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Abstract: Speech watermarking has become a promising solution for protecting the security of
speech communication systems. We propose a speech watermarking method that uses the McAdams
coefficient, which is commonly used for frequency harmonics adjustment. The embedding process
was conducted, using bit-inverse shifting. We also developed a random forest classifier, using features
related to frequency harmonics for blind detection. An objective evaluation was conducted to analyze
the performance of our method in terms of the inaudibility and robustness requirements. The results
indicate that our method satisfies the speech watermarking requirements with a 16 bps payload
under normal conditions and numerous non-malicious signal processing operations, e.g., conversion
to Ogg or MP4 format.

Keywords: speech watermarking; McAdams coefficient; random forest classifier; machine learning
for watermarking

1. Introduction

Speech communication technology has greatly advanced, due to its application in
daily life. This technology is usually implemented via a communication channel, such as
the public switched telephone network (PSTN) and voice over internet protocol (VoIP).
The speech communication channel is considerably vulnerable to attacks; thus, protection
and prevention countermeasures are indispensable in speech research. For instance, the
recent technologies for voice conversion and text-to-speech systems are capable of using
speech tampering or spoofing [1,2].

Methods for promoting secure speech communication systems are classified into two
main categories, i.e., cryptography and information hiding. Cryptography-based methods
convert speech data to another form that can be accessed only by an authorized person
with a private key. These methods are useful for specific applications that can afford the
additional computational time and complexity of the cryptography process. However,
protection is limited only once the content is in an encrypted state [3]. Information-
hiding–based methods preserve the privacy and security of speech data by imperceptibly
embedding particular information that needs to be hid [4,5]. Two information-hiding
categories are steganography and watermarking, depending upon the purpose.

Information-hiding–based methods for speech signals were developed within the
past approximately 25 years [4]. Speech information hiding should satisfy at least three
requirements: inaudibility (manipulation does not cause distortion perceivable by the
human auditory system), blindness (accurate detection without the original signal), and
robustness against common signal processing operations. Well-known classical speech
information hiding methods are least significant bit (LSB), phase modulation, and direct
spread spectrum (DSS) [4]. Although each method has advantages, they have shortcomings
and need improvement, especially in balancing the trade-off between inaudibility and
robustness. To compensate for the shortcomings of these methods, psychoacoustics are
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often considered [4–6]. For instance, speech watermarking based on cochlear delay was
proposed to improve the phase modulation method [6].

Another approach to improve the trade-off between inaudibility and robustness is con-
sidering the features used in speech codecs [2,7,8]. Speech codecs are widely applied before
speech is transmitted through a communication channel. Thus, using features in speech
codecs for speech information hiding improves robustness. Line spectral frequencies (LSFs)
are used as features in speech codecs with several speech watermarking methods [8–10].
LSFs can be directly modified in accordance with a particular speech codec quantization
method [8] or manipulated accordingly to control speech formants for representing hidden
information [9,10].

We investigate a parameter that affects the formation of auditory images, namely, the
McAdams coefficient [11], for speech watermarking in this study. The modification of the
McAdams coefficient is useful for adjusting frequency harmonics in the audio signal [12,13].
It was also introduced for de-identifying or anonymizing speech signals [3,14,15]. Since
the McAdams coefficient is related to the adjustment of frequency harmonics (related to
LSFs), we hypothesize that this coefficient is suitable for speech watermarking.

Another novelty present in this study is that we propose a speech watermarking
method based on a machine learning model. Studies on digital image watermarking based
on machine learning models have shown impressive results [16,17]. However, due to the
higher complexity of speech compared to image data, machine learning models for speech
watermarking have not been widely explored [18]. We constructed a machine-learning–
based blind detection model by using a binary classification task based on a random forest
algorithm (hereafter, we refer to this model as random forest classifier). We hypothesize
that this classifier can automatically generate the rules for blind detection by using the
acoustic cues related to the McAdams coefficient.

