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Abstract: Motivated by the sidewise motions of dynein motors shown in experiments, we use a
variant of the exclusion process to model the multistep dynamics of dyneins on a cylinder with open
ends. Due to the varied step sizes of the particles in a quasi-two-dimensional topology, we observe
the emergence of a novel phase diagram depending on the various load conditions. Under high-load
conditions, our numerical findings yield results similar to the TASEP model with the presence of all
three standard TASEP phases, namely the low-density (LD), high-density (HD), and maximal-current
(MC) phases. However, for medium- to low-load conditions, for all chosen influx and outflux rates,
we only observe the LD and HD phases, and the maximal-current phase disappears. Further, we
also measure the dynamics for a single dynein particle which is logarithmically slower than a TASEP
particle with a shorter waiting time. Our results also confirm experimental observations of the dwell
time distribution: The dwell time distribution for dyneins is exponential in less crowded conditions,
whereas a double exponential emerges under overcrowded conditions.

Keywords: dynein motors; exclusion process; phase diagram; dwell time distribution

1. Introduction

Molecular motors are enzymatic protein molecules that use chemical energy released
from the hydrolysis of an adenosine triphosphate (ATP) molecule to drive cellular trans-
port along cytoskeletal filaments [1]. Among the wide variety of molecular motors, linear
ATP-driven motors include myosins, kinesins, and dyneins that are responsible for various
cellular functions, including intracellular vesicle transport [1,2]. kinesins and dyneins
move along a microtubule, whereas myosins move on an actin filament. The kinetic and
mechanistic processes involved in the movement of the motors are inherently stochastic,
which arises due to various interactions among the motors themselves as well as envi-
ronmental factors such as track length, amount of cellular cargo acting as load, available
ATP concentrations, etc. [3]. The stochasticity present at the cellular level gives rise to
experimental complexity at various levels. Consequently, incorporating stochastic features
into theoretical modeling of molecular motor transport becomes essential to gain adequate
statistical understanding of the ensuing fluctuations and their effects. Specifically, modeling
such biological transport phenomena with the help of driven diffusive systems has been
fruitful in capturing many essential properties of real systems [4–7]. Various versions of the
(totally) asymmetric exclusion process or (T)ASEP have been developed involving random
walkers with hard-core interactions to mimic the driven non-equilibrium dynamics of
kinesin and myosin [4]. In contrast, theoretical studies of dynein motors remain mostly
unexplored to date, whence this constitutes the present work’s central theme.

The most exciting feature that differentiates dynein motors from kinesin or myosin is
their ability to vary their step size from 8 nm to 32 nm [8,9]. In contrast with the kinesin
and myosin families of motor proteins, dyneins are structurally much more complicated.
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Detailed experimental studies providing a dynamical understanding of dynein motion are
still lacking. However, some recent experiments have been able to capture the dynamics
of dynein motors over a microtubule. Interestingly, kinesins and dyneins show small
but discernible sidewise fluctuations on the microtubule tracks consisting of multiple
protofilaments [10–14]. Thus, modeling of kinesin dynamics with the ability to switch lanes
has been considered [15], whereas the emergent behavior due to incorporating multi-lane
dynamics of dynein motors along with variable steps sizes is as yet unknown. Most of the
theoretical modeling of dynein motors has been restricted to the analysis of single-molecule
dynamics [16,17], or of multi-particle dynamics on a single protofilament track [18,19].

