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Abstract: In this paper we hypothesize that education, especially at the scale of curriculum, should
be treated as a complex system composed of different ideas and concepts which are inherently
connected. Therefore, the task of a good teacher lies in elucidating these connections and helping
students make their own connections. Such a pedagogy allows students to personalize learning
and strive to be ‘creative’ and make meaning out of old ideas. The novel contribution of this work
lies in the mathematical approach we undertake to verify our hypothesis. We take the example of
a precalculus course curriculum to make our case. We treat textbooks as exemplars of a specific
pedagogy and map several texts into networks of isolated (nodes) and interconnected concepts
(edges) thereby permitting computations of metrics which have much relevance to the education
theorists, teachers and all others involved in the field of education. We contend that network metrics
such as average path length, clustering coefficient and degree distribution provide valuable insights
to teachers and students about the kind of pedagogy which encourages good teaching and learning.

Keywords: complexity; curriculum; network; education theory; creativity

1. Introduction

This project aims to utilize the mathematical theory of networks to understand the
significance of connectivity in mathematics education. We hypothesize that education is a
deeply connected complex system of processes and ideas. Therefore, the role of an effective
educator lies in effectively highlighting these features and helping students make their own
connections [1]. Such a pedagogy, based on a constructivist philosophy of learning, allows
students to personalize learning and strive to be ‘creative’ which essentially amounts to
‘meaning making’ or generating new meaning out of old ideas [2–4].

We test our hypothesis by examining the network structure of a precalculus course.
Precalculus is an entry-level (and occasionally remedial) course taught in various United
States institutions, and populated each semester by a large number of students. The skills
taught in this course are essential to most STEM (Science, Technology, Engineering, and
Mathematics) disciplines, and therefore a firm grounding in the concepts of precalculus is
needed for students to succeed in the sequence of courses that follow. The vast significance
and demand for this course has resulted in a flood of textbooks on this subject, with each
author and publisher promoting their own philosophy, pedagogy and content. While
the content remains similar, different books highlight different topics and come with
different expectations and assumptions. While the ensuing discussion will surround the
effectiveness of precalculus pedagogy, this article is primarily meant to be an exposition
on the importance of a complexity theory-based approach towards curricular design.
Education has previously been recognized to be a complex system [5–8] and it is well
articulated in the literature that the tools of complexity theory are very apt to understand
critical dynamics and properties of educational systems, be it at any scale. The current
work is one ‘micro-scale’ such attempt in the endeavor to understand the complex structure
of a curriculum and its implications throughout the entirety of education.

A complexity-based approach to education was perhaps best articulated by William
Doll in his numerous works on the subject (see, for instance, [9]). In his article [10] states:
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“Order emerges from interactions having just the ‘right amount’ of tension or difference
or imbalance among the elements interacting”. In the context of education, one could
argue that this emergence of order is nothing but creativity. Hiebert and Carpenter [11]
([2006, p. 69]) associate the notion of ‘understanding’ to that of a complex network.
They state: “Understanding increases as networks grow and as relationships become
strengthened with reinforcing experiences and tighter network structuring”. It has also
been argued that learning through identification of similarities and differences between
alternate representations of the same information can stimulate the construction of useful
connections [2]. Therefore it is quite reasonable to think of education at all levels as an
“adaptive and self-organizing complex system”.

This paper is based on the premise that a textbook, which represents a particular ped-
agogy of the subject being treated, is a collection of multiple interacting parts. As students
progress in a course, they navigate from one topic to another, united in the endeavor of
comprehending, connecting, and unifying concepts. It is the potential to form their own
bridge across different topics that is of significance here, since it relates to creativity:an
oft spoken about but understudied phenomenon in higher education. Previous studies
on creativity, in mathematics education in particular, have pointed to the importance of
making connections as a necessary condition for creativity in the classroom [2,12,13]. The
‘lego model’ of creativity discussed in [2] argues for personalization of knowledge and
connection between different ideas which can result in stability and longevity of under-
standing. The ‘connected curriculum’ program based in UCL [14] espouses the importance
of connections in higher education, highlighting the ‘real value’ of education, which lies
in preparing students for the ‘real world’ where students must solve complex problems
which do not appear under a disciplinary guise. The rationale for such a curriculum is well
articulated in [15,16] and other related works, pointing to the fact that “social problems and
issues transcend disciplinary boundaries” [16,17]. Our approach in this paper is based on a
similar philosophy of learning and clarified using a simpler example, which lends itself to
very novel, rigorous and interesting mathematical analysis. We content that such a hybrid
modeling approach which combines qualitative and quantitative aspects of mathematics is
extremely appropriate in the context of education, especially mathematics education.