The remainder of this paper is organized as follows. In Section 2, we review related
work on speech processing, using the McAdams coefficient. In Section 3, we present our
proposed speech watermarking method. In Section 4, we describe the settings for our
experiments on evaluating the proposed method; we present the results, application, and
remaining limitations in Section 5. Finally, we conclude our paper in Section 6.

2. Speech Processing Using McAdams Coefficient

In 1984, Stephen McAdams investigated the acoustic cues that affect the formation
of auditory images [11]. These acoustic cues are comprised of frequency harmonicity, co-
herence of low-frequency modulation, and stability of spectral form when combined with
frequency modulation. He carried out several listening evaluations and reported the char-
acteristics of these acoustic cues. His findings contributed significantly to the speech signal
processing field, e.g., music signal processing [12] and speaker de-identification [13,14].

One of the techniques of generating sounds is based on additive synthesis [12] and is
commonly used in music signal processing for timbre generation through the combination
of multiple consinusoidal oscillations by an inverse Fourier series with magnitude and
phase shift. Mathematically, the additive synthesis process is expressed as follows:

ysyn(t) =
H

∑
h=1

rh(t) cos(2π(h f0)
αt + Φh), (1)

where ysyn(t) is the synthesized signal, h is the harmonic index, rh(t) is the amplitude, Φh is the
phase, and α is the McAdams coefficient [11]. The McAdams coefficient is used for adjusting
frequency harmonics to non-harmonics components that affect the perception of timbre.

In a study on speaker de-identification or speaker anonymization, a similar technique
for frequency harmonics adjustment was considered for vocal-tract-length normaliza-
tion [13]. Subsequently, a study on speaker anonymization using the McAdams coefficient
was carried out [14]. The McAdams coefficient was manipulated to alter the formant
position of the original speech at the frame level on the basis of linear predictive coding
(LPC) analysis and a synthesis technique. Figure 1 shows the procedure of McAdams
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coefficient modification for speaker anonymization [14]. In speaker anonymization, the
McAdams coefficient is manipulated as far as possible from the original speech (α = 1) with
consideration of the sound distortion caused. For example, the anonymization introduced
as the secondary baseline in the Voice Privacy Challenge 2020 [19] used fixed α = 0.8 [3].
Those results indicate the degree of McAdams coefficient manipulation on our perception
of speaker individuality [14].

Figure 1. Block diagram of McAdams coefficient modification.

3. Proposed Method

We developed our speech watermarking method through McAdams coefficient manipu-
lation. In previous studies, the McAdams coefficient was modified to preserve speaker identity
(speaker anonymization) [3,14,15]. The further away the McAdams coefficient is from the
original speech (α = 1), the greater the level of anonymization (better performance in reducing
speaker verifiability metrics) [14]. However, this advantage results in more speech distortion
(degrades speech intelligibility and naturalness). Too much distortion is non-compensable for
speech watermarking since speech quality relates to one of the most important requirements
in speech watermarking, i.e., inaudibility. Therefore, careful consideration should be made for
speech watermarking based on McAdams coefficient modification.

We previously proposed a watermarking framework for improving the security of
McAdams-coefficient–based speaker anonymization [15]. Two fixed McAdams coefficients
were used to represent the binary bit information for speech watermarking. These values
were chosen on the basis of the second baseline speaker anonymization system in the
Voice Privacy Challenge 2020 [3] and the optimal gap for stochastic McAdams-coefficient–
based speaker watermarking [14]. The watermarking processes were conducted in a
manner similar to signal modulation. The watermark detection process was based on the
threshold of a certain parameter. The experimental results indicated that our watermarking
framework could be applied to improve the security of speaker anonymization with a
limitation of relatively low payload.