In the present work, we investigate the combined effects of a dynein’s internal state-
dependent hopping as well as hindrance caused by the presence of other motors in its
path, accounting for the possibility of bypassing traffic via separate lanes. We explore
the emergent features of the collective dynein dynamics by modeling the motor proteins
as hard-core particles in a quasi-two-dimensional topology. This work thus considerably
expands on our earlier studied model [19] of dynein motors on a one-dimensional lattice
endowed with varied stepping behavior, to now explicitly include off-axis hops. We quan-
tify the effects of the off-axis movement by exploring the phase diagram as function of the
influx (α) and outflux (β) rates of the molecular motors into and out of the lattice that de-
scribes the microtubule lanes. In the presence of low- and intermediate-load environments
where a motor is more likely to take longer jumps (in experiment corresponding to steps
of 32 nm), we observe a first-order transition separating the high- and low-density phases
for all values of the flux imbalance parameter α− β. This discontinuous phase transition
can be readily attributed to the two-dimensional geometry. Environmental factors such as
ATP availability and the crowding environment add stochasticity to the dynein stepping
behavior, and its effect on dynein dynamics has been characterized through dwell-time
distributions in recent experiments [10–12]. Our simulation results further confirm these
experimental observations for the dynein motor dwell-time distribution, which takes an
exponential functional form in less-crowded situations, whereas it turns into a double
exponential under overcrowded conditions.

2. Model Description and Dynamics

Our model is defined on a cylindrical lattice with open boundaries at the longitudinal
ends. We refer to the cylinder is quasi-two-dimensional, as we keep the longitudinal
length Lx of the lattice much larger than its transverse length Ly, Ly/Lx � 1. The quasi-
two-dimensional cylinder is structurally similar to the open tube-like configuration of a
microtubule, where each row or lane mimics a protofilament of the microtubule. Each
lattice site on the cylinder can be occupied by at most one indistinguishable hardcore
particle. A motor particle can only enter from the first lattice site of any lane with a
constant rate α, and exit from the last longitudinal site of any lane with the rate β. In
the bulk, a particle may move in one of the three following directions: forward along the
length of the lattice, upward or downward in the transverse directions. Guided by recent
experimental results that demonstrate the transverse off-axis motion of the dynein motors
to be significantly slower than their forward movement [10–12], we choose the probability
of moving in the transverse direction Py to be significantly smaller than the chance of
forward movement Px: Px = 1− 2Py = 0.95, Py = 0.025. Further, depending on the load
(vacuoles or ATPs) attached to the motor particles, they can advance between one and up
to four lattice sites along any of the three directions, provided that the destination sites are
empty. If during its hop attempt, a motor happens to reach the last longitudinal site (at Lx)
prior to completing its assigned jump, it will directly exit from the lattice with a rate β.

We are interested in studying the collective kinetics of dynein motors, well-known
for their dynamical jump length, which ranges from 8 to 32 nm depending on various
factors such as the available ATP concentration, amount of load, etc. [8,9]. We ignore
the structural complexity of the dynein molecule and consider the dimeric dynein motor
as a hardcore particle with four ATP binding sites. One primary ATP binding subsite is
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responsible for hydrolysis, while the remaining three secondary binding subsites carry
the load. The following three distinct internal processes determine the probability of
performing a number ns of steps:

(i) Attachment: One unit of ATP attaches to the empty primary binding site with a
fixed probability Patt or to any of the available secondary sites with an also constant
probability, Satt.

(ii) Detachment: One unit of ATP detaches either from the primary site with the fixed
rate Pdet or from one of the three secondary sites with the constant probability Sdet.

(iii) ATP hydrolysis: An occupied primary site hydrolyses ATP to ADP to generate me-
chanical energy that enables it to perform movement. This ATP binding induces
dissociation of the motor from the microtubule. After detaching from the microtubule,
the motor rearranges its structure and becomes poised for the powerstroke movement,
triggered by the ATP hydrolysis. This structural change is followed by a diffusional
search for the target binding site over the microtubule [20,21]. Thus, if the primary
binding site is occupied, the motor attempts to hop (4− s) steps, where s is the number
of secondary sites holding ATP (thus, s can be either 1, 2, or 3).

