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Abstract: Studies of the coronavirus SARS-CoV-2 spread mechanisms indicate that the main mecha-
nism is associated with the spread in the atmosphere of micro- and nanodroplets of liquid with an
active agent. However, the molecular theory of aerosols of microdroplets in gases remains poorly
developed. In this work, the energy properties of aerosol nanodroplets of simple liquids suspended
in a gas were studied within the framework of molecular theory. The three components of the
effective aerosol Hamiltonian were investigated: (1) the interaction energy of an individual atom
with a liquid nanodroplet; (2) the surface energy of liquid nanodroplet; and (3) the interaction energy
of two liquid nanodroplets. The size dependence of all contributions was investigated. The pairwise
interparticle interactions and pairwise interparticle correlations were accounted for to study the
nanodroplet properties using the Fowler approximation. In this paper, the problem of the adhesion
energy calculation of a molecular complex and a liquid nanodroplet is discussed. The derived
effective Hamiltonian is generic and can be used for the cases of multicomponent nano-aerosols and
to account for particle size distributions.

Keywords: nanodroplet aerosols; the effective Hamiltonian; surface energy; atom–nanodroplet
interaction energy; interaction energy of two nanodroplets; size dependence; adhesion energy of a
molecular complex and a liquid nanodroplet

1. Introduction

The rapid spread of coronavirus SARS-CoV-2 has become an investigation subject for
numerous scientists. The existing data exposed the ability of a virus to be transmitted in
an airborne manner as dispersed droplets that contain the infective agent [1–6]. Airborne
transmission is defined by the World Health Organization (WHO) as the spread of invective
agents through suspended droplets in the air, which stay infective for long periods of time
and may travel long distances [7].

An important physical aspect in the problem of virus spread is the interaction of
nanoparticles (virions) and nanodroplets with molecular structures of different media. For
these types of problems, an important characteristic is the size dependence of energetic
properties of nanodroplets and nanoparticles at interactions with different media struc-
tures. The calculations of the adhesion energy of nanoparticles to the different structures, in
addition to the calculations of energetic characteristics for aerosol nanodroplets, require an
application of statistical physics methods. An investigation of equilibrium and nonequilib-
rium properties of droplets and aerosols with liquid nanodroplets can be performed within
the framework of classical statistical mechanics. The nanodroplets may reveal implicit
collective properties and self-organization into structures at a macroscopic level [8]. The
behavior of an isolated nanodroplet can be simulated by means of molecular dynamics [9].

The typical complications in the theoretical analysis of nanosystems are conditioned by
the necessity to account for the surface terms for all of its equilibrium and nonequilibrium
properties. At nanometer scales, an abrupt change of all system characteristics takes place
near the surface. The intermolecular forces act at similar scales.
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The contemporary state of theoretical studies of the structure and properties of liquid
nanodroplets within the framework of molecular–kinetic theory has been summarized in
the works [10–12]. A statistical approach to the study of volumetric properties of equilib-
rium and nonequilibrium homogeneous systems shows the importance of accounting for
the paired interparticle interactions and correlations, which contain determinative terms
in all properties [13–16]. For inhomogeneous liquids in statistical theory, it is important
to take into account the one-particle distribution functions and the effective one-particle
potentials, which are determined by paired interparticle interactions and correlations.
The contribution of the one-particle effects to the properties of inhomogeneous systems
corresponds to the accounting of surface terms.

The current study, using the correlation theory of inhomogeneous liquids, investigated
the equilibrium properties of nanodroplets as components of aerosol systems. Thus, there
was a need to use approximations that allowed a reasonable comparison of theoretical and
experimental results to be made. The properties of aerosol systems were determined by
their interacting components, i.e., nanodroplets and gas. There exist many phenomena at
the molecular level that lack explanation. Under these conditions, it is difficult to predict
the behavior of nano-objects and their assemblies, or to control these nanosystems. For the
investigated aerosol systems, a fundamental role is played by the energy characteristics
of the separate nanodroplets, their interaction energies with the surrounding gas, and the
paired interactions of nanodroplets. Investigation of the pointed energy characteristics is a
major focus of the current article.

2. The Calculation of the Molecule Interaction Energy with Liquid Nanodroplet

Formulation and resolution of the problems related to the interaction of isolated
atoms and molecules with the heterogeneity of the condensed system (surface, new phase
origins, phase transition fronts) are essential in constructing a microscopic theory of first-
order phase transitions, in addition to a microscopic theory of equilibrium and kinetic
properties of the surface and interphase boundaries. A review of the current state of
the problems of atom interactions with an inhomogeneous environment can be found
in [10–12,17]. However, the problems of size dependencies of the interaction energy of
atoms and nanosized condensed systems, with accounting for interatomic correlations,
remain unsolved.

In statistical mechanics of condensed matter, as a rule, the potential interaction energy
of two atoms or two molecules is assumed to be known. An approximation of pair addi-
tive potentials is widely used to describe the energies of interatomic interactions [10–16].
Among the most used potentials of interatomic interaction, Lennard–Jones potential and its
generalizations, Morse potential, hard-sphere potential, and soft-sphere potential should
be noted [10–16].

Calculation of the interaction energy of macroscopic bodies with different geometries
in continual approximation, including accounting for van der Waals forces, is described
in [11,12]. The calculations of atom interaction energy with an object outside the framework
of continual approximation, when it is necessary to account for the repulsion of atoms
and pair correlation in its position, have attracted significant interest. For an interaction of
isolated atoms with solid objects, the continual approximation is correct and accounts for
the repulsion of an atom from the solid body atoms (without accounting for an atomistic
structure of the solid body and the possibility of atoms penetrating into the body). However,
in the case of atom–liquid interaction, this approach is insufficient. In the equilibrium
system of liquid–vapor, an interchange of atoms between both phases takes place, and
the equilibrium is dynamic. To take account of an interchange between two phases, it
is necessary to equally account for a discrete structure of both the vapor and liquid. A
mathematical technique to describe this process should be similar for both phases.

A wide overview of the literature regarding the interaction of atoms and macroscopic
bodies [11] points to a range of unsolved problems, which are essential for understanding
the processes in the nanoscale systems. A topical problem is the calculation of the inter-
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action energy of atoms with droplets and the solid bodies of nanoscale size, including
accounting for the surface curvature and repulsive effects, and corresponding correlations
in their positions.

The goal of the current section is to present the model calculations of the interac-
tion energy between the atoms and nanodroplets of a simple liquid. The foundation of
these calculations is based on the expression for the energy of an inhomogeneous liquid
within the framework of the distribution function method of groups of particles, which
takes into account all paired interatomic interactions and correlations. The paired inter-
atomic interactions were described using the Lennard–Jones potential. The structure of the
droplets was modeled using a Fowler approximation (the step profile of atoms’ density
in the droplets) [18,19]. The calculations are performed for the cases in which the atom is
located outside, inside, and on the surface of the droplet. For the geometry dispositions
of the atom and droplet, which require accounting for the paired interatomic correlations,
pair distribution functions within the framework of thermodynamic perturbation theory
were used.