In contrast to the related studies on speaker anonymization [3,14,15], we considered
a McAdams coefficient closer to the original speech and a smaller shift to maintain the
inaudibility criteria on speech watermarking. A smaller shift means that the McAdams
coefficient for representing bit-0 (α0) is close to that representing bit-1 (α1). We developed
a random forest classifier to detect embedded watermarks. We then investigated the
optimal McAdams coefficient that can balance inaudibility with the blind-detectability
robustness. This section is comprised of three sub-sections, i.e., manipulation of the
McAdams coefficient, the data-embedding process, and data-detection process.

3.1. McAdams Coefficient Manipulation

The manipulation of the McAdams coefficient follows the block diagram shown
in Figure 1. The original signal in the time domain (x(n)) is first divided into several
overlap frames. Each speech frame is then passed through a linear prediction (LP) analysis
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filter, which is an all-pole filter that mimics the source-filter analysis model of a speech
production system. In this study, we used the LP order of 12 (M = 12). The LPC analysis is
characterized by the following differential equation:

s(n) =
M

∑
i=1

c(i)s(n− i) + e(n), (2)

where s(n) is the speech frame, c(i) is the i-th order LP coefficient, M is the order of LP,
and e(n) is the prediction error (residuals). The corresponding transfer function (H(z)) for
Equation (2) is represented using all-pole autoregressive filters as follows:

H(z) =
1

1−∑M
i=1 c(i)z−i

. (3)

The LP coefficients (c(i)) obtained from the LPC analysis are used to derive the poles
(φ). The derived poles can be categorized into complex and real poles. Complex poles have
non-zero imaginary values, whereas real poles have a zero-valued imaginary term. The
McAdams coefficient (α) corresponds to the power of complex poles. The manipulation of
alpha results in angle shifting of complex pole positions (φα) either clockwise or counter-
clockwise, depending on α and φ [14]. When α < 1, φα is in the counter-clockwise
direction when φ < 1 radian and in the clockwise direction when φ > 1 radian. The
opposite direction applies when α > 1. We investigate McAdams coefficient manipulation
when α < 1 in this study. Figure 2 shows the poles location and frequency-response
envelopes obtained from original signal and McAdams coefficient manipulation when
α = {0.85, 0.9, 0.95}.

Figure 2. Pole locations and frequency-response envelopes of original signal (ori) and modified
signals with McAdams coefficients (α = {0.85, 0.9, 0.95}).
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After shifting complex pole locations by manipulating the McAdams coefficient, both
complex and real poles are converted to new LP coefficients (c′(i)). These LP coefficients
and the original residuals (e(n)) are resynthesized as modified speech frames. Finally, the
modified speech frames are concatenated, using the overlap and add technique to generate
the modified speech signal (a(n)).

3.2. Data-Embedding Process

Figure 3 the block diagram of the data-embedding process. This embedding process
is based on signal modulation (similar to our previous study [15]). Generally, we use
two McAdams coefficients to represent binary information (bit “0” and bit “1”). The
watermarked bit-stream (w(k)), which is comprised of binary information, is embedded in
the following steps:

Step 1: The original signal (x(n)) is modified on the basis of the McAdams coefficient
manipulation process explained in Section 3.1. Two McAdams coefficients are used in
the embedding process to represent binary bit-“0” (α0) and bit-“1” (α1). The gap between
α0 and α1 can be regarded as the scaling factor of watermarking. A larger gap creates a
stronger watermark but increases distortion. Next, a normalization method is applied
based on the ratio of the power spectral density of both modified signals to compensate for
the gap in spectral shift at frame transition. The results of this step are two speech signals
with new McAdams coefficients, (a0(n) and a1(n)).

Step 2: The watermarked bit-stream (w(k)) is set in accordance with the hidden
information in a binary stream representation, e.g., w(k) = {1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1}.

Step 3: The watermarked signal (y(n)) is determined by bit-inverse switching between
the modified signals (a0 and a1) and the watermarked bit-stream (w(k)). For example, if
the current bit is “1”, the current speech frame is set to the speech frame derived using α1.
We concatenate all the speech frames obtained from this process to be y(n).

Figure 3. Block diagram of data-embedding process.