To incorporate excluded-volume interactions, we consider the sliding behavior of a
motor particle to an empty site which prohibits the particles from overtaking in the same
lane. However, they can bypass other particles present in different lanes. A schematic of
the model is illustrated in Figure 1. The rate of hopping different step sizes depends on the
attachment and detachment probabilities. Specifically, the rate Ri to jump i steps (given
there are no obstructions due to the presence of other particles) is given by

R4 = Patt(1− Pdet)∑
i
(SattSdet)

i(1− Satt)
3−i, (1)

R3 = Pat(1− Pdet)Satt(1− Sdet)[(SattSdet)
2 + (1− Satt)

2 + (1− Satt)SattSdet], (2)

R2 = Patt(1− Pdet/4)S2
att(1− Sdet)

2[(SattSdet) + (1− Satt)], (3)

R1 = Patt(1− Pdet)S3
att(1− Sdet)

3. (4)

Further, due to excluded-volume constraints, the rates get modified by the presence of
other particles on the path. The stationary state current across the bonds i− 1 and i is a
sum of all possible jumps, given by

j(ρ) =
〈
(R1 + R2 + R3 + R4)ηi−1(1− ηi)ηi+1 + (R2 + R3 + R4)ηi−1(1− ηi)(1− ηi+1)ηi+2

+ ... + R2ηi−1(1− ηi)(1− ηi+1)
∞

∑
l=0

ηi+l+2

l

∏
k=1

(1− ηi+1+k) + ...
〉

, (5)

where ηj denotes the occupancy of site j. Within a standard mean-field approximation,
one obtains the probabilities to move provided the empty space in front of the particle is
greater than (i− 1) as

v4 = R4, v3 = R4ρ + R3, v2 = (R4 + R3)ρ + R2, v1 = (R4 + R3 + R2)ρ + R1. (6)

Here, ρ denotes the mean particle density in the bulk and the mean-field bulk current is
approximated as

J ≈
4

∑
i=1

i vi ρ(1− ρ)i. (7)

Before starting the discussion of the results for the dynamics of this dynein transport model,
we provide a brief review of the well-known stationary-state results of the one-dimensional
TASEP model with open boundaries [22] in the following subsection.
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Figure 1. A schematic representation of the dynamics of dynein motors over a tube. We have an
open longitudinal boundary through which a motor particle enters from the left edge with the rate
α, and exits on the right with the rate β. Periodic boundary conditions are employed along the
transverse direction. Each particle comprises four internal sections representing the primary (red
circle) and secondary (green circle) ATP binding sites. A motor particle may move in any of the three
forward and transverse directions, provided the primary ATP binding site is filled. The probability
of hopping in the up or down direction is the same, Py, whereas the likelihood of forward motion is
set to (1− 2Py).

Phase Diagram of the One-Dimensional TASEP with Hop Rate r

In the case of a one-dimensional TASEP, where a hardcore particle can move to its
nearest neighboring site with a constant hop rate r, the steady-state particle current for
periodic boundary conditions is given as J = rρ(1− ρ) at all lattice sites. However, for
open boundary conditions, depending on the influx (α) and outflux (β) rates from the
first and last sites of the lattice, the TASEP stationary states can be classified into three
different phases: low-density (LD), high-density (HD), and maximal-current (MC). From
the asymptotic analysis performed in earlier studies (please see, e.g., Ref. [22] for details),
the characteristic features of the three phases are as follows [22,23]:

(a) Low-density phase (LD): In this phase, the bulk stationary density saturates to a
constant value ρLD = α/r, which yields the stationary current JLD = α(1− ρLD) =
α(1− α/r). Near the exit boundary, the density corresponds to ρLx = JLD/β.

(b) High-density phase (HD): Here, the bulk stationary density is ρHD = 1− β, thus the
steady-state particle current is given by JHD = rβ(1− β).

(c) Maximal-current phase (MC): The maximal particle current is obtained when the
density in the bulk is 1/2 and hence J = Jmax = r/4 for α > r/2 and β > 1/2. Near
the boundaries, the density deviation from its bulk value shows power law decay,
which indicates the presence of long-range correlations in the system.

