, y(t), is given to the slow-fading user. Therefore, the channel outputs
at time instant t are (y′(t), y(t),H) at the slow-fading user, and (y(t),H) at the fast-fading user.
The enhanced channel is physically degraded [26,27], hence, removing the delayed CSIT does not
reduce the capacity [28]. Additionally,

R′ ≤I(x(t); y′(t), y(t)|U,H) = h(y′(t), y(t)|U,H)− h(y′(t), y(t)|U, x(t),H)

R ≤I(U; y(t)|H) = h(y(t)|H)− h(y(t)|U,H), (58)

where U is an auxiliary random variable, and U → x → (y′(t), y(t)) forms a Markov chain. Therefore,

R′

2
+ R ≤h(y(t)|H) +

1
2

h(y′(t), y(t)|U,H)− h(y(t)|U,H) + o(log(ρ))

≤ log(ρ) +
1
2

h(y′(t), y(t)|U,H)− h(y(t)|U,H) + o(log(ρ)) (59)

≤ log(ρ) + max
Tr{Σx}≤ρ,Σx<0

EH
{1

2
log |I + HΣxH†| − log(1 + h†(t)Σxh(t))

}
+ o(log(ρ)) (60)

≤ log(ρ) + o(log(ρ)), (61)

where (59) follows since h(y(t)|H) ≤ log(ρ) + o(log(ρ)) [29], (60) follows from extremal entropy
inequality [17,18,24], and (61) follows from Lemma 1. Hence, the bound (55) is proved. A similar
argument, with the role of the two users reversed, leads to the bound (56).

Remark 4. The inner and outer bounds obtained for the two-user case partially meet, with the gap diminishing
with the coherence time of the fast-fading user, as shown in Figures 5 and 6 for T = 15 and T = 30, respectively.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

Achievable region

Outer region

Figure 5. One slow-fading and one fast-fading user with delayed transmit-side channel state
information (CSIT) and T = 15.
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Figure 6. One slow-fading and one fast-fading with delayed CSIT and T = 30.

4.4. Transmission to Arbitrary Number of Slow-Fading and Fast-Fading Users

Theorem 8. The fading broadcast channel characterized by Equation (1), with delayed CSIT, can achieve the
multiuser degrees of freedom characterized by vectors Di,

D1 :
1

1 + 1
2 + . . . + 1

m′

m′

∑
i=1

e†
i , (62)

D2, . . . ,Dmm′+1 :
2
3
(1 +

1
T
)e†

j +
2
3
(1− 2

T
)e†

m′+i, j = 1, . . . , m′, i = 1, . . . , m, (63)

Dmm′+2, . . . ,Dmm′+m′+2 :
m
T

e†
j +

1
1 + 1

2 + . . . + 1
m
(1− m

T
)

m

∑
i=1

e†
i , j = 1, . . . , m′, (64)

where ej is the canonical coordinate vector. Their convex hull characterized an achievable degrees of
freedom region.

Proof. The achievability of (62) was proved in Section 4.1 via multiuser transmission to slow-fading
users. The achievability of (63) was proved in Section 4.3 via a two-user transmission to a fast-fading
–slow-fading pair.

We now show the achievability of (64) via retrospective interference alignment [7] along with
product superposition. Over a super symbol of length T, consider the following transmission:

X = [U, UV], (65)

where U ∈ Cm×m is diagonal and includes m independent symbols intended for the slow-fading user
j, and V ∈ Cm×(T−m) is a super symbol containing independent symbols intended for the fast-fading
users according to retrospective interference alignment [7]. Therefore, the slow-fading user decodes U.
Thus, over T time instants, the slow-fading user achieves m degrees of freedom and the fast-fading
users achieve 1

1+ 1
2+...+ 1

m
(T −m), hence, (64) is achieved.
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Theorem 9. An outer bound on the degrees of freedom of the fading broadcast channel characterized by
Equation (1), with delayed CSIT, is

m′

∑
j=1

d′j
m′ + m

+
m

∑
i=1

di
m
≤ 1, (66)

m′

∑
j=1

d′j
m′

+
m

∑
i=1

di
m′ + m

≤ 1, (67)

d′j ≤ 1, ∀j = 1, . . . , m′, (68)

di ≤ 1− 1
T

, ∀i = 1, . . . , m. (69)

Proof. The inequalities (68) and (69) represent the single-user bounds on the slow-fading and the
fast-fading users, respectively [21,29]. The remainder of the proof is dedicated to establishing the
bounds (66) and (67).

We enhance the channel by providing global CSIR as well as allowing full cooperation among
slow-fading users and full cooperation among fast-fading users. The enhanced channel is equivalent to
a broadcast channel with two users: one slow-fading equipped with m′ antennas, and one fast-fading
equipped with m antennas. Define Y′ ∈ Cm′ and Y ∈ Cm to be the received signals of the slow-fading
and the fast-fading super-user, respectively, in the enhanced channel. We further enhance the channel
by giving Y to the slow-fading user, generating a physically degraded channel since X→ (Y′, Y)→ Y
forms a Markov chain. Feedback including delayed CSIT has no effect on capacity [28], therefore,
we remove it from consideration. Subsequently, we can utilize the Körner–Marton outer bound [19],

∑m′
j=1 R′j ≤ I(X; Y′, Y|U,H)

∑m
i=1 Ri ≤ I(U; Y|H).