3.3. Data-Detection Process

As shown in Figure 2, McAdams coefficient manipulation causes the shifting in pole
locations and frequency-response envelopes. We thus investigated the statistical properties
of these cues for the data-detection process. In contrast to the common watermark detection
methods that are based on a threshold or a fixed set of rules, a machine learning model is
constructed to blindly detect watermarks on the basis of those cues as features and is based
on a random forest algorithm [20] (as shown in Figure 4). The random forest classifier
generates a number of decision tree classifiers on random sub-samples of the training
dataset to control overfitting and improve the prediction accuracy.
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Figure 4. Random forest classifier for data detection. X is the set of features, y is the classification
label (“0” or “1”), and n is the number of trees.

Before deciding on a random forest algorithm for generating our data-detection
model, we carried out a preliminary experiment. We compared three watermark detection
methods: (1) using a rule-based model with thresholds on power spectral density and pole
location; (2) using a decision tree model; and (3) using a random forest model. The features
for constructing the decision tree and random forest models are power spectral density,
pole locations, and statistical features (minimum, maximum, mean, standard deviation,
skewness, and kurtosis) of the frequency-response envelope of the watermarked speech
frames (without any pre-processing). We evaluated these three methods, using a dataset
consisting of 100 utterances randomly selected from the LibriSpeech [21] and VCTK [22]
corpora. These 100 utterances were selected from one female speaker (LibriSpeech) and one
male speaker (VCTK). We set the watermarking payload to 4 bps, a fixed set of McAdams
coefficients for watermarking ({α0, α1} = {0.9, 1}), and a fixed frame size (20 ms) without
a sliding window. The average classification errors of methods, using rule-based, decision
tree model, and random forest models in a 10-fold cross-validation evaluation were 32.12%,
26.25%, and 16.42%, respectively. On the basis of these results, we chose the random forest
algorithm because it is the most stable and robust against outliers, compared to the others
used in our preliminary experiment.

To improve our random forest classifier model for the blind-detection process, we
use a short-term analysis frame with a fixed length (default frame size = 20 ms) with a
sliding window. The features for constructing this data-detection model are power spectral
density, complex pole locations, and statistical features of line spectral frequencies (LSFs)
pairs on the frequency-response envelope. The statistical features consist of mean, standard
deviation, skewness, and kurtosis. The statistical features of LSFs are used because they
are more relevant than the global statistical features of the frequency-response envelope to
represent the McAdams coefficient manipulation. Figure 5 shows the LSF positions on the
frequency-response envelope of modified speech signals when α = {1, 0.95, 0.9, 0.85}. We
generate two modified speech signals through McAdams coefficient modification (a0(n)
and a1(n)), following the process explained in Section 3.1 for the training process. The label
corresponds to the binary bit represented by the McAdams coefficient (“0” or “1”).
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Figure 5. LSF positions on frequency-response envelopes obtained from various McAdams coeffi-
cients (α = {1, 0.95, 0.9, 0.85}).

Figure 6 shows the block diagram of the data-detection process. The details of this
process are as follows:

Step 1: The watermarked signal (y(n)) is passed through a pre-emphasis filter. This
filter is used to compensate for the average spectral shape that emphasizes the higher
frequency components. A finite impulse response (FIR) filter is used as the pre-emphasis
filter (P(z)), which is expressed as follows:
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P(z) = 1− 0.95z−1. (4)

Step 2: Since the constructed random forest classifier works on a short-time frame
basis, we use the sliding window technique to obtain more analysis speech frames for
optimizing the data-detection process. For example, if the sampling frequency (Fs) is
16 kHz and default frame size is set to 20 ms, we have almost double the number of
speech frames when the shift length is set to half the frame size. Figure 7 illustrates the
data-detection process using a sliding window.