The transition across the LD and HD phases is first-order (discontinuous); hence,
a coexistence phase is observed along the phase transition line. Equating the LD and
HD particle fluxes, one finds the coexistence line located at β = α/r, as is confirmed by
numerical simulations. Furthermore, these results hold even for the two-dimensional
TASEP with periodic boundary conditions in the transverse direction.

3. Results

Compared to the one-dimensional TASEP, the dynamics of the dynein particles in both
the one-dimensional and quasi-two-dimensional settings are considerably more compli-
cated, hence it is non-trivial to extract any precise analytical understanding. Consequently,
we employ extensive numerical simulations to explore the dynamics under various con-
trived environmental conditions. The results shown in the following sections pertain to
lattices with dimensions Lx = 1000 in the one-dimensional case, and Lx = 1000, Ly = 4
(i.e., four adjacent microtubule lanes) for the quasi-two-dimensional topology. The ATP at-
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tachment and detachment rates for the primary site are chosen as Patt = 0.8 and Pdet = 0.2,
respectively. We worked with three different load conditions for each motor as determined
by the load attachment rate Satt and detachment rate Sdet = 1− Satt at the secondary sites.
We selected the following set of binding rates for each secondary site:

Satt =


0.8, high-load conditions,
0.5, intermediate-load conditions,
0.2, low-load conditions.

3.1. Phase Diagram for Dynein Particles in One Dimension

We aim to evaluate the stationary state phase diagram for the dynein particle exclusion
process in one dimension. To that end, we first write down the mean-field bulk current
that has been formulated in our previous work, with periodic boundary conditions [19]:

J = ρ
4

∑
i=1

i vi (1− ρ)i, (8)

where vi denotes the probability of taking i steps, and explicitly depends on the attach-
ment and detachment of ATPs to their primary and secondary binding sites, as shown in
Equation (6). Then the bulk density ρmax in the MC phase is obtained from the maximum of
the mean-field current, ∂J

∂ρ |ρmax= 0, where J is given by Equation (8), for different load con-
ditions. Straightforward algebraic calculations further determine the exact values (within
this mean-field approximation) for the rates α and β beyond which the stationary-state
dynamics resides in the maximal-current (MC) phase. The resulting transition point for the
MC phase is

α > 2ρmax

4

∑
i=1

i vi (1− ρmax)
i−1, β > 1− ρmax. (9)

This analysis of the MC transition point is in excellent agreement with our simulation
results, as marked by the dashed line in Figure 2, both for high- and low-load conditions.
Our findings from the Monte Carlo simulations and data analysis demonstrate that for the
one-dimensional dynein particle dynamics, one observes a nonlinear first-order transition
line (coexistence line) between the LD and HD phases, in contrast with the linear coexistence
line for the one-dimensional simple TASEP, which is plotted as the (red) dotted line in
Figure 2 for comparison. The bulk density in the LD phase is proportional to the injection
rate α, and shows intriguing periodic oscillations at the boundaries [19], which however
emerge as artifacts of the long jumps. In much larger systems, we do not observe the
propagation of these oscillations from the exit boundary. In the HD phase, the bulk density
is precisely 1− β, as in the one-dimensional TASEP. The density profiles in all three distinct
nonequilibrium phases are shown in the insets of Figure 2. These insets also display
the jump length statistics in the different phases for high- and low-load conditions. It is
apparent in Figure 2a that the statistics of taking single steps under high-load conditions
is significantly high, so that the results for the stationary-state bulk density and current
become similar to the TASEP. It is important to note that the increased probability for long
jumps reduces the phase space area of the maximal-current phase. Long jumps break
particle-hole symmetry and promote the motor particles’ nonuniform distribution over
the lattice.
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(a) High-load condition (Patt = 0.8, Satt = 0.8).
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(b) Low-load condition (Patt = 0.8, Satt = 0.2).