(70)

Therefore, from applying extremal entropy inequality [17,24,30] and Lemma 1,

∑m′
j=1

R′j
m′+m + ∑m

i=1
Ri
m ≤

1
m′+m I(X; Y′, Y|U,H) + 1

m I(U; Y|H)

= 1
m′+m h(Y′, Y|U,H) + o(log(ρ)) + 1

m h(Y|H)− 1
m h(Y|U,H)

≤ log(ρ) + o(log(ρ)).

(71)

Therefore, the bound (66) is proved. Similarly, we can prove the bound (67) using the same steps after
switching the roles of the two users in the enhanced channel.

5. Hybrid CSIT: Perfect CSIT for the Slow-Fading Users and No CSIT for the Fast-Fading Users

Theorem 10. The fading broadcast channel characterized by Equation (1), with perfect CSIT for the slow-fading
users and no CSIT for the fast-fading users, can achieve the following multiuser degrees of freedom,

D1 :
m′

∑
j=1

e†
j , (72)

D2, . . . , Dm+1 :
1
T

m′

∑
j=1

e†
j + (1− 1

T
)e†

i , i = 1, . . . , m. (73)
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Therefore, their convex hull is also achievable.

Proof. D1 is achieved by inverting the channels of the slow-fading users at the transmitter, then every
slow-fading user achieves one degree of freedom. D2, . . . , Dm+1 in (73) are achieved using product
superposition along with channel inversion as follows. The transmitted signal over T instants is

X = [u, uv†], (74)

where u = ∑m′
j=1 bjuj, uj is a symbol intended for the slow-fading user j, g†

j bj = 0, and v ∈ CT−1

contain independent symbols intended for the fast-fading user i. Each of the slow-fading users
receive an interference-free signal during the first time instant of achieving one degrees of freedom.
The fast-fading user estimates its equivalent channel during the first time instant and decodes v during
the remaining (T − 1) time instants.

Theorem 11. An outer bound on the degrees of freedom of the fading broadcast channel characterized by
Equation (1), with perfect CSIT for the slow-fading users and no CSIT for the fast-fading users, is

m′

∑
j=1

d′j
m′ + 1

+
m

∑
i=1

di ≤ 1, (75)

d′j ≤ 1, ∀j = 1, . . . , m′, (76)

m

∑
i=1

di ≤ 1− 1
T

. (77)

Proof. The inequalities (76) represent single-user bounds for the slow-fading users [29], and (77) is
a time-sharing outer bound for the fast-fading users that was established in [14,22]. It remains to
prove (75), as follows.

We enhance the channel by giving global CSIR to all users and allowing full cooperation between
the slow-fading users. This gives rise to an equivalent slow-fading user with m′ antennas receiving Y′

over an equivalent channel G and noise Z′. At this point, we have a multiuser system where CSIT
is available with respect to one user, but not others. We then bound the performance of this system
with that of another (similar) system that has no CSIT. To do so, we use the local statistical equivalence
property developed and used in [9,11,31]. First, we draw G̃, Z̃ according to the distribution of G, Z′

and independent of them. We enhance the channel by providing Ỹ = G̃X + Z̃ to the slow-fading
receiver and G̃ to all receivers. As we do not provide G̃ to the transmitter, there is no CSIT with respect
to Ỹ. According to [31], we have h(Ỹ, Y′|H) = h(Y′|H) + o(log(ρ)), where H = (G, G̃, h1, . . . , hm);
therefore, we can remove Y′ from the enhanced channel without reducing its degrees of freedom.
This new equivalent channel has one user with m′ antennas receiving (Ỹ,H), m single-antenna
users receiving (yi,H), and no CSIT (In the enhanced channel after removal of Y′, the transmitter
and receivers still share information about G, but this random variable is now independent of all
(remaining) transmit and receive variables.). Having no CSIT, the enhanced channel is in the form of a
multilevel broadcast channel studied in Section 3.1, and hence, using Theorem 1,

∑m′
j=1 R′j ≤ I(W; Ỹ|U,H) + I(X; Ỹ|U, W,H)

R1 ≤ I(U, W; y1|V1,H)− I(W; Ỹ|U,H)

Ri ≤ I(Vi−1; yi|Vi,H), i = 2, . . . , m.

(78)
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The fast-fading receiver received signals have the same distribution. By following bounding steps
parallel to (22)–(24),

m

∑
j=1

Ri ≤ log(ρ) + o(log(ρ))− I(W; Ỹ|U,H)− h(y1|U, W,H). (79)

Therefore,

m′

∑
j=1

R′j
m′ + 1

+
m

∑
j=1

Ri ≤ log(ρ) + o(log(ρ)) + (
1

m′ + 1
− 1)I(W; Ỹ|U,H) +

h(Ỹ|U, W,H)

m′ + 1

− h(y1|U, W,H), (80)

≤ log(ρ) + o(log(ρ)) +
h(Ỹ, y1|U, W,H)

m′ + 1
− h(y1|U, W,H) (81)

≤ log(ρ) + o(log(ρ)), (82)

where the last inequality follows from applying the extremal entropy inequality [17,24,30] and Lemma 1.
This concludes the proof of the bound (75).