The potential energy of an inhomogeneous system of a pair of interacting particles,
located in a volume V, can be written as [10,19]:

E =
1
2

n2
0

∫
V

d3r1

∫
V

d3r2F2(r1, r2)Φ(r1, r2) (1)

where Φ(r1, r2) is an interaction energy of the pair of atoms; is a pair distribution function
of atoms inside an inhomogeneous liquid in a canonical Gibbs ensemble; and n0 is the
density of the number of particles. Formula (1) takes into account all paired interparticle
interactions and correlations for the energy of the inhomogeneous liquid. The interaction
energy of the volume element dV of the liquid with the remainder of the liquid can be
written as:

Eel−liq = n2
0dV1

∫
V

d3r2F2(r1, r2)Φ(r1, r2) (2)

By choosing the volume element from the condition dV1n0 = 1, we obtain an expres-
sion for the interaction energy of an isolated atom with an inhomogeneous liquid. For the
model calculations, a central symmetry potential of paired interaction of the atoms was
used, and the following approximation for the pair distribution function inside the droplet:

F2(r1, r2) ∼= F(0)
2 (|r1 − r2|)Θ(a− r1)Θ(a− r2), (3)

where F(0)
2 (|r1 − r2|) is a pair distribution function of atoms in homogeneous liquid; Θ(x)

is the Heaviside step-function; a is the radius of the droplet.
Figure 1 shows a droplet and atom at the point A. The radius vector R1 indicates

the location of the atom, interacting with the droplet, and radius vector R2 indicates the
location of the volume element. By introducing new integration variables via relation
R2 −R1 ≡ R12 and using spherical coordinates for integration (Figure 1), we obtain the
following expression for the atom–droplet interaction:

Ea−d(R1, a) = n0

∞∫
0

dRR2
π∫
0

sin ΘdΘ
2π∫
0

dϕΦ(R)F(0)
2 (R)×

×Θ
(

a−
(

R2
1 + R2 + 2R1R cos Θ

)1/2
)

.
(4)
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After integration over spherical variables, the expression for the atom–droplet interac-
tion energy takes the form:

Ea−d(R1, a) = πn0
R1

Θ(R1 − a)
R+a∫

R−a
dRRΦ(R)F(0)

2 (R)×

×
[
a2 − R2

1 − R2 + 2RR1
] (5)

where R1 is the distance from the atom to the center of the droplet. The obtained expression
is valid for the distances R1 ≥ a. From (5), we can see that the atom–droplet interaction
potential is dependent on the geometrical size of the droplet and the thermodynamic pa-
rameters, such as density of the number of atoms and temperature. Formally, Ea−d(R1, a) is
a function of the potential of the paired interparticle interaction and pair distribution func-
tion of the atoms. The derived Expression (5) takes into account the kinematic conditions
of the atoms’ arrangement outside the droplet.

If the atom is located at the surface of the droplet, then R1 = a and the interaction
energy expression takes the form:

Ea−d(a, a) =
πn0

a

2a∫
0

dRRF(0)
2 (R)Φ(R)(2aR− R2). (6)

In this case, from (6), it is clearly seen that the atom–droplet interaction energy takes finite
values, unlike in the case of continual approximations, in which no body structure is taken
into account and density is assumed to be constant [11,12]. In the continual approximations,
the atom energy at the surface of the droplet tends to infinity due to the repulsive forces
acting on the atom from the droplet.

For the case in which the atom is located inside the droplet, similar calculations allow
the interaction energy of the atom and droplet to be obtained:

Ea−d(R1, a) = 4πn0Θ(a− R1)
a−R1∫

0
dRR2Φ(R)F(0)

2 (R)+

+πn0
R1

Θ(a− R1)
a+R1∫

a−R1

dRRΦ(R)F(0)
2 (R)

[
a2 − (R− R1)

2
] (7)

If we choose in Expression (7), then we obtain Expression (6).
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If the atom is located at the center of the droplet, then its interaction energy with the
droplet will have the form:

Ea−d(0, a) = 4πn0

a∫
0

dRR2Φ(R)F(0)
2 (R). (8)

In a boundary case, when the droplet radius approaches infinity, from (8), the expression
for the atom interaction energy with unbounded liquid can be obtained:

Ea = 4πn0

∞∫
0

dRR2Φ(R)F(0)
2 (R). (9)

Expressions (8) and (9) have an explicit geometrical meaning.
The expression for the interaction energy of the atom with a semi-bounded liquid in

the case of arbitrary distances from the atom to the surface, when it is important that the
pair atom–atom correlations in the semi-bounded liquid are accounted for, can be derived
from Expression (5) by means of transition a→ ∞, R1 − a = d = const :

Ea− f (d) = 2πn0

∞∫
d

dRF(0)
2 (R)Φ(R)R(R− d) (10)

where d is a distance from the atom to the surface.
The interaction energy of an atom that is located on a flat surface of a semi-bounded

liquid in the case of the Fowler approximation will take a form of a particular case of (10):

Ea− f (0) = 2πn0

∞∫
0

dRR2F(0)
2 (R)Φ(R). (11)

In contrast to the results of continual approximation, the interaction energy (11) is limited.
In Expressions (4)–(11) for the interaction energy, the divergence of the corresponding
integrals in the accounting for the paired interatomic correlations is absent.

Let us consider a boundary case of atom interaction energy with a nanodroplet of
liquid in a continual approximation. In the case of distances R1 − a � σ, where σ is
a characteristic length for the pair distribution function, we can assume F(0)

2
∼= 1 and

integrate using the explicit expression for the atom’s paired interaction potential. Thus, in
the case of Lennard–Jones potential:

Φ(R) = 4ε

[( σ

R

)12
−
( σ

R

)6
]

(12)

with the parameters σ and ε, we obtain:

Ea−d(a, R1) =
4πn0εσ6

R1

{
(R2

1−a2)σ6

10

[
1

(R1+a)10 − 1
(R1−a)10

]
+

+ 1
8 σ6
[

1
(R1+a)8 − 1

(R1−a)8

]
− 2

9 R1σ6
[

1
(R1+a)9 − 1

(R1−a)9

]
+

+
(a2−R2

1)
4

[
1

(R1+a)4 − 1
(R1−a)4

]
− 1

2

[
1

(R1+a)2 − 1
(R1−a)2

]
+

+ 2
3 R1

[
1

(R1+a)3 − 1
(R1−a)3

]}
.

(13)
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The interaction energy of an atom with the semi-infinite liquid in the boundary case a→ ∞
can be written as:

Ea− f (d) =
4π

9
n0σ3ε

{
1
5

(σ

d

)9
− 3

2

(σ

d

)3
}

, (14)

where d is the distance between the atom and a flat surface. In the general case, the potential
interaction parameters of an atom with a droplet and an atom with semi-infinite liquid are
functions of density and temperature of the liquid.

From Expression (14), we can obtain the position of the first zero d0 of the potential
and the value of the potential minimum \dmin:

d0 =
σ
6
√

3
, dmin = σ. (15)

The depth of the potential well in which the atom near the flat surface moves will take
the form:

U = −8πn0σ3

9
ε. (16)

The interaction energy of an atom with a semi-infinite liquid at long distances from the
surface is the inverse proportional cube of the distance to the surface and has the follow-
ing asymptote:

Ea− f
∼= −

πn0C
6

1
d3 , (17)

where C = 4εσ6 is a constant in the Van der Waals potential. Asymptotic behavior:

Ea− f ∼
1
d3 (18)

is obtained within the framework of macroscopic Van der Waals interaction theory (without
accounting for delay effects) [20].