Figure 2. Phase diagram in the influx–outflux rate space for the dynamics of dynein particles in
one dimension. The phase diagram under high-load conditions closely approximates the standard
TASEP phase diagram as indicated by the red dotted line. However, the maximal current region
is reduced to a small portion of the phase space under the low-load condition. The insets display
the approximately TASEP-like density profile. The jump length statistics in the respective phases
are also shown in the insets. In the MC phase, a reduction in the stationary density is observed
upon increasing the probability of long jumps; thus, ρMC ≈ 0.45 for high-load and ρMC ≈ 0.34 for
low-load conditions as indicated by the solid green lines in the insets of Figure 2a,b, respectively. The
(magenta) broken line indicates the calculated HD/MC and LD/MC transition boundaries obtained
from Equation (9) in the maximal-current phase.

3.2. Phase Diagram for Dynein Particles in Two Dimensions

This section discusses our simulation results for the quasi-two-dimensional setting
on a rectangular lattice of size 103 × 4 and compares them with the one-dimensional case
(where also Lx = 103). We start with analyzing the jump statistics and the dynein particle
current along the longitudinal direction. The stationary-state current in the transverse
direction always vanishes for an infinitely large system owing to the periodic boundary
conditions and our choice of equal hopping probabilities for up- and down-moves.

Under high-load conditions, the jump size statistics show that the number of nearest-
neighbor hops is more significant than the number of longer-distance jumps, as seen in
Figure 3d. One would thus expect the ensuing dynamical steady-state phase diagram to
resemble that of the one-dimensional TASEP. Indeed, akin to the TASEP, we observe the
presence of all three phases LD, HD, and MC in the α− β parameter space as shown in the
inset of Figure 4a, but with a shift in the transition line. Owing to the small but nonzero
number of long jumps performed by the dynein particles, the MC critical point becomes
shifted toward a higher value of the influx rate α. In the inset of Figure 4a, the solid gray
line represents the TASEP transition lines, while the broken black lines indicate the phase
boundaries obtained for our quasi-two-dimensional dynein model under high loads. In
addition, we recall that the MC phase features long-range correlations. Hence, the density
profile in the MC phase is in fact independent of the rates α, β and displays a tangent profile
ρ(x) ≈ ρmax(1− qtan[q(x− x0)]), where q =

√
J(L)/J − 1, with power law behavior near

both boundaries, yet with a decay exponent 1/2 unlike the linear decay familiar from the
standard TASEP. In the coexistence phase, where the particle density is in the mixed state,
we observe a hyperbolic tangent density profile. Moreover, the density profile amplitude
in the LD phase is proportional to the rate α and shows damped oscillatory behavior
close to the entrance boundary. These spatial oscillations have a periodicity of four sites,
a qualitatively quite similar feature as for the one-dimensional dynein particle model
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discussed in our previous work [19]. Further, the bulk density in the HD phase is always
approximately near (1− β) as demonstrated in Figure 3a. Interestingly, under both low-
and intermediate-load conditions, we only observe two stationary-state phases with a first-
order transition line separating them. The maximal-current phase is absent, as shown in the
main Figure 4a. Here, it is worth mentioning that our numerical data suggest the recovery
of the MC phase, once the chosen probability to move in the transverse direction Py is set
to be of the same order as for longitudinal jumps Px = (1− 2Py), as depicted in Figure 4b
for low-load conditions. Under these conditions, the jump length histogram implies that
the probability of taking longer jumps is more significant in the LD phase, whereas shorter
jumps dominate in the HD phase. However, the magnitude of this difference is not as
substantial as for high loads, as can be seen in Figure 3e,f. The farther jumps and the small
side-wise fluctuations in the transverse direction in this two-dimensional setting allow a
dynein motor to bypass other particles via different lanes. Hence the exclusion interactions
do not facilitate the system to build long-range particle correlations. A similar absence of
the maximal-current phase has also been observed in a TASEP model with hierarchical
long-range connections defined on a network [24].
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Figure 3. Two-dimensional lattice: The upper panels display the density profile in different phases
for the three distinct load conditions. The lower panels provide the statistics of the number of steps
taken by the dynein particles. Under high-load conditions, the count of smaller steps is signifi-
cantly larger (Figure 3d), and the solid black line represents the best fit to a tangent density profile,
ρmax(1− a qtan[a(x− 0.5)], for the MC phase, similar to the TASEP, as shown in Figure 3a. For both
medium- and low-load conditions, the bulk density in the high-density phase is (1− β), whereas
it is proportional to the injection rate α in the low-density phase. The number of lanes set for these
graphs is four.