6. Hybrid CSIT: Perfect CSIT for Slow-Fading Users and Delayed CSIT for Fast-Fading Users

We begin with inner and outer bounds for one slow-fading and one fast-fading user, then extend
the result to multiple users. The transmitter knows the channel of the slow-fading users perfectly and
instantaneously, and an outdated version of the channel of the fast-fading users.

6.1. Transmitting to One Slow-Fading and One Fast-Fading User

Theorem 12. For the fading broadcast channel characterized by Equation (1) with one slow-fading and
one fast-fading user, with perfect CSIT for the slow-fading user and delayed CSIT for the fast-fading user,
the achievable degrees of freedom region is the convex hull of the vectors

D1 :(d′, d) = (1− 1
2T

,
1
2
− 1

2T
), (83)

D2 :(d′, d) = (
1
T

, 1− 1
T
). (84)

Proof. The degrees of freedom (84) can be achieved by product superposition, as discussed in Section 3,
without CSIT. We proceed to prove the achievability of (83).

1. Consider [u1, · · · , uT−1] to be a complex 2× (T − 1) matrix containing symbols intended
for the slow-fading user, [v1, · · · , vT−1] intended for the fast-fading user, and b ∈ C is a
beamforming vector so that g†b = 0. In addition, we define u0 = 0, v0 = 1. Using these
components, the transmitter constructs and transmits a super symbol of length T, whose value at
time t is

x†
1(t) = ut + b vt. (85)

Note that x1(0) = b does not carry any information for either user, and serves as a pilot.
The received super symbol at the slow-fading user is

y
′†
1 = [0, g†u1, · · · , g†uT−1]. (86)

The received super symbol at the fast-fading user is

y†
1 =[h†

1b, (h†
1u1 + h†

1bv1), · · · , (h†
1uT−1 + h†

1bvT−1)]. (87)
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The fast-fading user estimates its equivalent channel h†
1b from the received value in the first

time instant. The remaining terms include symbols intended for the fast-fading user plus some
interference, whose cancellation is the subject of the next step.

2. The transmitter next sends a second super symbol of length T,

x2 = [ū, ū(h†
1u1), · · · , ū(h†

1uT−1)], (88)

where ū ∈ C is a symbol intended for the slow-fading user. Hence,

y†
2 = [h2ū, h2ū(h†

1u1), · · · , h2ū(h†
1uT−1)]. (89)

The fast-fading user estimates the equivalent channel h2ū during the first time instant and then
acquires h†

1ut—the interference in (87). Therefore, using y1, y2, the fast-fading user solves for vt

achieving (T − 1) degrees of freedom. Furthermore,

y
′†
2 = [g1ū, g1ū(h†

1u1), · · · , g1ū(h†
1uT−1)]. (90)

The slow-fading user solves for ū achieving one degree of freedom and also uses h†
1ut to solve

for ut, achieving further 2 (T − 1) degrees of freedom.

In summary, during 2T instants, the slow-fading user achieves (2T − 1) degrees of freedom and the
fast-fading user achieves (T − 1) degrees of freedom. This shows the achievability of (83).

Theorem 13. For the fading broadcast channel characterized by Equation (1) with one slow-fading and one
fast-fading user, where there is perfect CSIT for the slow-fading user and delayed CSIT for the fast-fading user,
an outer bound on the degrees of freedom region is

d′

2
+ d ≤1, (91)

d′ ≤1, (92)

d ≤1− 1
T

. (93)

Proof. The inequalities (92) and (93) represent the single-user outer bounds [21,29]. It only remains to
prove the outer bound (91) as follows.

1. We enhance the channel by giving global CSIR to both users and also give y to the slow-fading
user. The enhanced channel is physically degraded, having (Y′, G) at the slow-fading user and
(y, G) at the fast-fading user, where Y′ , (y′, y) and G , (h, g). In a physically degraded channel,
causal feedback (including delayed CSIT) does not affect capacity [28], so we can remove the
delayed CSIT with respect to the fast-fading user.

2. We now use another enhancement with the motivation to remove the remaining CSIT (noncausal,
with respect to the slow-fading user). This is accomplished, similar to Theorem 11, via local
statistical equivalence property [9,11,31] in the following manner. We create a channel G̃ and noise
Z̃ with the same distribution but independently of the true channel and noise, and a signal
Ỹ = G̃X + Z̃. A genie will give Ỹ to the slow-fading receiver and G̃ to both receivers. It has been
shown [31] that h(Ỹ, Y′|H) = h(Y′|H) + o(log ρ), whereH = (G, G̃), therefore, we can remove
Y′ from the enhanced channel without reducing its degrees of freedom.

3. The enhanced channel is still physically degraded, therefore [26,27]

R′ ≤I(x; Ỹ|U,H) = h(Ỹ|U,H) + o(log(ρ))

R ≤I(U; y|H) = h(y|H)− h(y|U,H), (94)
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where U is an auxiliary random variable, and U → x → (y′, y) forms a Markov chain. Therefore,

1
2

R′ + R ≤h(y|H) +
1
2

h(Ỹ|U,H)− h(y|U,H) + o(log(ρ))

≤ log(ρ) + o(log(ρ)), (95)

where the last inequality follows from extremal entropy inequality and Lemma 1 [17,24,30].
This concludes the proof of the bound (91).