The numerical calculations were performed for the normal 4He at a temperature
T = 2.2K and a density ρ = 147 kg/m3, which corresponds to the density of the number
of particles n = 22.1266 nm−3. Parameters of the Lennard–Jones potential were chosen
to be σ = 2.576Å, ε = 10.22K [13]. The pair distribution function was modeled by means
of the distribution function obtained within the framework of the Barker–Henderson
thermodynamic perturbation theory [10,16].

Figure 2 shows the results of calculations in continual approximation using Formula (13)
for the interaction energy of an atom with a droplet of liquid helium for different values of
droplet radius (curves 1–3) and a semi-bounded liquid (curve 4). The interaction energy of
the pair of atoms, which is described by the Lennard–Jones potential (curve 5), is also shown.
The calculations show that the position of the minimum of the interaction energy of an atom
with droplets and semi-bounded liquids is significantly shifted to the shorter distances in
comparison to the interatomic potential Φ(R). The depth of the potential well increases with
the growth of the droplet radius and reaches saturation for the flat interface of the liquid.
At a given density of the liquid, the depth of the potential well, even in the case of atom
interaction with the flat interface, is less than in the case of atom–atom interaction. In the
case of continual approximation, the interaction energy of the atom with its surroundings
approaches infinity when an atom approaches a surface, i.e., the atom cannot reach the
surface of the liquid. This result is not satisfactory for a liquid; however, to a certain level, it is
acceptable for the modeling of atom interaction with a solid body, and it is used in absorption
problems. The main disadvantage of the continuum approximation is complete neglect of
the discrete surrounding structure effects and correlations between separate atoms with the
surrounding atoms.
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of 4He with different radiuses.

The calculation results of the interaction energy of an atom with a droplet in the
framework of correlation theory in the case when the atom is located on the surface of the
droplet are shown in Figure 3. From Figure 3, we can see that at droplet radius vales around
[20− 30σ], the energy Ea−d(a, a), as a function of the radius, approaches the asymptotic
value. In contrast to the continuum model, accounting for the interatomic correlations of
the atom on the surface of the droplet demonstrates finite negative values of the energy,
which corresponds to the attraction of the atom to the droplet.
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Figure 3. Results of calculations of the interaction energy of an atom with a droplet of 4He when the
atom is located on the surface of the droplet.

Figure 4 shows the calculation results of the interaction energy of an atom with a
droplet as a function of the droplet radius Ea−d(0, a), for the case when atom is located in
the center of the droplet. From the graph in Figure 4, it is seen that at radius values of the
order 10σ, the interaction energy of the atom with droplet Ea−d(0, a) reaches its asymptotic
values for the unbounded liquid; however, it remains finite.
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Figure 4. The interaction energy of the atom with a droplet as a function of the droplet radius for the
case when the atom is located in the center of the droplet.

Figure 5 shows the calculation results of the atom interaction energy with a liquid
helium droplet, including accounting for the correlation effects at variable radius values
and arbitrary distances from the atom to the center of the droplet. As can be seen from the
graph, the interaction energy of an atom with a droplet exhibits a saturation effect. This
effect can be seen in the following circumstances. (1) The droplet radius values are of the
order of 4σ, and the number of atoms in the droplet is around 101. A one-atom potential
is formed, which covers most of the droplet and corresponds to the asymptotic value for
the unbounded liquid. (2) The thickness of the near-surface layer, where the interaction
energy varies from its value inside the droplet to the asymptotic value outside the droplet,
quickly reaches the values of the order 6σ at radius growth. These results indicate that
a majority of atoms inside the droplet with a radius a > 10σ are under the influence of
self-consistent potential, which is similar to that of the homogeneous unbounded liquid,
and the gradient of this potential is located at the near-surface layer of the thickness 6σ.
As a result, at radius growth, the thickness of the atom density profile of the near-surface
layer quickly reaches values corresponding to the flat surface.
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Figure 5. The interaction energy of the atom with the droplet of liquid 4He, accounting for correlation
effects with variable droplet radius values.

For comparison, Figure 6 shows the dependences of the interaction energies of an
atom and 4He nanodroplet of radius 2σ in the continual model and taking into account the
correlation effects. The two curves practically coincide only for large distances R > 2.8σ.
At smaller distances, there is a significant difference and in the boundary case R→ 2σ + 0
in the continual model Ea − d (R, a)→ ∞ .
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3. Microscopic Theory of Nanodroplet Surface Energy in Fowler Approximation

Let us consider a simple liquid in a volume V, which is described by the Hamiltonian:

H =
N

∑
i=1

P2
i

2M
+

1
2

N

∑
i 6=j=1

Φ
(∣∣Ri −Rj

∣∣), (19)

where Pi, M are the impulse and mass of an atom, respectively; Φ
(∣∣Ri −Rj

∣∣) is the central–
symmetric potential of interatomic interaction; and N is the number of atoms. After an
averaging within the framework of the distribution function method of groups of parti-
cles [10,13–16,19], for the energy of liquid, we obtain:

E = 〈H〉 = Ek + Ep = 3
2 NkBT+

+N(N−1)
2V2

∫
V

d3R1
∫
V

d3R2F2(|R1 −R2|)Φ(|R1 −R2|) (20)

where V is the system volume and kB is the Boltzman constant.
We can divide the volume of the system into two parts V = V1 + V2, where V1 is the

volume of the droplet and V2\ is the volume of the liquid around the droplet. Then, the
potential energy of the liquid can be written as follows:

Ep =
n2

0
2

∫
V1+V2

d3R1
∫

V1+V2

d3R2F2(|R1 −R2|)Φ(|R1 −R2|) =

=
n2

0
2

∫
V1

d3R1
∫
V1

d3R2F2(|R1 −R2|)Φ(|R1 −R2|)+

+2 n2
0

2

∫
V1

d3R1
∫
V2

d3R2F2(|R1 −R2|)Φ(|R1 −R2|)+

+
n2

0
2

∫
V2

d3R1
∫
V2

d3R2F2(|R1 −R2|)Φ(|R1 −R2|),

(21)

where the first term is the bulk component of the droplet energy, the second term is the
interaction energy of molecules inside the droplet with the molecules located outside, and
the third term is the molecules’ interaction energy in the liquid with the spherical pore. The
first and the third terms are proportional to the volumes of the liquid droplet and liquid
with the pore, correspondingly, and the second term is proportional to the surface area of
the droplet.
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Let us split the system into the droplet of radius a and the remainder of the volume
(liquid with a pore of radius a). The potential energy E′ of the separated system is written:

E′ = n2
0

2

∫
V1

d3R1
∫
V1

d3R2F2(|R1 −R2|)Φ(|R1 −R2|)+

+
n2

0
2

∫
V2

d3R1
∫
V2

d3R2F2(|R1 −R2|)Φ(|R1 −R2|),
(22)

where the first term is the energy of the droplet, and the second term is the energy of the
liquid with a pore. The potential energy of the system separation is E′ − Ep. The energy
of the system separation is proportional to the surface area of the sphere. The specific
separation energy per unit of the formed surface S = 4πa2 can be written as:

σ =
1
2
(
E′ − Ep

)
= −

n2
0

2

∫
V1

d3R1

∫
V2

d3R2F2(|R1 −R2|)Φ(|R1 −R2|). (23)

The specific separation energy (23) corresponds to the previously derived surface
energy of the droplet and pore in Fowler’s approximation [16,19]. Fowler’s approximation
corresponds to the “step” form of the molecules’ density profiles on the boundary of the
droplet and pore inside the liquid, with pair distribution functions similar to that of the
homogeneous liquid.