The density in the LD phase is again proportional to the influx rate α, and the bulk
density in the HD phase is approximately close to (1− β), as demonstrated in Figure 3b,c.
The results depicted in Figure 5 support the discontinuous (first-order) character of the
transition between the LD and HD phases for the entire parameter space. We observe a
continuous change in the stationary motor particle current with the influx and outflux rates
as evidenced in the main Figure 5, which however causes an abrupt change in the density
profile, noticeable in the inset of Figure 5). Before exploring the collective dynamical
behavior of the dynein particles in the quasi-two-dimensional lattice geometry, we would
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like to emphasize that our simulations indicate that an increase in the number of lanes does
in fact not lead to any qualitative change in the results.
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Figure 4. The graphs depict the steady-state properties obtained from the dynamics of the dynein
particles in the quasi-two-dimensional setting. The main Figure 4a shows the phase diagram with a
first-order transition separating the low- and high-density phases under low- (red dashed line) and
intermediate-load (green line) conditions for small transverse jump rate Py = 0.025. Figure 4b shows
the schematic dependence of the phase diagram on the probability to select the hopping direction
Patt = 0.8, Satt = 0.2 for low loads. The values of α and β beyond which we observe the maximal-
current phase for various Py are Py = 0.1 : α > 0.95, β > 0.9 (blue line), Py = 0.15 : α > 0.9, β > 0.8
(brown), Py = 0.2 : α > 0.8, β > 0.75 (green), Py = 0.15 : α > 0.75, β > 0.7 (purple). The
dotted (black) line indicates the transition between the MC/LD and MC/HD phases for the one-
dimensional TASEP.
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Figure 5. The main part of the plot shows the current profiles as a function of the influx rate α, for three
different outflux rates β = 0.2, 0.4, 0.6, under low-load conditions; the inset depicts the corresponding
density profiles illustrating the discontinuous transition from the low- to the high-density state.
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3.3. Dynamics of Dynein Particles in Two Dimensions

To understand the change in the dynamics caused by the quasi-two-dimensional
geometry, we first explore the single-run statistics under various load conditions in the
distinct phases. Specifically, in Figure 6 we show the dynamics of three different tagged
dynein motor particles: A particle is tagged at different entry times ten, which effectively
corresponds to different crowding environments until the system reaches its stationary
state. “Particle A” denotes the first particle that enters the lattice. “Particle B” and “Particle
C” enter the system at times proportional to Lx and L2

x. Examples for single-run trajectories
of particles tagged in this manner are displayed in Figure 6. Irrespective of α and β, particle
A is more likely to move forward while remaining in the same lane than particles B and
C. It is less probable for particle A to encounter obstacles (other motor particles), and
hence sideways fluctuations are less prominent in its trajectory than for the later-arriving
particles. However, as the overall particle density increases with time, the kinetics becomes
increasingly obstructed, and individual particles are forced to switch to other lanes, as
is apparent in the more helical structures visible in the trajectories of particles B and
C in Figure 6. We also observe that the later particles take longer to exit from the last
lattice sites due to crowding. Following these observations, we analyze the trajectories’
mean-square displacement (MSD) to better understand the slowing-down of the motor
particles transport, and to provide additional information on the changing time scales
under different conditions.