Remark 5. For the above broadcast channel with hybrid CSIT, the achievable sum degrees of freedom is
dsum = 3

2 −
1
T , and the outer bound on the sum degrees of freedom is dsum ≤ 3

2 . The gap decreases with the
fast-fading user coherence time (see Figures 7 and 8).
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Figure 7. One slow-fading and one fast-fading user with hybrid CSIT and T = 15.
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Figure 8. One slow-fading and one fast-fading user with hybrid CSIT and T = 30.
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6.2. Multiple Slow-Fading and Fast-Fading Users

Theorem 14. The fading broadcast channel characterized by Equation (1), with perfect CSIT for the slow-fading
users and delayed CSIT for the fast-fading users, can achieve the following degrees of freedom,

D1 :
m′

∑
j=1

e†
j , (96)

D2, . . . , Dmm′+1 : (1− 1
2T

)e†
j + (

1
2
− 1

2T
)e†

i , j = 1, . . . , m′, i = 1, . . . , m, (97)

Dmm′+2, . . . , Dmm′+m+2 :
1
T

m′

∑
j=1

e†
j + (1− 1

T
)e†

i , i = 1, . . . , m, (98)

Dmm′+m+3 :
m
T

m′

∑
j=1

e†
j + (

1
1 + 1

2 + . . . + 1
m
(1− m

T
))

m

∑
i=1

e†
i . (99)

The achievable region consists of the convex hull of the above vectors.

Proof. D1 is achieved by inverting the channel of the slow-fading users at the transmitter,
providing one degree of freedom per slow-fading user. The achievability of D2, . . . , Dmm′+1 was
established in Section 6.1, and that ofDmm′+2, . . . , Dmm′+m+2 was proved in Section 5 without CSIT for
the fast-fading user, so it remains achievable with delayed CSIT.Dmm′+m+3 is achieved by retrospective
interference alignment [7] along with product superposition as follows. The transmitted signal over T
instants is

X = [Ū, ŪV], (100)

where Ū ∈ Cm×m contains independent symbols intended for the slow-fading users sent by inverting
the channels of the slow-fading users. Therefore, during the first m time instants, each slow-fading user
receives an interference-free signal and achieves m degree of freedom; furthermore, the fast-fading
users estimate their equivalent channels. During the remaining time instants, each fast-fading receiver
obtains coherent observations of (T−m) transmit symbols, which are preprocessed, combined, and
interference-aligned into super symbols V according to retrospective interference alignment techniques
of [7]. Accordingly, each fast-fading receiver achieves 1

1+ 1
2+...+ 1

m
(1− m

T ) degrees of freedom.

Theorem 15. An outer bound on the degrees of freedom region of the fading broadcast channel characterized by
Equation (1), with perfect CSIT for the slow-fading users and delayed CSIT for the fast-fading users, is

m′

∑
j=1

d′j
m′ + m

+
m

∑
i=1

di
m
≤ 1, (101)

m

∑
i=1

di ≤
m

1 + 1
2 + . . . + 1

m
, (102)

d′j ≤ 1, j = 1, . . . , m′, (103)

di ≤ 1− 1
T

, i = 1, . . . , m. (104)
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Proof. The inequalities (103) and (104) represent the single-user outer bounds for the slow-fading and
fast-fading users, respectively [21,29]. According to Theorem 5, (102) represents an outer bound for
the fast-fading users. It only remains to prove (101) as follows.

1. The original channel is enhanced by giving the users global CSIR. Furthermore, we assume full
cooperation between the slow-fading users and between the fast-fading users. The resulting
enhanced channel is a broadcast channel with two users: one slow-fading user equipped with m′

antennas, received signal Y′, channel G, and noise Z′; and one fast-fading user equipped with m
antennas, received signal Y, channel H, and noise Z.

2. We further enhance the channel by giving Y to the slow-fading user, constructing a physically
degraded channel. For the enhanced channel, the slow-fading receiver is equipped with
m′ + m antennas and has received signal Ŷ = [Y†, Y

′†]†, channel Ĝ = [G†, H†]†, and noise
Ẑ = [Z†, Z

′†]†. Since any causal feedback (including delayed CSIT) does not affect the capacity of
a physically degraded channel [28], the delayed CSIT for the fast-fading receiver can be removed.

3. We now use another enhancement with the motivation to remove the remaining CSIT (noncausal,
with respect to the slow-fading user). We create an artificial channel and noise—G̃, Z̃—with the
same distribution but independent of Ĝ, Ẑ, and a signal Ỹ = G̃X + Z̃. A genie will
give Ỹ to the slow-fading receiver and G̃ to both receivers. It has been shown [31] that
h(Ỹ, Ŷ|H) = h(Ŷ|H) + o(log ρ), where H = (Ĝ, G̃), therefore, we can remove Ŷ from the
enhanced channel without reducing its degrees of freedom.

4. The enhanced channel is physically degraded without CSIT, therefore [26,27],

m′

∑
j=1

R′j ≤ I(X; Ỹ|U,H)

m

∑
i=1

Ri ≤ I(U; Y|H). (105)

Hence,

m′

∑
j=1

R′j
m′ + m

+
m

∑
j=1

Ri
m
≤ 1

m′ + m
h(Ỹ|U,H) +

1
m

h(Y|H)− 1
m

h(Y|U,H) + o(log(ρ))

≤ log(ρ) + o(log(ρ)), (106)

where the last inequality follows from the extremal entropy inequality [17,24,30] and Lemma 1
and since h(Y|H) ≤ m log(ρ) + o(log(ρ)) [29]. This concludes the proof of the bound (101).