The surface energy of the droplet can be defined as the difference between the total
energy of the droplet and the energy of the homogeneous phase in the volume correspond-
ing to the volume of the droplet divided by the surface area of the droplet. This definition
is equivalent to distinguishing the volumetric and surface parts in the total energy of
the droplet. For the model calculations, the pair distribution function was approximated
as follows:

F2(R1, R2) ∼= Θ(a− R1)Θ(a− R2)F(0)
2 (|R1 −R2|), (24)

where F(0)
2 (|R1 −R2|) is the pair distribution function of atoms in a homogeneous liq-

uid; and a is the droplet radius. Approximation (24) is similar to the Kirkwood–Buff
approximation for a semi-bounded liquid with a flat interface [16,19,21].

The received expressions for the droplet energy, pore energy, and separation energy of
a liquid into a droplet and a liquid with pore can be integrated in spherical coordinates.
Thus, using Approximation (24), the energy of the liquid droplet can be written as:

Edrop =
3
2

NkBT +
4
3

πa3ε + σS, (25)

where

ε = 2πn2
0

∞∫
0

dRR2F(0)
2 (R)Φ(R) (26)

is the bulk density of the potential energy of a liquid; n0 is the density of the number of
particles in a homogeneous liquid; and S is the surface area of the droplet.

The surface energy of the droplet is defined as:

σ = σ0 + ∆σ, (27)

where

σ0 = −
πn2

0
2

∞∫
0

dRR3F(0)
2 (R)Φ(R) (28)
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is the surface energy of the flat interface of the liquid in Fowler’s approximation [16,19,21,22].

∆σ =
πn2

0
2

∞∫
2a

dRR3Φ(R)F(0)
2 (R) + πn2

0
24a2

2a∫
0

dRR5Φ(R)F(0)
2 (R)−

−πn2
0

2 ·
4πa

3

∞∫
2a

dRR2Φ(R)F(0)
2 (R)

(29)

is an additional term for the surface energy of the droplet due to the surface curvature. In
the boundary case of the large droplet radius values lim

a→∞
σ = σ0, this corresponds to the

surface energy of the liquid with a flat interface. For small values of the droplet radius,
lim
a→0

σ = 0.

The model calculations of the size dependence of the surface energy of the droplet σ(a)
were performed for simple liquids using the Lennard–Jones potential and pair distribution
function, which were obtained within the framework of the Wicks–Chandler–Anderson
(WCA) thermodynamic perturbation theory [16,22–24]. Figure 7 shows the calculation results
for the dependence σ(a) of argon at the melting point. The atoms’ pair distribution function
was calculated according to the WCA procedure. The Lennard–Jones parameters were

chosen as ε = 124K, σ = 3.418
0
A, and the droplet radius was depicted in terms of Bohr radius

aB. The asymptotic value of the surface energy at a→ ∞ is equal σ0 = 27.04 erg/cm2.
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Figure 7. The size dependence of the surface energy σ(a) for the Ar droplet.

Model calculations of the dimensional dependence of the surface energy of gases
He, Kr, Xe are presented in Figures 8–10. The parameters of Lennard–Jones potentials
are taken from a monograph [13]. Model calculations for all elements are performed
for temperatures and densities corresponding to triple points. Note the similarity of the
dimensional dependences of σ(a) for the selected group of elements. The surface energy
shows a strong dependence for nanosized droplets. With an increase in size, the surface
energy of nanodroplet approaches the value of the surface energy of a flat surface σ0.
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When a droplet of liquid is located in a gas, then for the surface energy of the boundary
of the droplet–gas interface, we use a representation in which the surface energy of the gas
phase is described as the surface energy of a gas with a pore. We assume that the density of
the number of particles in liquid is n0, and in gas, it is n1. The pair distribution functions of
particles in a homogeneous liquid and gas are F20 and F21, respectively. Then, the surface
energy of the spherical liquid–gas interface, σl−g, is reduced in comparison to the surface
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energy of the liquid droplet in vacuum to a value that is equal to the surface energy of the
pore with a vacuum in the gas

σl−g = σ0l − σ0g +
πn2

0
2

[
∞∫

2a
dRR3F(0)

20 (R)Φ(R)−

− 4a
3

∞∫
2a

dRR2F(0)
20 (R)Φ(R) + 1

12a2

2a∫
0

dRR5Φ(R)F(0)
20 (R)

]
−

+
πn2

1
2

[
∞∫

2a
dRR3F(0)

21 (R)Φ(R)− 4a
3

∞∫
2a

dRR2F(0)
21 (R)Φ(R)+

+ 1
12a2

2a∫
0

dRR5F(0)
21 (R)Φ(R)

]
(30)

where

σol = −
πn2

0
2

∞∫
0

dRR3F(0)
20 (R)Φ(R) (31)

is the surface energy of the flat liquid–vacuum interface; and

σog = −
πn2

1
2

∞∫
0

dRR3F(0)
21 (R)Φ(R) (32)

is the surface energy of the flat gas–vacuum interface.
In the boundary case of gas density growth, n1 → n0 , the surface energy of the

spherical liquid–gas interface approaches zero, σl−g → 0 . In the boundary case when
a→ ∞ , we obtain lim

a→∞
σl−g = σ0l − σ0g.

In this section, within the framework of the correlation theory of inhomogeneous
liquids, the general expressions for the bulk and surface terms in the droplet energy as
a function of the radius were obtained. Using the Fowler approximation, we were able
to reduce all of the terms to the single integrals, which significantly simplified the model
calculations of the size dependence. The size dependence of the surface energy was
calculated for spherical droplets of the simple dielectric liquids as a function of the radius
in Fowler’s approximations. In the boundary case of the large radius of the droplet, the
surface energy approaches the value for the flat surface. The strong size dependence of the
droplet surface energy is observed at nanometer scales of the droplet radius. When the
droplet radius a < 15aB, a significant decrease in the surface energy is observed.

The derived approach is used to calculate the surface energy of two-phase system
of nanodroplet–gas, including accounting for the paired interparticle interactions and
correlations. In the vicinity of the mixing point of liquid and gas, the surface energy of
the nanodroplet in gas approaches zero. The size dependence of the nanodroplet surface
energy in gas is similar to the size dependence of the nanodroplet in vacuum.

4. The Correlation Theory of Interaction Energy between Two Nanodroplets and Two
Nano-Pores in Liquid

The contemporary state of development in molecular–kinetic representations of the
interaction of macroscopic bodies by means of intermolecular forces is described in the
monograph [11]. In [11], the expressions for the interaction energy of the bodies with
different geometry were derived, and these used the attractive potential of intermolecular
interaction. This potential corresponds to the Van der Waals potential, and the repulsive
intermolecular forces and the interparticle correlations in these calculations are not taken
into account. Thus, the obtained results in [11] for the interaction energies of macroscopic
bodies correspond to the asymptotic values for large distances. Taking into account the
short-range intermolecular forces requires a theory that also takes into consideration the
intermolecular correlations. This approach can be implemented within the framework
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of the statistical theory of multiparticle systems [10,13–16]. The kinetics of air dispersal
and cavitation systems requires knowledge of the energy of the interaction processes of
nanodroplets and nanopores as well as that in their ensembles with the surrounding phase.