Particle A Particle B Particle C

0

200

400

600

800

Figure 6. Single tagged dynein particles’ trajectories under high-load conditions. Particles A, B
and C enter at t = 0, t ≈ Lx and t ≈ L2

x, respectively. The influx and outflux rates used here are
α = 0.7, β = 0.7, corresponding to the low-density phase.

We have thus numerically evaluated the mean-square displacement (MSD) of a tagged
particle. A particle is tagged upon its time of entry; this corresponds to random initial
conditions in different runs. The MSD in the transverse direction is always diffusive,
owing to the symmetry in the probabilities of up- and downward movement. However,
the dynamics along the longitudinal direction clearly shows modifications in the relevant
characteristic time scales. The dynamical rules assigned to a particle do not depend on the
lane in which it resides. Hence, it is inherent to have similar behavior in each lane, as can
also be inferred from the space-time profile of each lane shown in Figure 7a (high-density
phase) and Figure 7b (low-density phase) under low-load conditions. Hence we present
the MSD results in longitudinal (drive) direction which are averaged over all the lanes. It is
well-known that wide variations of the TASEP exhibit dynamics that follow the scaling



Entropy 2021, 23, 1343 10 of 13

exponents of the Burgers/KPZ universality class in one dimension, and correspondingly
the MSD grows with time as t2/3 [25,26]. In the two-dimensional TASEP, the MSD growth
with time becomes linear with logarithmic corrections [27]. For the dynein particles in our
model, the simulation data yield that the long-time behavior of the MSD obeys a power-law
growth with logarithmic corrections in the form tξ / ln t, where ξ takes values in the range
between 3/2 to 1 depending on the crowding conditions over the lattice. Irrespective of
the load conditions, the dynamics for a single dynein particle is superdiffusive, and the
MSD along the drive direction grows algebraically with time with an exponent 3/2 as
shown in the insets of Figure 8. However, in a highly crowded environment, the particle
kinetics slows down, and ξ approximately takes a value closer to unity, as evident in the
main panels of Figure 8. The MSD dynamics turns out to be essentially independent of the
details of the boundary injection and exit rates.

(a) Space-time plot in different lanes in high density phase for low load conditions. The
parameter used here are α = 0.45, β = 0.3, Patt = 0.8, Satt = 0.2

(b) Space-time plot in different lanes in the low-density phase under low-load conditions.
The parameters used here are α = 0.45, β = 0.7, Patt = 0.8, Satt = 0.2.

Figure 7. Space-time plot in different lanes under low-load conditions.
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Figure 8. The time-dependent growth of the mean-square displacement (MSD) for the tagged
particles’ C (in the main figure panels) and A (in the insets) for different phases on a finite quasi-
two-dimensional lattice. The different time regimes are also marked; here, L = 500, Patt = 0.8,
and Satt = 0.8 representing a high-load, and Satt = 0.2 for a low-load condition. The results were
averaged over 103 different realizations.