7. Conclusions

A multiuser broadcast channel was studied where some receivers experience longer coherence
intervals and have CSIR while other receivers experience a shorter coherence interval and do not
have CSIR. The degrees of freedom were studied under delayed CSIT, hybrid CSIT, and no CSIT.
Among the techniques employed were interference alignment and beamforming along with product
superposition for the inner bounds. The outer bounds involved a bounding of the rate region of the
multiuser, (discrete, memoryless,) multilevel broadcast channel. Some highlights of the results are
as follows: For one slow-fading and one fast-fading user with delayed CSIT, the achievable degrees
of freedom region partially meets the outer bound. For one slow-fading user with perfect CSIT and
one fast-fading user with delayed CSIT, the gap between the achievable and the outer sum degrees of
freedom is inversely proportional to the fast-fading user coherence time. For each of the considered
CSI conditions, inner and outer bounds were also found for an arbitrary number of users.
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Appendix A. Proof of Theorem 1

Recall that M′j, Mi are the messages of users j = 1, . . . , m′ and i = 1, . . . , m, respectively.
We enhance the channel by assuming that user j = 1, . . . , m′ knows the messages M′j+1, . . . , M′m′
and M1, . . . , Mm and user i = 1, . . . , m knows the messages Mi+1, . . . , Mm. Using Fano’s inequality,
chain rule, and data processing inequality, we can bound the rates of the slow-fading user j = 1, . . . , m′,

nR′j ≤ I(M′j; Y′j,1, . . . , Y′j,n|M′j+1, . . . , M′m′ , M1, . . . , Mm) (A1)

=
n

∑
k=1

I(M′j; Y′j,k|Uj,k) (A2)

≤
n

∑
k=1

I(M′j, Uj,k, Y′j−1,1, . . . , Y′j−1,k−1; Y′j,k|Uj,k) (A3)

=
n

∑
k=1

I(Uj−1,k; Y′j,k|Uj,k), (A4)

where
Uj,k =

(
M′j+1, . . . , M′m′ , M1, . . . , Mm, Y′j,1, . . . , Y′j,k−1

)
,

Y′j,k denotes the received signal of user j at time instant k,

Um′ → · · · → U1 → X → (Y′1, . . . , Y′m′ , Y1, . . . , Ym)

forms a Markov chain, and U0 = X. The rate of slow-fading user m′ can be bounded as

nR′m′ ≤
n

∑
k=1

I(Um′−1,k; Y′m′ ,k|Um′ ,k) (A5)

=
n

∑
k=1

I(Xk; Y′m′ ,k|Um′ ,k)−
n

∑
k=1

I(Xk; Y′m′ ,k|Um′−1,k) (A6)

≤
n

∑
k=1

I(Xk, Y1,k+1, . . . , Y1,n; Y′m′ ,k|Um′ ,k)−
n

∑
k=1

I(Xk; Y′m′ ,k|Um′−1,k) (A7)

=
n

∑
k=1

I(Y1,k+1, . . . , Y1,n; Y′m′ ,k|Um′ ,k) +
n

∑
k=1

I(Xk; Y′m′ ,k|Um′ ,k, Y1,k+1, . . . , Y1,n)

−
n

∑
k=1

I(Xk; Y′m′ ,k|Um′−1,k) (A8)

=
n

∑
k=1

I(Wk; Y′m′ ,k|Um′ ,k) +
n

∑
k=1

I(Xk; Y′m′ ,k|Um′ ,k, Wk)−
n

∑
k=1

I(Xk; Y′m′ ,k|Um′−1,k), (A9)
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where Wk = Yn
1,k+1. Similarly,

nRi ≤I(Mi; Yi,1, . . . , Yi,n|Mi+1, . . . , Mm) (A10)

=
n

∑
k=1

I(Mi; Yi,k|Vi,k) (A11)

=
n

∑
k=1

I(Mi, Vi,k, Yi−1,k+1, . . . , Yi−1,n; Yi,k|Vi,k) (A12)

=
n

∑
k=1

I(Vi−1,k; Yi,k|Vi,k), (A13)

where we define Vi,k , (Mi+1, . . . , Mm, Yi,k+1, . . . , Yi,n), which leads to the Markov chain
Vm → · · · → V1 → (Um′ , W)→ X → (Y′1, . . . , Y′m′ , Y1, . . . , Ym) . Using the chain rule and Csiszár sum
identity [32], we obtain the bound (A19).