Our approach to introducing and evaluating this particular philosophy is as follows:
First, we discuss in detail the entire mapping process of mathematizing the curriculum in
Section 2. This is followed in Section 3 by the results of our computations. The Section 4
discusses the considerations and results of considering the fitting of each sampled text’s
degree distributions, while Section 5 considers how the results from Section 3 might be
interpreted with respect to an optimally enriched textbook in which all observed connec-
tions are made. In the final section of our paper, we discuss the interpretations of the
network-based analysis in the context of curricular design and education, and reflect on
the prospects and importance of such an analysis in other problems related to education.

2. Complexity and Curriculum

While there is a compelling case for curriculum as a complex system in the litera-
ture [9,10,18–22], we feel the need to restate some of these ideas. The term ‘complexity’
itself is vaguely defined and depends on the field to which it is being applied, the central
feature of any complex system being that it contains multiple nonlinearly interacting parts.
Any new foray into the area of complexity theory therefore requires clear articulation of its
structure and evidence that this fundamental feature is met. Davis describes three areas of
education where complexity theory has made its mark thus far [19]: (a) “. . . contents of cur-
riculum, complexity as a disciplinary discourse. . . ”, (b) “. . . beliefs on learning, complexity
as a theoretical discourse. . . ” and (c) “. . . pedagogical strategies, complexity as a pragmatic
discourse. . . ”. The subject matter of this paper falls in the first of these categories.

Educators recognize the fact that teaching and learning cannot be spoken of indepen-
dently; they proceed through feedback between each other (see Figure 1). We can think
of the curricular aspect of teaching as an interaction between an intended curriculum (IC)
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and enacted curriculum (EC) (In the Figure 1, IC and EC compartments are mediated by
their corresponding network models.). The intended curriculum can be reflected through a
textbook which an instructor typically would utilize to design her own lesson plans which
is enacted in the classroom, and referred to as the enacted curriculum. The differences
between the IC and EC can vary drastically with instructor, students, topic, level of course
etc. In this paper, each text chosen is mapped to a unique graph (described in detail below).
In mathematical terms, teaching as defined in our study, is the mapping

T = TC ∪ TE ∪ TS. . .

where TC represents the curricular or content aspect of teaching, TE refers to the teaching
environment and TS to the skill level of the teacher, among others. We specifically focus on
TC which can be represented as the transformation:

TC : IC−Model → EC−Model

Based on Figure 1, the map TC can itself be decomposed into several individual
components that outline the feedback model generated between IC and EC, and how these
steps in the development of curricular content might influence one another. While T is
represented as a one-way mapping, in the hands of an experienced instructor, the EC can
result in a transformation of the IC as well. It is also not unreasonable to assume, especially
in the case of inexperienced instructors, that TC = I (identity map), i.e., the IC is the same
as the EC.

Figure 1. Schematic showing the complex nature of education and curricular design. While teaching and learning are
recognized to proceed along an a-causal feedback loop, teaching at its intrinsic scale is feedback between the intended and
enacted curriculum, each of which gets refined over time.

It is important to recognize that teaching and learning are embedded within a specific
environment, which they are shaped by and influence. Environmental factors directly
impact IC (and directly or indirectly, EC), which takes the form of various editions/updates
of a book, new books and revisions to course content etc. This interaction between ed-
ucation and it’s various components with the environment maintains education in an
out-of-equilibrium state, much like a dissipative system [9,23]. If we persist with the ther-
modynamic language, we can expect this mutual interaction to result in emergent self-
organized states, under fixed conditions, which translates to an optimal (meta)stable
curriculum (or network pattern) which would change with time and environmental factors.
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While this argument relies primarily on analogies, it is evident that the educational system
is a complex combination of interacting self-similar components, each of which represents
a complex system at its own level [20–22].

3. Mathematical Model
3.1. Assumptions

We undertake a network-based analysis of precalculus courses as a means to under-
stand curricular design. Mapping the problem of curricular design to a mathematical
framework lends itself to particular forms of analysis which might otherwise not be possi-
ble, although the maxim “The Map Is Not the Territory” [24] is relevant and guards against
overstating the significance of such a framework. This particular course was chosen since
it is a preliminary mathematics course that a large number of students at any institution
take and also among the more fundamental courses in mathematics which is required for
any further quantitative study, no matter what the discipline. Therefore, inferences drawn
about such a course would be of relevance to a large number of students. A fundamental
assumption in this study is that the choice of the textbook utilized in the course is a reflec-
tion of the teaching philosophy of the instructor, and lays the groundwork for how the
course will be conducted, although we do realize that a seasoned instructor can provide
meaningful supplements to the course through the introduction of ideas and content not
necessarily discussed in the textbook. However, we will assume that the vast majority of
precalculus instructors rely quite heavily on the adopted textbook, and so do students in
their pursuit to learn the material.