In the current section, we established the theory of the interaction energy for two
droplets of a simple liquid within the framework of the distribution function method of the
groups of particles. The derived expressions for the interaction energy of two nanodroplets
take into account paired interparticle interactions and correlations, and they are applicable
for the arbitrary distances between nanodroplets or nanopores.

We postulate in a homogeneous liquid that occupies a volume V a presence of two
pores of volumes V1 and V2. The volume of the liquid without the volume of two pores we
denote V′. The potential energy of the liquid with two pores can be written:

E =
1
2

n2
0

∫
V′

d3r1

∫
V′

d3r2Φ(|r1 − r2|)F2(|r1 − r2|), (33)

where Φ(|r1 − r2|) is the potential energy of interaction of two atoms; F2(|r1 − r2|) is the
pair distribution function of atoms in a homogeneous liquid; and n0 = N/V is the density
of the number of particles in a homogeneous liquid.

From the energy in (33), we can separate the part that corresponds to the energy of a
homogeneous liquid in a volume V:

E = 1
2 n2

0

(∫
V′

d3r1 +
∫
V1

d3r1 +
∫
V2

d3r1 −
∫
V1

d3r1 −
∫
V2

d3r1

)
×

×
(∫

V′
d3r2 +

∫
V1

d3r2 +
∫
V2

d3r2 −
∫
V1

d3r2 −
∫
V2

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|) =

= 1
2 n2

0

(∫
V

d3r1 −
∫
V1

d3r1 −
∫
V2

d3r1

)(∫
V

d3r2 −
∫
V1

d3r2 −
∫
V2

d3r2

)
×

×Φ(|r1 − r2|)F2(|r1 − r2|).

(34)

The energy Expression (34) contains nine terms whose physical meaning we clarify in the
following. The first term is the potential energy of a homogeneous liquid in a volume V:

1
2

n2
0

∫
V

d3r1

∫
V

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) = εV. (35)

This energy (35) can be represented as the product of the bulk density of the potential
energy ε and the volume of the system V. The sum of the contributions from (34):

− 1
2 n2

0
∫
V

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

+ 1
2 n2

0
∫
V1

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0

(∫
V

d3r1 −
∫
V1

d3r1

)∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) = −σ1S1,

(36)

corresponds to the potential energy of atoms’ interaction inside the volume V1 with the
atoms surrounding the first pore volume V −V1, which is proportional to the surface area
of the first pore S1 and the surface energy of the first pore σ1.
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The next sum of the two contributions in (34) can be written as:

− 1
2 n2

0
∫
V

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

+ 1
2 n2

0
∫
V2

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0

(∫
V

d3r1 −
∫
V2

d3r1

)∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) = −σ2S2,

(37)

which corresponds to the potential interaction energy of atoms inside the volume V2 and
atoms surrounding the second pore volume V−V2. This term is proportional to the surface
area of the second pore S2 and to the surface energy of the second pore σ2.

The sum of the following two terms:

+ 1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

+ 1
2 n2

0
∫
V2

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)
(38)

corresponds to the duplicated interaction energy of two droplets with volumes V1 and V2.
For the sum of the contributions in (34), which are not accounted for in

Expressions (36)–(38), we denote ∆E and write in the form:

∆E = − 1
2 n2

0
∫
V1

d3r1
∫
V

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

+ 1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

− 1
2 n2

0
∫
V2

d3r1
∫
V

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

+ 1
2 n2

0
∫
V2

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0
∫
V1

d3r1

(∫
V

d3r2 −
∫
V2

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫
V2

d3r1

(∫
V

d3r2 −
∫
V1

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|) =

= − 1
2 n2

0
∫
V1

d3r1
∫

V−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫
V2

d3r1
∫

V−V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).

(39)

Simplifying (39)

∆E = − 1
2 n2

0
∫
V1

d3r1

( ∫
V−V1−V2

d3r2 +
∫
V1

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫
V2

d3r1

( ∫
V−V1−V2

d3r2 +
∫
V2

d3r2

)
Φ(|r1 − r2|)F2(|r1 − r2|),

(40)

we get
∆E = − 1

2 n2
0
∫
V1

d3r1
∫
V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫
V1

d3r1
∫

V−V1−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫
V2

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫

V−V2−V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).

(41)
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The first term in Expression (41) corresponds to the potential energy of liquid in the volume
V1 and contains the bulk contribution −εV1. Similarly, the third term in (41) contains a bulk
part −εV2 of the potential energy of a liquid in a volume V2. Thus, (41) takes the form:

∆E = −ε ·V1 − ε ·V2−
− 1

2 n2
0
∫
V1

d3r1
∫

V−V1−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)−

− 1
2 n2

0
∫

V−V2−V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).
(42)

The potential energy of the first and second droplets is E1drop = ε · V1 + σ1 · S1 and
E2drop = ε ·V2 + σ2 · S2, respectively.

Then, the potential energy of the liquid with two pores (33) will take the form:

E = 1
2 n2

0
∫
V′

d3r1
∫
V′

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= ε ·V + σ1 · S1 + σ2 · S2 − E1drop − E2drop + E1 + E2,
(43)

where:
E1 = −1

2
n2

0

∫
V1

d3r1

∫
V−V1−V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|), (44)

E2 = −1
2

n2
0

∫
V−V2−V1

d3r1

∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|). (45)

The energy expressions of (44) and (45) can be rewritten as:

E1 = − 1
2 n2

0
∫
V1

d3r1
∫

V−V1

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

+ 1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= −σ1 · S1 +
1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).
(46)

E2 = − 1
2 n2

0
∫

V−V2

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|)+

+ 1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|) =

= −σ2 · S2 +
1
2 n2

0
∫
V1

d3r1
∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|).
(47)

where the second terms in (46) and (47) correspond to the potential interaction energy of
two droplets or two pores:

Edrop−drop = Epore−pore =
1
2

n2
0

∫
V1

d3r1

∫
V2

d3r2Φ(|r1 − r2|)F2(|r1 − r2|). (48)

Substituting Expressions (46)–(48) into (43):

E = ε ·V + σ1 · S1 + σ2 · S2 − E1drop − E2drop−
−σ1 · S1 − σ2 · S2 + Edrop−drop + Epore−pore =

= ε ·V − E1drop − E2drop + Edrop−drop + Epore−pore,
(49)

we receive the expression for the potential energy of homogeneous liquid in a volume V

ε ·V = E + E1drop + E2drop − Edrop−drop − Epore−pore. (50)

The terms in Expression (50) have the following meaning: the left part of (50) is the
potential energy of a homogeneous liquid, which takes into account all interactions; the
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right side of (50) contains a sum that includes contributions related to the “separation” from
a homogeneous liquid of two droplets with a free interface and free interface of the pores.

To derive the interaction energy of two nanodroplets Edrop−drop and the interaction
energy of two nanopores Epore−pore (48), we first consider the interaction energy of a volume
element that contains n0d3r1 atoms, with a droplet of radius a:

Eel−drop(R1) = n2
0dV

∫
V

d3r2F2(|R1 − r2|)Φ(|R1 − r2|) (51)

where V is a droplet volume; and F2(|R1 − r2|) is a pair distribution function of atoms in a
homogeneous liquid.