R1 ≤
n

∑
k=1

I(M1, . . . , Mm; Y1,k|V1,k) (A14)

≤
n

∑
k=1

I(M1, . . . , Mm, Y1,k+1, . . . , Y1,n; Y1,k|V1,k) (A15)

=
n

∑
k=1

I(M1, . . . , Mm, Y1,k+1, . . . , Y1,n, Y′m′ ,1, . . . , Y′m′ ,k−1; Y1,k|V1,k) (A16)

−
n

∑
k=1

I(Y′m′ ,1, . . . , Y′m′ ,k−1; Y1,k|M1, . . . , Mm, Y1,k+1, . . . , Y1,n) (A17)

=
n

∑
k=1

I(Um′ ,k, Wk; Y1,k|V1,k)−
n

∑
k=1

I(Y1,k+1, . . . , Y1,n; Y′m′ ,k|Um′ ,k) (A18)

=
n

∑
k=1

I(Um′ ,k, Wk; Y1,k|V1,k)−
n

∑
k=1

I(Wk; Y′m′ ,k|Um′ ,k). (A19)

By introducing a time-sharing auxiliary random variable, Q, [33] and defining

X ,(XQ, Q), Y′j , (Y′j,Q, Q)

Yi ,(Yi,Q, Q), Ui , (Ui,Q, Q)

Vj ,(Vj,Q, Q), W , (WQ, Q), (A20)

we establish (7)–(10). Similarly, we can follow the same steps to prove (11)–(14) after switching the
role of the two sets of variables Y′1, . . . , Y′m′ and Y1, . . . , Ym. This completes the proof of Theorem 1.

Appendix B. Multilevel Broadcast Channel with Degraded Message Sets

Here, we study the capacity of the multiuser, multilevel broadcast channel that is characterized
by (6) with degraded message sets. In particular, M0 ∈

[
1 : 2nR0

]
is to be communicated to all receivers;

and furthermore, M1 ∈
[
1 : 2nR1

]
is to be communicated to receiver Y1 (For compactness of expression,

here, we refer to each receiver by the variable denoting its received signal.). A three-receiver special
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case was studied by Nair and El Gamal [16], where the idea of indirect decoding was introduced,
and the capacity is the set of rate pairs (R1, R0) such that

R0 ≤min
{

I(U; Y2), I(V; Y′1)
}

,

R1 ≤I(X; Y1|U),

R0 + R1 ≤I(V; Y′1) + I(X; Y1|V), (A21)

for some pmf p(u, v)p(x|v). In the sequel, we give a generalization of Nair and El Gamal for multiuser
multilevel broadcast channel.

Theorem A1. The capacity of multiuser multilevel broadcast channel characterized by (6), with degraded
message sets, is the set of rate pairs (R1, R0) such that

R0 ≤min
{

I(U; Ym), I(V; Y′m′)
}

,

R1 ≤I(X; Y1|U),

R0 + R1 ≤I(V; Y′m′) + I(X; Y1|V), (A22)

for some pmf p(u, v)p(x|v).

Proof. The converse parallels the proof of the converse of the three-receiver case studied by Nair and
El Gamal in [16] after replacing Y2, Y′1 with Ym, Y′m′ , respectively. In particular, U and V are defined
as follows.

Uk , (M0, Y1,1, . . . , Y1,k−1, Ym,k+1, . . . , Ym,n),

Vk , (M0, Y1,1, . . . , Y1,k−1, Y′m′ ,k+1, . . . , Y′m′ ,n),

k = 1, . . . , n, and let Q be a time-sharing random variable uniformly distributed over
the set {1, . . . , n} and independent of Xn, Yn

1 , Ym,1, . . . , Ym,n, Y′m′,1, . . . , Y′m′,n. We then set
U = (UQ, Q), V = (VQ, Q), X = XQ, Y1 = Y1,Q, Ym = Ym,Q, and Y′m′ = Y′m′,Q. This completes the converse
part of the proof.

The achievability part uses superposition coding and indirect decoding as follows.

• Rate splitting: divide the private message M1 into two independent messages M10 at rate R10

and M11 at rate R11, where R1 = R10 + R11.
• Codebook generation: fix a pmf p(u, v)p(x|v) and randomly and independently generate

2nR0 sequences un (m0), m0 ∈
[
1 : 2nR0

]
, each according to ∏n

k=1 pU(uk). For each
m0, randomly and conditionally independently generate 2nR10 sequences vn(m0, m10),
m10 ∈ [1 : 2nR10 ], each according to ∏n

k=1 pV|U(vk|uk(m0)). For each pair (m0, m10), randomly and
conditionally independently generate 2nR11 sequences xn(m0, m10, m11), m11 ∈ [1 : 2nR11 ],
each according to ∏n

k=1 pX|V(xk|vk(m0, m10)).
• Encoding: to send the message pair (m0, m1) = (m0, m10, m11), the encoder transmits

xn(m0, m10, m11).
• Decoding at the users Y2, . . . , Ym: decoder i declares that m̂0i ∈ [1 : 2nR0 ] is sent if it is the

unique message such that (un(m̂0i), yn
i ) ∈ T

(n)
ε . Hence, by law of large numbers and the packing

lemma [33], the probability of error tends to zero as n→ ∞ if

R0 < min
2≤i≤m

{I(U; Yi)− δ(ε)},

= I(U; Ym)− δ(ε), (A23)
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where the last equality follows from applying data processing inequality on the Markov chain
U → X → Y1 → Y2 → · · · → Ym.

• Decoding at Y1: decoder 1 declares that (m̂01, m̂10, m̂11) is sent if it is the unique message triple
such that

(
un(m̂01), vn(m̂01, m̂10), xn(m̂01, m̂10, m̂11), yn

1
)
∈ [1 : 2nR0 ]. Hence, by law of large

numbers and the packing lemma [33], the probability of error tends to zero as n→ ∞ if

R11 < I(X; Y1|V)− δ(ε),

R10 + R11 < I(X; Y1|U)− δ(ε),

R0 + R10 + R11 < I(X; Y1)− δ(ε). (A24)

• Decoding at users Y′1, . . . , Y′m′ : decoder j decodes m0 indirectly by declaring m̃0j is sent if it

is the unique message such that (un(m̃0j), vn(m̃0j, m10), zn
j ) ∈ T

(n)
ε for some m10 ∈ [1 : 2nR0 ].