3.2. Network Construction

For purposes of this study, we identified several different precalculus textbooks based
on their recent popularity as determined by recent adoption of the text in United States
universities, and its availability as seen from in-print status on platforms like amazon.com.
Older editions of books were still utilized if these were the only ones available to us; we
assume that the overall teaching philosophy does not change very much over a few editions
of the book, especially if the primary authors of the books remain the same. A list of books
adopted for this study is provided in the Table 1.

Table 1. Detailed description of Precalculus textbooks analyzed in this paper.

Text Reference First Author Edition Year Publisher

[25] Abramson 1st 2017 OpenStax
[26] Blitzer 5th 2013 Pearson
[27] Carlson 8th 2020 MacMillan
[28] CME - 2013 -
[29] COMAP - 2002 W. H. Freeman
[30] Faires 5th 2011 Cengage
[31] Larson 3rd 2000 Houghton Mifflin
[32] Rockwold 4th 2010 Pearson
[33] Stewart 6th 2012 Cengage
[34] Sullivan 11th 2020 Pearson

We examine the underlying network structure of these books (lEach text referenced
in Table 1 is encoded carefully by hand to construct its corresponding network using a
process defined below.) by identifying connections of the various topics covered in the
books. Any two topics are said to be ‘connected’, or ‘linked’, provided there is a sufficiently
strong and intentional relationship between them in the text, i.e., the text explicitly refers
to one when introducing and/or discussing the other. For example, consider the following
line that may appear in a traditional precalculus textbook:
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“One clear distinction that arises between the functions we have studied thus far is that
while a linear function exhibits a constant rate of change, an exponential function exhibits
a constant percent change”.

The connections that can be observed in this line are: (a) Linear functions and rate of
change, (b) linear functions and exponential functions, (c) exponential functions and percent
change and (d) rate of change and percent change. These connections could be meaningfully
displayed in tabular format to highlight these connections, as provided below:

Introduced Topic Directly Connected Topic

Linear Functions Rate of Change
Linear Functions Exponential Functions

Exponential Functions Percent Change
Rate of Change Percent Change

When encoding lines directly from a text in the above fashion, one might consider
whether or not there are inherently connections that exist between every topic introduced
when adjoined in the same sentence; in essence, is the set of all elements presented naturally
inclined to consist of connections that act as a power set of all elements? This naturally
lends itself to the possible construction of a union graph in which each element in a cluster
is locally connected to all other elements of that set. While this would certainly yield a
higher clustering coefficient, the paths between topics become elongated, less efficient,
and far less meaningful-in particular, because edges are being generated based on pure
proximity rather than connotation and linguistic intention. In the aforementioned example,
it would not be appropriate to connect ‘Linear Functions’ and ‘Percent Change’ because
the divisions that are enumerated are between the categories themselves, and all respective
highlighted properties. Specifically, we obtain the connection between ‘Linear Functions’
and ‘Exponential Functions’ from the phrase, “between the functions we have studied”,
as well as extracting the connection between ‘Rate of Change’ and ‘Percent Change’ from
the first few words of the sentence, “One clear distinction”; the former communicates
a link between these two particular subtypes of relations that are united by belonging
to the class of functions, while the latter describes a contrasting element that inherently
differentiates the two. While one is comparative and the other contrastive, describing any
given interaction between properties or definitions within the scope of a given subject
warrants a meaningful relationship between the two that is intended to bring the topics
together in an intentional way. While we are able to find clear links between the remaining
two connections by proximity itself, it has been demonstrated that pure proximity itself,
and direct mention of relevant topics, is not sufficient. One must also exercise caution and
resist adding connections when encoding, as we seek metrics according to the print itself,
and not what a teacher of any caliber may supplement. It may seem relevant to ask if such
a task is best accomplished by the index of a book. However, it needs to be pointed out
that (a) not all books (including the ones we used in this study) had complete indices and
(b) indices for books are often done through computer and human effort, with the latter
contributing a significant part of such a project [35]. In fact, it is easily noted that not all
terms in a book end up in the index [36], and in fact the construction of indices is often left
to the ingenuity of the indexer and the purpose/audience of the book.

Naturally, elements of this procedure are somewhat subjective; some instructors may
highlight connections others might find unimportant or overlook. However, in the pursuit
of developing a more significant understanding of the properties that make a text suitable
for a given course, instructor, or student body, it is imperative that causal connections be
strictly observed, both in proximity and conceptual basis, revealing an inherently complex
nature amongst the association between any given curricular themes.