We assume that the droplet is centered in the reference coordinate system and the
volume element is located along the OZ axis at distance R1 > a. In a spherical coordinate
system, Expression (51), similar to (5), takes the form:

Eel−drop(R1, a) = πn0dV1
R1

Θ(R1 − a)
R1+a∫

R1−a
dRRΦ(R)F(0)

2 (R)×

×
[
a2 − R2

1 − R2 + 2RR1
]
.

(52)

Let us assume that the center of the second droplet with radius b is located along OZ at
a point with coordinate d Then, the interaction energy of these two droplets with center
distances d > a + b, using (52), can be written as:

Edrop−drop(a, b, d) =
∫

dV1Eel−drop(R1, a). (53)

Integrating over spherical variables (53) will take the form:

Edrop−drop(a, b, d) = π2n2
0

2d

d+b∫
d−b

dR1

[
b2 − (d− R1)

2
]
×

R1+a∫
R1−a

dRRF2(R)Φ(R)
[

a2 − (R1 − R)2
]
.

(54)

The Expression (54) allows calculating a component of the interaction force between two
nanodroplets along the OZ direction

Fz(a, b, d) = − ∂

∂d
Edrop−drop(a, b, d). (55)

A continuous density distribution is assumed in the boundary case of a continuum
model, and it is not accounted for in the discreet structure of the media. The expressions
derived above for the interaction energy of two nanodroplets and two nanopores can
be easily reduced to the continuum case by neglecting the correlations and assuming
F2(R) = 1. Using the Lennard–Jones potential for the interaction energy of atoms, and
integrating Expression (54) over R, we obtain:

Edrop−drop(a, b, d) = 2π2n2
0εσ6

d

d+b∫
d−b

dR1

[
b2 − (d− R1)

2
]
×{

−
(
a2σ6/10

)(
(R1 + a)−10 − (R1 − a)−10

)
+
(
a2/4

)(
(R1 + a)−4 − (R1 − a)−4

)
+

+
(

R2
1σ6/10

)(
(R1 + a)−10 − (R1 − a)−10

)
−
(
2R1σ6/9

)(
(R1 + a)−9 − (R1 − a)−9

)
+

+
(
σ6/8

)(
(R1 + a)−8 − (R1 − a)−8

)
−
(

R2
1/4

)(
(R1 + a)−4 − (R1 − a)−4

)
−

−(1/2)
(
(R1 + a)−2 − (R1 − a)−2

)
+ (2R1/3)

(
(R1 + a)−3 − (R1 − a)−3

)}
.

(56)
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Formula (56) can be simplified by integration over R1

Edrop−drop(a, b, d) = 2π2n2
0εσ6

d
(
b2 − d2)×{

σ6a
40 f+8 + 11

630 σ6 f−7 −
a2

12 f−3 −
a2

12 f+3 + a
3 f−2 + a

3 f+2 + 1
12 f−1

}
+

+4π2n2
0εσ6

{
− σ6a3

20 f−9 + 31
360 a2σ6 f−8 + 1

90 σ6a3 f+9 −
1

360 aσ6 f+7 −

− 1
2160 σ6 f−6 −

1
24 a3 f+3 −

1
12 a2 f−2 + 1

12 a f−1 −
1

12 ln
∣∣∣ aδ

γβ

∣∣∣}−
− 2π2n2

0εσ6

d

{
− σ6a3

360 f+8 + σ6a2

168 f−7 −
σ6a
360 f+6 −

41σ6

1800 f−5 −

− a3

4 f+2 + 55a2

36 f−1
}

.

(57)

where we denoted:

f±1 = α−1 − β−1 ± γ−1 ± δ−1, f±2 = α−2 − β−2 ± γ−2 ± δ−2,
f±3 = α−3 − β−3 ± γ−3 ± δ−3, f±5 = α−5 − β−5 ± γ−5 ± δ−5,
f±6 = α−6 − β−6 ± γ−6 ± δ−6, f±7 = α−7 − β−7 ± γ−7 ± δ−7,
f±8 = α−8 − β−8 ± γ−8 ± δ−8, f±9 = α−9 − β−9 ± γ−9 ± δ−9,
α = d + b + a, β = d− b + a, γ = d + b− a, δ = d− b− a.

(58)

The result in (57) corresponds to the continuum approximation for the interaction
energy of two droplets of liquid with parameters Edrop−drop(a, b, d). It accounts for attractive
and repulsive parts of molecule interactions and neglects correlation effects.

The absorption problems in equilibrium liquid–vapor systems require knowledge of
the nanodroplet interaction energy with the flat liquid interface. Using Expression (54)
for the interaction energy of two droplets, we can investigate the boundary case of the
droplet–semi-bounded liquid interaction.

These boundary case calculations of the droplet interaction energy with the semi-bounded
liquid can be performed assuming that the distance between droplet centers d→ ∞ and
droplet radius b→ ∞ , and d − b = const. We denote distance d − b = D, which in our
boundary case corresponds to the distance from the center of the droplet with radius a to the
interface of semi-bounded liquid. The calculation of the limit lim

d→ ∞, b→ ∞
d− b = D

Edrop−drop(a, b, d) is

not dependent on the internal integral in (54). Thus:

lim
d→ ∞, b→ ∞

d− b = D

1
d
[b2 − (d− R1)

2] = 2R1 − 2D. (59)

Using the result in (58), the interaction energy of the droplet of radius a with a semi-
bounded liquid at a distance D will take the form:

Edrop−semi(a, b, d) = π2n2
0

∞∫
D

dR1(R1 − D)×

×
R1+a∫

R1−a
dRRF2(R)Φ(R)

[
a2 − (R1 − R)2

]
.

(60)

The derived Expression (60) takes into account the paired interparticle interactions by
means of potential Φ(R) and the paired interparticle correlations by means of F2(R).
From (59), we can derive an explicit expression for the interaction energy of the nanodroplet
with a semi-bounded liquid in continuum approximation.

Figure 11 shows the results of numerical calculations of the interaction energy of two
4He nanodroplets with the same radii a = 2σ as a function of the distance between the
centers of the droplets 4σ < a < 5σ in accordance with the Formula (54). The interaction
energy of nanodroplets is negative and rapidly decreases with increasing distance between
the centers of the droplets.
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5. The Effective Hamiltonian of Aerosols with Liquid Nanodroplets

We use the derived results to build the effective Hamiltonians of nanodispersed two-
phase liquid–gas systems. Our approach accounts for the effects of the paired interparticle
interactions and correlations in calculations of the molecules’ interaction energies with
droplets, pairs of droplets, and the surface energy of the droplets.

Let us assume the existence of an aerosol of nanodroplets of different sizes in the gas
phase. For simplicity, we assume that this two-phase system consists of atoms (molecules)
of the same kind and has temperature T. Based on the results derived in the previous
sections, the effective Hamiltonian of this system He f f , including accounting for the paired
interparticle interactions and correlations, can be written as:

He f f =
3
2 NkBT + K + ε l

Nd
∑

j=1
Vj+εg

(
V −

Nd
∑

j=1
Vj

)
+

Nd
∑

j=1
σjSj+

+
NG
∑

i=1

Nd
∑

j=1
Ea−d

(
Rij, aj

)
+ 1

2

Nd
∑

k=1

Nd
∑

m=1
Edrop−drop(ak, bm, dkm)

(61)

where 3
2 NkBT is the kinetic energy of all molecules of aerosol; N is the total number of

molecules in gas and droplets; K is the kinetic energy of the translational and rotational
motion of all droplets; ε l , εg are the bulk energy densities of droplets and gas (30); V is the
volume of the system; Vj is the volume of the j-th droplet; Nd is the number of droplets; NG
is the number of molecules of the gas phase; σj, Sj is the surface energy and the surface area
of the jth droplet, respectively (27); Ea−d

(
Rij, aj

)
is the interaction energy between the i-th

gas molecule and the j-th droplet (5), aj is the radius of the j-th droplet; Rij is the distance
between the i-th gas molecule and the center of the j-th droplet; and Edrop−drop(ak, bm, dkm)
is the interaction energy of two droplets with radiuses ak and bm, and a center distance
dkm > ak + bm (50).