Hence, by law of large numbers and packing lemma, the probability of error tends to zero as
n→ ∞ if

R0 + R10 < min
1≤j≤m′

{I(U, V; Y′j )− δ(ε)},

= min
1≤j≤m′

{I(V; Y′j )− δ(ε)},

= I(V; Y′m′)− δ(ε), (A25)

where the last two equalities follow from applying the chain rule and data processing inequality
on the Markov chain U → V → X → Y′1 → Y′2 → · · · → Y′m′ .

By combining the bounds in (A23)–(A25), substituting R10 + R11 = R1, and eliminating R10 and
R11 by the Fourier–Motzkin procedure [16], the proof of the achievability is completed.

References

1. Caire, G.; Shamai, S. On the achievable throughput of a multiantenna Gaussian broadcast channel.
IEEE Trans. Inf. Theory 2003, 49, 1691–1706. [CrossRef]

2. Weingarten, H.; Steinberg, Y.; Shamai, S. The Capacity Region of the Gaussian Multiple-Input
Multiple-Output Broadcast Channel. IEEE Trans. Inf. Theory 2006, 52, 3936–3964. [CrossRef]

3. Huang, C.; Jafar, S.; Shamai, S.; Vishwanath, S. On Degrees of Freedom Region of MIMO Networks without
Channel State Information at Transmitters. IEEE Trans. Inf. Theory 2012, 58, 849–857. [CrossRef]

4. Vaze, C.; Varanasi, M. The Degree-of-Freedom Regions of MIMO Broadcast, Interference, and Cognitive
Radio Channels with No CSIT. IEEE Trans. Inf. Theory 2012, 58, 5354–5374. [CrossRef]

5. Lapidoth, A.; Shamai, S.; Wigger, M. On the capacity of fading MIMO broadcast channels with imperfect
transmitter side-information. arXiv 2006, arXiv:cs/0605079.

6. Davoodi, A.; Jafar, S. Aligned Image Sets under Channel Uncertainty: Settling a Conjecture by Lapidoth,
Shamai and Wigger on the Collapse of Degrees of Freedom under Finite Precision CSIT. arXiv 2014,
arXiv:1403.1541.

7. Maddah-Ali, M.; Tse, D. Completely Stale Transmitter Channel State Information is Still Very Useful.
IEEE Trans. Inf. Theory 2012, 58, 4418–4431. [CrossRef]

8. Gou, T.; Jafar, S. Optimal Use of Current and Outdated Channel State Information: Degrees of Freedom of
the MISO BC with Mixed CSIT. IEEE Commun. Lett. 2012, 16, 1084–1087. [CrossRef]

9. Tandon, R.; Maddah-Ali, M.A.; Tulino, A.; Poor, H.V.; Shamai, S. On fading broadcast channels with partial
channel state information at the transmitter. In Proceedings of the International Symposium on Wireless
Communication Systems (ISWCS), Paris, France, 28–31 August 2012; pp. 1004–1008.

10. Amuru, S.; Tandon, R.; Shamai, S. On the degrees-of-freedom of the 3-user MISO broadcast channel with
hybrid CSIT. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Honolulu,
HI, USA, 29 June–4 July 2014; pp. 2137–2141.

http://dx.doi.org/10.1109/TIT.2003.813523
http://dx.doi.org/10.1109/TIT.2006.880064
http://dx.doi.org/10.1109/TIT.2011.2173615
http://dx.doi.org/10.1109/TIT.2012.2201349
http://dx.doi.org/10.1109/TIT.2012.2193116
http://dx.doi.org/10.1109/LCOMM.2012.050412.120702


Entropy 2020, 22, 976 26 of 26

11. Tandon, R.; Jafar, S.; Shamai, S.; Poor, V. On the synergistic benefits of alternating CSIT for the MISO
broadcast channel. IEEE Trans. Inf. Theory 2013, 59, 4106–4128. [CrossRef]

12. Li, Y.; Nosratinia, A. Product Superposition for MIMO Broadcast Channels. IEEE Trans. Inf. Theory
2012, 58, 6839–6852. [CrossRef]

13. Li, Y.; Nosratinia, A. Coherent Product Superposition for Downlink Multiuser MIMO. IEEE Trans.
Wirel. Commun. 2014, 14, 1746–1754. [CrossRef]

14. Fadel, M.; Nosratinia, A. Coherence Disparity in Broadcast and Multiple Access Channels. IEEE Trans.
Inf. Theory 2016, 62, 7383–7401. [CrossRef]

15. Borade, S.; Zheng, L.; Trott, M. Multilevel Broadcast Networks. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT), Nice, France, 24–29 June 2007; pp. 1151–1155.

16. Nair, C.; Gamal, A. The capacity region of a class of three-receiver broadcast channels with degraded
message sets. IEEE Trans. Inf. Theory 2009, 55, 4479–4493. [CrossRef]

17. Liu, T.; Viswanath, P. An Extremal Inequality Motivated by Multiterminal Information-Theoretic Problems.
IEEE Trans. Inf. Theory 2007, 53, 1839–1851. [CrossRef]

18. Liu, R.; Liu, T.; Poor, V.; Shamai, S. A vector generalization of Costa’s entropy-power inequality with
applications. IEEE Trans. Inf. Theory 2010, 56, 1865–1879.