Step 3: From each watermarked speech frame obtained from the sliding window, we
conduct feature extraction, i.e., complex pole positions, statistical features of LSF pairs from
the frequency-response envelope, and power spectral density. The complex pole positions
and statistical features of LSF pairs from the frequency-response envelope are derived from
LP analysis. The power spectral density is obtained, using the Fourier transform.

Step 4: Finally, our random forest classifier is used to generate the detected water-
marked bit-stream (w′(k)) on the basis of the majority voting of the detected bit in all
sliding window sub-frames in the corresponding watermarked frame. The most common
bit information shown in Figure 7 in five detected bits from the classification task of five
sub-frames determine the detected watermark bit of the first frame.

Figure 6. Block diagram of blind-detection process. w′(k) is the detected watermark bit-stream of
k-th frame.

Figure 7. Illustration of watermark detection using sliding window. Sampling frequency (Fs) is
16 kHz, payload is 16 bps, and shift length is set to half the default short-time frame size (10 ms).

4. Experimental Setup

This section describes the dataset, random forest classifier for the data-detection
process and evaluation setting to analyze the performance of our proposed method.
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4.1. Dataset

We semi-randomly selected 250 utterances from LibriSpeech [21], and 250 utterances
from VCTK [22]. Semi-randomly means that we selected utterances from a particular
number of speakers (with balance gender distribution). LibriSpeech is sampled at 16 kHz
and designed for automatic speech recognition research, and VCTK is sampled at 48 kHz
and designed for text-to-speech research. We unified the sampling rate of both corpora to
16 kHz. The selected utterances varied depending on the speaker and speech content.

Table 1 shows the distribution of the dataset. LibriSpeech has fewer utterances but
a relatively long duration, while VCTK has more utterances (almost 10 times that of
LibriSpeech) but is relatively shorter in duration. Due to these differences, we used a
different number of speakers from each corpus. A total of 500 utterances were then split
into 90% for the training set and 10% for the testing set. The training set was used for
constructing the random forest classifier for blind detection. The testing set was then used
for evaluating speech watermarking performance.

Table 1. Statistics of dataset.

Subset
Number of Speakers

Number of Utterances
Male Female Total

LibriSpeech (train) 4 4 8 225
LibriSpeech (test) 2 2 4 25

VCTK (train) 1 1 2 225
VCTK (test) 1 1 2 25

Total 8 8 8 500

4.2. Evaluation Setting

The testing set consisted of 50 utterances. The objective evaluation of our proposed
speech watermarking method was based on the information-hiding criteria suggested
in [23]. There were two main goals for this evaluation, i.e., (1) to investigate the trade-
off between inaudibility and detection rate of our method using various gaps between
McAdams coefficients; and (2) investigate the robustness of our method against various
speech processing operations.

To reach the first goal, we considered five different McAdams coefficients (α0 =
{0.95,0.925,0.9,0.875,0.85}) as representations of bit “0”, where we kept α1 = 1 as a repre-
sentation of bit “1”. These values were chosen to analyze the optimal gap to balance the
inaudibility and robustness requirements. We thus constructed five random forest classi-
fiers for blindly detecting the watermarks with regard to the McAdams coefficient. The
classification errors of all random forest classifiers are shown in Figure 8. The metrics for
evaluating the inaudibility requirement are log spectral distance (LSD) [24] and perceptual
evaluation of speech quality (PESQ) [25] ITU-T P.862. LSD is used to measure the spectral
distortion of the watermarked signal (y(n)) in comparison with the original signal (x(n))
in decibels (dB), as follows:

LSD(X,Y) =

√√√√ 1
K

K

∑
k=1

(
10log

10

|X(ω, k)|2
|Y(ω, k)|2

)2

, (5)

where X(ω, k) and Y(ω, k) are the short-time Fourier transform of the original (x(n))
and modified signal (y(n)) of the k-th frame, respectively. The inaudibility threshold
for LSD is typically 1 dB. PESQ represents the perceptual speech quality of y(n) with
x(n) as the reference in mean opinion scores (MOS). The MOS varies from a scale of 1
(bad) to 5 (excellent). Typically, the PESQ threshold for speech watermarking is 3 (fair or
slightly annoying).
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Figure 8. Classification errors of constructed random forest classifiers using several McAdams
coefficients for representing bit-“0” (α0 = {0.95, 0.925, 0.9, 0.875, 0.85}). Maximum number of trees
was set to 100.