The change in the MSD growth power laws is solely due to the difference in the
passage times that particles take to move from one site to another in the presence of
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other particles. Thus, measuring the particle dwell times adds further information about
this mutually constrained particle dynamics. The dwell-time distribution is in fact an
experimentally relevant quantity and has been successfully measured in a number of
experiments [10,28]. In our simulations, we define the dwell or waiting time as the tem-
poral duration, in units of Monte Carlo steps (MCS), that a particle waits between two
consecutive jumps. We have numerically obtained the dwell-time statistics under different
crowding conditions, as plotted in Figure 9. For particle A, which invariably encounters
a less-crowded environment, the waiting-time distribution for a tagged particle decays
exponentially, irrespective of the influx and outflux rates α and β, as seen in Figure 9.
However, with increasing particle density across the lattice, we observe longer waiting
times and slower decay of the associated dwell-time distribution with longer tails of the ex-
ponential function. The dwell-time distribution in the overcrowded environment displays
a “double-exponential” form with an initial slower decay rate for shorter waiting times,
which subsequently crosses over to a faster decay for longer waiting times, as seen in the
main Figure 9, which corresponds to an average particle density ≈ 0.85. In addition, we
observe intriguing oscillatory features for particle-type B (with ten ∝ Lx). These oscillations
are prominently visible only if the average density is greater than half-filled, and represent
a dynamical phase with many alternating high-density peaks and low-density valleys, akin
to coexistence phases.
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Figure 9. Dwell-time distribution for tagged dynein particles at different entry times in the quasi-
two-dimensional system. The main figure corresponds to the HD phase, while the inset displays
data for the LD phase. The waiting times for the low-density phase are always governed by a single
exponential distribution with a density-dependent decay rate, as shown in the inset. In contrast, the
main graph displays prominent double-exponential behavior characteristic of an extremely congested
system. The dashed black line shows the best fit to a double exponential, 18(2e−0.09x − e−0.32x).

4. Conclusions

In this paper, we describe a variation of the asymmetric exclusion process with short-
and long-distance jumps to model the dynamics of dynein motors, and explored the ensu-
ing collective dynamics in one dimension as well as in a quasi-two-dimensional topology
with open boundary conditions. Our work highlights the non-trivial effects of geometry
in out-of-equilibrium driven diffusive systems that may modify the phase diagram and
change the nature of the accompanying phase transitions. Significant changes observed
in the phase diagram can be attributed to the breakdown of particle-hole symmetry for
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the dynein particle dynamics. In one dimension, we found a reduced maximal-current
(MC) phase region in α− β parameters space due to the presence of long jumps. Using
the mean-field expression for the resulting current, we present a precise lower bound for
the influx and outflux rates for the maximal-current phase. We extended our study to
the quasi-two-dimensional case with negligible small transverse hop probabilities. In this
setting, the phase diagram shows drastic changes; we observe the disappearance of the
maximal-current phase for low- to medium-load conditions caused by the mutual bypass-
ing of the motor particles via different lanes. Moreover, these results remain qualitatively
unchanged upon increasing the number of lanes beyond two. We have also presented some
preliminary results for the dependence of the phase diagram on the respective probabilities
of selecting different hopping directions. Interestingly, the system reverts to the phase
diagram that includes a maximal-current phase when the probabilities to move along the
longitudinal and transverse directions are of the same order. These approximately equal
probabilities to move in either direction effectively suppresses the particle’s chances to
bypass other particles blocking its large forward motions, which induces the re-emergence
of the maximal-current phase. We plan to explore this feature more in the future. We hope
these intriguing results will motivate further studies into the nontrivial effects of higher
dimensions in variants of the TASEP model and serve as a reference for a wider range of
transport processes that involve particles bypassing each other, such as vehicular traffic
models and models for certain regulatory genes.

Further, we have also examined the dynamics of the dynein particles under different
environmental conditions and measured their MSD and dwell-time distributions. Due
to the two-dimensional topology, a dynein particle shows logarithmic corrections in the
superdiffusive time-dependent growth of the MSD. Our study also demonstrates the
slowing-down of the kinetics due to crowded conditions, leading to dynamics closer to
diffusive behavior. Additionally, we observe consistent features in the associated dwell-
time distributions. Dwell-time distributions are directly experimentally measurable and
can be easily verified for different control parameters. We confirmed the effects of crowding
and variable-stepping behavior of dyneins on their dwell-time distributions: We found that
under less-crowded conditions, the dwell times are distributed exponentially; whereas in a
more crowded environment, the waiting time distribution changes to a double exponential
with two characteristic time scales. Both exponential and double exponential distributions
of the dwell times have been observed in real experiments under conditions when the
dynein takes longer and shorter jumps, respectively, [10,28], c.f. specifically Figure 5 in
Ref. [10].
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