19. Marton, K. A coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inf. Theory
1979, 25, 306–311. [CrossRef]

20. Marzetta, T.; Hochwald, B. Capacity of a mobile multiple-antenna communication link in Rayleigh flat
fading. IEEE Trans. Inf. Theory 1999, 45, 139–157. [CrossRef]

21. Zheng, L.; Tse, D. Communication on the Grassmann manifold: a geometric approach to the noncoherent
multiple-antenna channel. IEEE Trans. Inf. Theory 2002, 48, 359–383. [CrossRef]

22. Fadel, M.; Nosratinia, A. Coherent, non-coherent, and mixed–CSIR broadcast channels: Multiuser degrees
of freedom. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Honolulu,
HI, USA, 29 June–4 July 2014; pp. 2574–2578.

23. Yang, S.; Kobayashi, M.; Gesbert, D.; Yi, X. Degrees of freedom of time correlated MISO broadcast channel
with delayed CSIT. IEEE Trans. Inf. Theory 2013, 59, 315–328. [CrossRef]

24. Yi, X.; Yang, S.; Gesbert, D.; Kobayashi, M. The Degrees of Freedom Region of Temporally Correlated
MIMO Networks with Delayed CSIT. IEEE Trans. Inf. Theory 2014, 60, 494–514. [CrossRef]

25. Shannon, C. The zero error capacity of a noisy channel. IEEE Trans. Inf. Theory 1956, 2, 8–19. [CrossRef]
26. Bergmans, P. Random coding theorem for broadcast channels with degraded components. IEEE Trans.

Inf. Theory 1973, 19, 197–207. [CrossRef]
27. Bergmans, P. A simple converse for broadcast channels with additive white Gaussian noise. IEEE Trans.

Inf. Theory 1974, 20, 279–280. [CrossRef]
28. Gamal, A.E. The feedback capacity of degraded broadcast channels (Corresp.). IEEE Trans. Inf. Theory

1978, 24, 379–381. [CrossRef]
29. Telatar, E. Capacity of Multi-antenna Gaussian Channels. Eur. Trans. Telecommun. 1999, 10, 585–595.

[CrossRef]
30. Weingarten, H.; Liu, T.; Shamai, S.; Steinberg, Y.; Viswanath, P. The capacity region of the degraded

multiple-input multiple-output compound broadcast channel. IEEE Trans. Inf. Theory 2009, 55, 5011–5023.
[CrossRef]

31. Mukherjee, P.; Tandon, R.; Ulukus, S. Secure Degrees of Freedom Region of the Two-User MISO Broadcast
Channel with Alternating CSIT. IEEE Trans. Inf. Theory 2017, 63, 3823–3853. [CrossRef]

32. Csiszár, I.; Körner, J. Information Theory: Coding Theorems for Discrete Memoryless Channels; Akadémiai Kiadó:
Budapest, Hungary, 1981.

33. Gamal, A.E.; Kim, Y. Network Information Theory; Cambridge University Press: Cambridge, UK, 2011.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIT.2013.2249573
http://dx.doi.org/10.1109/TIT.2012.2209862
http://dx.doi.org/10.1109/TWC.2014.012314.121592
http://dx.doi.org/10.1109/TIT.2016.2616126
http://dx.doi.org/10.1109/TIT.2009.2027512
http://dx.doi.org/10.1109/TIT.2007.894680
http://dx.doi.org/10.1109/TIT.1979.1056046
http://dx.doi.org/10.1109/18.746779
http://dx.doi.org/10.1109/18.978730
http://dx.doi.org/10.1109/TIT.2012.2215953
http://dx.doi.org/10.1109/TIT.2013.2284500
http://dx.doi.org/10.1109/TIT.1956.1056798
http://dx.doi.org/10.1109/TIT.1973.1054980
http://dx.doi.org/10.1109/TIT.1974.1055184
http://dx.doi.org/10.1109/TIT.1978.1055885
http://dx.doi.org/10.1002/ett.4460100604
http://dx.doi.org/10.1109/TIT.2009.2030458
http://dx.doi.org/10.1109/TIT.2017.2663427
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Model
	No CSIT for Any Users
	Multiuser, Multilevel Broadcast Channel
	Outer Degrees of Freedom Region
	Achievable Degrees of Freedom Region

	Delayed CSIT for All Users
	Transmission to Slow-Fading  Users
	Transmission to Fast-Fading Users
	Transmission to One Slow-Fading and One Fast-Fading User
	Transmission to Arbitrary Number of Slow-Fading and Fast-Fading Users

	Hybrid CSIT: Perfect CSIT for the Slow-Fading Users and No CSIT for the Fast-Fading Users
	Hybrid CSIT: Perfect CSIT for Slow-Fading Users and Delayed CSIT for Fast-Fading Users
	Transmitting to One Slow-Fading and One Fast-Fading User
	Multiple Slow-Fading and Fast-Fading Users

	Conclusions
	Proof of Theorem  1
	Multilevel Broadcast Channel with Degraded Message Sets
	References