For evaluating watermark detection accuracy and security level, we used the bit
error rate (BER), false acceptance rate (FAR), false rejection rate (FRR), and F1-score. The
threshold set for an acceptable BER is 10% [23]. In the evaluation, we defined the water-
marked bit-stream (w(k)) as a random binary stream with the length depending on the
payload. We investigated the payloads of 2, 4, 8, 16, and 32 bps. For robustness evaluation,
we considered eight cases of non-malicious signal processing operations, i.e., normal (no
attack), down-sampling to 12 kHz (resample-12), up-sampling to 24 kHz (resample-24),
bit compression to 8 bits (requant-8), bit extension to 24 bits (requant-24), conversion to
Ogg format (Ogg), conversion to MPEG-4 Part 14 or MP4 format (MP4), and conversion
to G723.1 codec (G723). The bitrate of the G723.1 codec is 5.3 kbps with the algebraic
code-excited linear prediction (ACELP) algorithm.

We also carried out a comparison analysis among our proposed method, using the
McAdams coefficients (α0, α1) = (0.9, 1.0) (Proposed) and two other well-known speech
watermarking methods, i.e., LSB and DSS. These two methods were chosen because they
can clearly represent the inaudibility and robustness trade-off. LSB works by modifying
the most insignificant bits of the speech signal with watermarks, thus achieving high
performance in inaudibility requirements, but it is very fragile against any signal processing
operation. In contrast, DSS works by spreading the watermarks over the whole frequency
band. Therefore, it is preferred due to its robustness, but it causes significant distortion
throughout the speech (lack of inaudibility). We conducted the comparative analysis using
payloads of 4, 8, 16, and 32 bps.

5. Results

Figure 9 shows the watermark detection accuracy and security level results in terms of
BER, FAR, FRR, and F1-score. Five McAdams coefficients were used to represent bit “0” (α0
= {0.95,0.925,0.9,0.875,0.85}), whereas the McAdams coefficient for representing bit “1” was
set to 1 (α1 = 1). The results indicate a similar tendency for all these metrics when using a
larger gap between α0 and α1, i.e., better detectability, except a slight anomaly in FAR for
payloads of 16 and 32 bps. Considering the detectability threshold (BER = 10%), only when
α0 = 0.85, the embedding payload was up to 32 bps. With α0 = {0.875, 0.9}, the payload
was 16 bps. For other observed α0, the payload was less than 16 bps. A similar error
rate for FAR and FRR was also found when we considered the observed payloads. When
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considering the overall security level in F1-score with a threshold of 90%, the proposed
methods with α0 ≤ 0.9 reached a payload of 16 bps.
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Figure 9. Watermark detection accuracy results using several McAdams coefficients for representing
bit “0” (α0 = {0.95, 0.925, 0.9, 0.875, 0.85}) in terms of (a) BER, (b) FAR, (c) FRR, and (d) F1-score.

The results of the inaudibility test are shown in Figure 10. On the basis of the inaudi-
bility threshold, the evaluation results indicate that with α0 ≤ 0.9, both PESQ and LSD
scores satisfied the requirement of up to 32 bps. The inaudibility requirement could be
satisfied by watermarked signals with α0 = 0.875 up to 16 bps and α0 = 0.85 up to 8 bps.
We will thus consider using α0 = 0.9 for further analysis of robustness. As a reference, we
provide demo speech outputs from our proposed method that can be accessed publicly
at [26].
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Figure 10. Sound-quality results using several McAdams coefficients for representing bit-“0” (α0 =

{0.95, 0.925, 0.9, 0.875, 0.85}) in terms of PESQ (top) and LSD (bottom).