The expression for the effective Hamiltonian of an aerosol (61) can be generalized
for the case of multicomponent mixtures with atoms (molecules) of different kinds. For-
mula (61) is derived for the set of independent variables: temperature, number of atoms
(molecules) in a system in total and in gas phase, size of droplets, and density of the number
of atoms in liquid and gas. In real experiments with macroscopic aerosol systems, statistical
datasets exist that describe the dispersion of droplet sizes and the possible disposition in
external fields. Knowledge of these statistical datasets is necessary for the averaging of (61)
and calculation of aerosol energy.

The prediction of aerosol behavior requires knowledge of droplets’ size evolution,
their concentration, the collisions results with possible coagulation, and accounting for the
condensation and evaporation effects on and from the droplets’ surface. The time evolution
of the droplet’s size distribution is described by the generalized integral–differential dy-
namic equation, which takes into account the balance of the number of atoms (molecules)
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of gas and the number of droplets, which may vary due to condensation, evaporation, and
the coagulation of droplets [25–28].

The condensation phenomena, in addition to evaporation from the droplet’s surface,
play an essential role in many technological processes. An overview of the existing ap-
proaches to the description of the evaporation and condensation phenomena is provided in
work [29]. The majority of research papers use the equations of macroscopic mechanics of
continuum media and thermodynamics. However, the framework of these approaches does
not allow the formulation and establishment of the boundary conditions in the droplet’s
near-surface area, where the application of the macroscopic equations of thermodynamics,
heat transfer, and diffusion is problematic [29]. The microscopic approach developed in
the current paper allows, at the molecular level, accounting for the interaction energies
of atoms (molecules) with a liquid droplet, and it takes into account paired interparticle
interactions and correlations with an arbitrary atom (molecule) disposition relative to the
droplet. The derived expressions for Ea−d

(
Rij, aj

)
allow research on the intermolecular

forces that act on a separate particle at an arbitrary position. They also allow the develop-
ment of the statistical theory of equilibrium evaporation and condensation processes for
arbitrary temperatures and densities of liquid and gas in multicomponent systems with
droplets of an arbitrary size. In the problems of the adhesion of liquid droplets with other
molecular structures, the interaction energy Ea−d

(
Rij, aj

)
plays an essential role and serves

as a basis for further calculations.
The atom (molecule) work function from the droplet can be described as:

Aa−d = Ea−d(∞, a)− Ea−d(0, a). (62)

Expression (62) can be used in adhesion problems of atoms (molecules) with droplets and
thermodynamics of aerosols. The sign of the atom work function of a droplet is dependent
on thermodynamic conditions and may be negative. At condition Aa−d > 0, condensation
processes mostly take place, whereas at thermodynamic conditions when Aa−d < 0, the
evaporation effects are active. The case Aa−d = 0 corresponds to the dynamic equilibrium
of the evaporation and condensation processes.

In molecular biology problems, the adhesion of large molecules (viruses) to the surface
of cells and the adhesion of cells to each other play an essential role [30]. Current progress in
the physics, chemistry, and experimental techniques with nanodroplets, cells, and viruses
allows measurement of the adhesion forces of nanodroplets and viruses (virions) [30,31].
However, contemporary research on the energy and adhesion forces of nano-objects consists
of only phenomenological developments. In this phenomenological state, the development
of the molecular structures’ adhesion problems and nanodroplets of liquid, or the flat liquid
interface, are important for the spread of viruses in aerosols. Within the framework of the
approach developed in the current article, we can write the expression for the interaction
energy of the multi-atom molecule, consisting of Nstr atoms, with a liquid droplet of radius
aj, as follows:

Edrop−str =
Nstr

∑
i=1

Ea−d
(

Rij, aj
)
, (63)

where Rij is the distance between the i-th atom of the structure and the j-th droplet.
Discussion about the adhesion mechanism of cells and viruses is long standing. The

main question is whether the adhesion occurs at the direct contact of two objects or by
means of intermediate molecular structures [30,31]. The same question concerns the
mechanism of adhesion of two nanodroplets. The adhesion energy of two droplets with
radiuses a1, a2 , which are in contact with each other, corresponds to the interaction energy
Edrop−drop(a1, a2, d), where d is the center distance between droplets.



Entropy 2021, 23, 13 21 of 25

The energy of indirect interaction of two nanodroplets with radiuses a1, a2 over a
molecular structure with Nstr atoms can be written:

Eind
drop−drop(a1, a2, d) =

2

∑
k=1

Nstr

∑
i=1

Ea−d
(

Ril , aj
)
. (64)

Formula (64) for the energy of the indirect interaction corresponds to the adhesion energy
for the system of three bodies, and it can be defined as a separation work for all three
components of the system to infinite distances. The boundary cases of Formula (64) describe
the energy of indirect interaction of two half-spaces over the molecular structure between
them. It is also important to note that all derived interaction energy Expressions (61)–(64)
explicitly account for all paired interparticle interactions and correlations.

The collisions of droplets play an important role in the aerosol coagulation phenom-
ena. The interaction energy of two droplets contains the direct interaction component
Edrop−drop(a1, a2, d) and the component of indirect interaction Eind

drop−drop(a1, a2, d) with the
surroundings (atoms, molecules, molecular structures). For nanodroplet coagulation prob-
lems, one has to take into account both components. For the problems of cell and virus
adhesion calculations, the comparison of direct and indirect interactions is required.

6. Discussion

The widely used continuum model of condensed systems has a limited application in
the description of atoms’ interactions with condensed bodies [11,12]. The model neglects
the discrete atomic structure of condensed bodies, interatomic correlations, and the ability
of atoms to penetrate the condensed bodies. This is clearly visible with an example of
interaction of separate atoms with droplets of liquids (Figure 6). The neglect of interatomic
correlations leads to an unsatisfactory description of the physics of processes that are
responsible for the dynamic equilibrium of the liquid–gas system.

When calculating the surface properties of condensed systems that are different in
nature, the Fowler approximation is essential, because it correctly takes into account the
basic surface contributions to different thermodynamic quantities. Corrections to this
approximation, due to the difference between the real density profile in the near-surface
layer and the stepped layer, are of an additive nature when calculating thermodynamic
functions. Going beyond the Fowler model in our problem will not change the main results
and conclusions of the work. Slight changes in the energy dependence of the interaction
between the atom and the nanodroplet can be expected in the near-surface region.