The robustness results in eight cases are shown in Figure 11. The watermarked signal
was generated with α0 = 0.9 and α1 = 1. By only considering the detectability and security
level threshold, the results indicate that our proposed method had similar robustness with
the normal case when dealing with up-sampling (resample-24), bit extension (requant-
24), Ogg, and MP4 processing operations. Robustness degraded when down-sampling
(resample-12), bit compression (requant-8), and G723.1 codec (G723) were applied. For
resample-12 and requant-8, we can say that our proposed method is robust when the
payload is 4 bps (BER < 10%). Unfortunately, our proposed method is not robust when the
G723.1 codec is applied (BER > 10%).

The results on the comparative analysis among our proposed method with (α0, α1) =
(0.9, 1.0) (proposed), LSB, and DSS are shown in Figures 12 and 13. Figure 12 shows the
inaudibility comparison results in terms of PESQ and LSD. These results indicate that LSB
and our proposed method could pass the threshold of inaudibility but not DSS.

Figure 13 shows the robustness comparison results in terms of BER. In contrast to the
inaudibility results, the robustness results indicate that LSB was fragile in dealing with
almost all observed signal processing operations, except with the up-sampling to 24 kHz.
However, DSS was very robust even in a higher payload, except with the G723.1 speech
codec. Although not as robust as DSS, our proposed method had better robustness against
most of the observed signal processing operations (down-sampling, re-quantization, Ogg
format, and MP4 format) than LSB.
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Figure 11. Robustness results in terms of BER, FAR, FRR, and F1-score in eight cases: normal,
resample-12, resample-24, requant-8, requant-24, Ogg, G723, and MP4. The McAdams coefficient for
representing bit “0” was 0.9 (α0 = 0.9).
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Figure 12. Evaluation of inaudibility results of three compared methods (proposed, LSB, and DSS).
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Figure 13. Robustness results of three compared methods (proposed, LSB, and DSS) in terms of BER
in eight cases: (a) normal, (b) resample-12, (c) resample-24, (d) requant-8, (e) requant-24, (f) Ogg, (g)
G723, and (h) MP4.
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To better represent the application of speech watermarking, we embedded an image
as a watermark to a speech signal. The watermark detection results are shown in Figure 14.
The size of the image in the binary bit-stream was 80× 192. The watermarked signal
was generated using α0 = 0.9 and α1 = 1 with 4-bps payload. Although not perfectly
accurate, we could observe the reflection of embedded image information, even after
certain operations, including re-sampling, re-quantization, and conversion to Ogg and
MP4 formats.

(a) Original (b) Normal (c) Resample-12

(d) Resample-24 (e) G723 (f) Requant-8

(g) Requant-24 (h) Ogg (i) MP4

Figure 14. Application of embedding image information using proposed method with 4-bps
payload after several non-malicious signal processing operations, i.e., (a) original watermark,
(b) normal, (c) resample-12, (d) resample-24, (e) G723, (f) requant-8, (g) requant-24, (h) Ogg, and
(i) MP4. McAdams coefficients for representing bit “0” and bit “1” were 0.9 and 1, respectively
((α0, α1) = (0.9, 1.0)).

6. Conclusions

We proposed a speech watermarking method that is based on the McAdams coefficient,
using bit-inverse embedding and blind detection by using a random forest classifier. We
conducted an evaluation to investigate the trade-off between inaudibility and watermark-
detection rate using various gaps in the McAdams coefficients for representing the water-
mark bit-stream. We also conducted a robustness evaluation by considering several signal
processing operations. The results indicate that our method with a McAdams coefficient
gap of 0.1 satisfied the detectability and inaudibility requirements up to 16 bps. Our
method was also robust against most observed signal processing operations, except for the
G723.1 codec. For future work, we will improve the speaker anonymization of our method,
which has a limitation of relatively low payload, as determined in our previous study [15].
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