For condensed systems, a characteristic property is the same order of magnitude of
the average kinetic and potential energies of atoms and molecules. For nano-objects, due to
the large proportion of particles present in the near-surface layer, interatomic correlations
can be of great importance for the formation of a self-consistent potential, which ensures
the stability of the object in relation to the decay of constituent atoms or molecules. The
processes of nucleation, and the mechanisms of growth and evolution of nanostructures
under conditions of microscopic instability, are an integral part of the physics of phase
transitions of the first kind. From the point of view of kinetics, the processes of nucleation
of nano-objects take place with the participation of each individual atom, which evolves in
the field of other atoms. The evolution of a single atom depends on the self-consistent field
formed by other atoms and correlations with neighboring atoms. Stability of processes and
their direction are also important for the growth or decay of nano-objects. The microscopic
nature of the mono-atomic mechanisms of growth or decay of nanostructures, when the
curvature of the surface of the new nanophase is significant, has been insufficiently studied.
The solution of kinetic problems of this type is possible by means of theoretical calculations
of the atom’s interaction energy with the inhomogeneous environment at a nanometer
scale. A proper description of the multiscale processes of nanostructure growth also
requires knowledge of the energy balance of the entire nanostructure, which requires
energy calculations of highly heterogeneous nanoscale systems.
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The distribution functions method of groups of atoms allows the equilibrium prop-
erties of the liquid–gas interface to be expressed in terms of potentials of interatomic
interactions and distribution functions of atoms. Among the most important thermody-
namic functions are the surface energy and surface tension of flat and curved surfaces.
When calculating the surface properties of the liquid–gas interface, the use of the Fowler
approximation [18,19] for unary and binary atom distribution functions allows us to make
estimates of surface contributions with considerable accuracy [10,16,19,22]. Corrections
to the Fowler approximation strongly depend on the approximation methods for the
non-central part of the pair distribution function and on the choice of the atomic density
profile [10,16,19,22]. The main efforts in modern statistical physics relating to two-phase
liquid–gas systems are aimed at calculating the atom’s density profile near the phase
interface and calculating its surface energy and surface tension.

In the current work, within the framework of the distribution function method of the
group of particles and Fowler’s approximation, we derive the expressions for the atom
interaction energy with a nanodroplet of simple liquid. The derived formulation is applied
for the calculations of the nanodroplets of liquid helium. The developed approach has
similarities with the functional density method (FDM) [32–36]; however, it additionally
takes into account the energies of the paired interparticle correlations, which are problem-
atic in FDM. The analysis of different approaches for the accounting of pair correlation
energies in the FDM in application to liquid helium is described in paper [36]. Assembling
the expression for the energy of pair correlations only by means of the atom’s paired
interaction energy and local densities of the number of atoms requires the introduction
of the non-physical “screening” concept of Lennard–Jones potential at small distances, to
avoid the divergence problem of the corresponding integrals [36]. In fact, it is necessary to
introduce additional parameters that cannot be determined within the density functional
method itself. As a result, extra designations for Lennard–Jones potential are introduced
in different versions of FDM at short distances in an attempt to converge the integrals
corresponding to the indirect accounting for the short-range paired interatomic correlations.
The distribution function method used above for groups of particles avoids the necessity
of expanding the studied quantities into gradient series.

The model calculations performed above for the size dependence of the atoms’ inter-
action with a nanodroplet of helium indicates a significant influence of the saturation effect
of the single atomic energy inside the droplet. The short range of interatomic interactions
results in the rapid achievement of the asymptotic value of the atoms’ energy at the center
of the droplet during the growth of the droplet size. The formation of the bulk properties
of helium nanodroplets occurs at radii in the order of 4σ and the number atoms of around
101. It should be noted that the pair distribution function of atoms in liquids at distances
4σ is almost equal to one, which corresponds to the absence of correlations in the spatial
positions of the pair of atoms. Therefore, it is possible to reach conclusions about the
relationship between the radii of liquid nanodroplets, at which the volumetric properties
of the liquid are formed, and the characteristic distances at which the paired interatomic
correlation in liquids is lost. This conclusion also easy to see in Figure 5, from which it
follows that most atoms in droplets of the specified size have the same one-atomic potential
as in a homogeneous liquid. The saturation effect is also observed for the thickness of the
near-surface region, in which the monoatomic potential changes its value from its “bulk”
value to zero outside the droplet. The depth of the potential well, in which the atom moves
inside the helium droplet, for the droplets with radii of the order a > 4σ, has a magnitude
5ε ≈ 50K, which significantly exceeds the thermal energy of the atoms (T = 2.2K).

The kinetic energy of helium atoms contains the classical thermal contribution and the
quantum contribution. Calculations of the kinetic energy of helium atoms in a wide range
of densities and temperatures using the Monte Carlo quantum method [35,36] indicate the
importance of accounting for the quantum contributions. At the selected temperature and
density of liquid helium, the kinetic energy, according to the results in [36], is of the order
15K, which means that the main contribution to the kinetic energy is made by quantum
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effects. A comparison of the kinetic energy with the depth of the potential well shows that
the atoms are localized in the droplet and that helium nanodroplets tend to be resistant to
spontaneous decay due to thermal fluctuations and the emission of individual atoms.

7. Conclusions

In this paper, in the framework of the correlation theory of inhomogeneous liquids,
general expressions are obtained for the volume and surface contributions to the energy
of a droplet as a function of its radius. In Fowler’s approximation, all contributions
are expressed in the form of one-time integrals, which significantly simplifies the model
calculations of the dimensional dependence. The dimensional dependence of the surface
energy of spherical droplets of simple dielectric liquids as a function of the radius in the
Fowler approximation is calculated. In the extreme case of large values of the radius of a
droplet, its surface energy approaches its value for a flat surface. The strong dimensional
dependence of the surface energy of the droplet is observed in the region of nanometer
droplet size. The developed approach is applied to the calculation of the surface energy of a
two-phase system of liquid nanodroplet–gas phase, taking into account paired interparticle
interactions and correlations. The dimensional dependence of the surface energy of a
nanodroplet in a gas is similar to the dimensional dependence of a nanodroplet in a vacuum.

This paper shows the possibility of taking into account paired interparticle interactions
and correlation effects when calculating the interaction energy of pairs of droplets of
arbitrary size. The energy of the interaction of two droplets in the Fowler approximation
is written as a double integral. An explicit expression for the interaction energy of two
droplets in the continuum approximation is obtained, which allows us to investigate
the importance of taking into account the effects of paired intermolecular correlations in
comparison with continuum models. As a boundary case, the expression for the energy
of interaction of a droplet and a semi-bounded liquid is obtained, taking into account the
effects of paired interparticle correlations.

On the basis of the constructed theory, the properties of nanometer air dispersal
systems with arbitrary droplet dispersion and for arbitrary multicomponent mixtures of
liquids can be calculated. By means of the effective Hamiltonian of the aerosol of liquid
droplets (61), it is possible to investigate in more detail the kinetic problems of evaporation
and condensation on the surfaces of droplets and the lifetime of nanodroplets during
their evaporation.

Within the framework of the developed approach, it is possible to study the interaction
of liquid nanodroplets with foreign molecular structures (e.g., virions), coagulation of
molecular structure and nanodroplets, and evaporation and condensation processes on
droplets, provided that the molecular structure is present inside the droplet. These issues
are all currently unresolved. The important theoretically unresolved issues are the evolution
processes of evaporation and condensation on a nanodroplet that is in contact with different
media (wood, plastic, metal), and the lifetime of the droplet with a molecular structure
inside different surfaces. The answers to these questions are important in the problems
related to the spread of viruses.
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