In our efforts to generate uniform procedure, we conducted an initial trial in which
the same text was encoded by two separate researchers, and then results were compared in
order to verify that results were not only as identical to one another as possible, but also to
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ensure that all included nodes and edges were strictly obtained from the textbook at hand,
and were not the result of any personal bias or opinion as to which topics might warrant
connectivity from the perspective of the researcher; the goal of this encoding process was
to establish routine procedure and strict adherence to intentional language dictated by the
text, while also taking advantage of the ability for human-based encoding to pick up on
nuanced connections similar to the examples outlined in the sample text above.

By regarding each topic as a node and each link as an edge, we are able to meaningfully
translate each text into a graph or network of ideas and their corresponding connections.
A uniform set of principles were developed to help maintain consistency in mapping the
various books. These include:

1. To start with, we make a list of all the topics in the chosen text under each chapter,
section, and subsection. These topics are listed in a Table A1 in Appendix A. Each
topic is given a numeric code. In the language of sets, X = {ki : 1 < i < N} pertains
to the set of N ∈ N topics covered in the textbook, where ki refers to the i-th assigned
code for each topics

2. Based on the topics listed in first two columns of the Table A1, we then create a third
column as shown in Appendix A, where the elements constitute the set Y = {zij :
zij ∈ X, 1 < i < N, 1 < j < M, M ≤ N − 1}: That is, topic ki may contain up to M
direct connections outlined in the corresponding text being mapped, M ∈ N. The
elements of set Y therefore represent distinct topics in X which are related to ki.

Once the entire table is created, it can be represented as a network of nodes (topics)
and edges (connections). Figure 2 gives examples of such a network, which is based on one
of the various texts examined.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Network structure of the Pathways Combined curriculum. The various panels represent
different books, namely: (a) Abramson (b) Blitzer, (c) CME, (d) COMAP, (e) Faires, (f) Larson,
(g) Pathways (combined), (h) Rockswold and (i) Stewart. In cases (d,h), we provide a zoomed image
to showcase the details of the connectivity.
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The model used here is built on a primarily backward referencing paradigm which
suggests that topics in advanced chapters are built upon the foundations laid in earlier
chapters. There could be exceptional cases where directionality is reversed but in a subject
like mathematics, where courses (and in fact, the entire program) are built on prerequisite
knowledge, one expects the arrow of knowledge acquisition to have a fixed orientation
with respect to directionality. As a result of this implication, we do not see the need to use
directed graphs for our analysis. The current model also uses unweighted graphs; weights
would be akin to assessing the frequency of a particular connection. Our approach simply
keeps track of the connections made, not whether they are repeated. While repetition is
an essential aspect of learning, we feel that is a task best left to the instructor; repeating
connections come with the side-effects of potentially increasing the size of the book and
thereby the cost and also possibly detracting from other new connections that could be
made. It could be argued that the Occam’s Razor principle of simplicity is apt for the
curricular system.

3.3. Metrics Computed

Once represented as a graph, we can estimate several properties of such a graph
which give us a glimpse of the underlying structure of the course and its potential to allow
free and easy flow of ideas and foster new emergent understanding and creativity. By
examining the network structure of various textbooks and pedagogical practices, we can
help identify the kind of curricular plan that is likely to be most effective and creative.
Specifically, we examine the following metrics [37,38]:

1. The Degree Distribution (DD) helps us ascertain that the ‘textbook network’ does
indeed display a power law profile and hence the metrics typically associated with
the analyses of such networks are meaningful in this context. The power law nature
of such a network reveals that there is a specific structure to curriculum which is not
random. The degree distribution of the network is given by the probability function

P(x) = c x−α (1)

where c is a constant, x denotes the degree of the node and α is the exponent which is
determined through our computations.

2. Clustering Coefficient (CC) tells us about the average number of connections for each
node, giving us a glimpse into the variety of ways a particular topic in precalculus can
be understood. A fundamental assumption of the constructivist model of mathematics
is the potential to make meaning. Therefore the greater the clustering coefficient, the
more diverse the ways in which a concept can be comprehended depending on the
particular background and proclivity of the student. The local clustering coefficient,
denoted Ci, is commonly given by the expression:

Ci =
3(number of triangles)

number of connected triples
(2)

resulting in the average clustering coefficient for the network, CC = 1
N ∑N

1 Ci.
3. Average Path Length (APL) tells us the average number of steps that must be taken

to traverse between any two nodes. In the context of this study, the APL tells us about
how efficiently one can move from one idea to another. It is particularly useful to
strategize about how to resolve mathematical problems. A network possessing a low
APL is preferable, since it makes explicit the links between concepts and provides a
road-map to travel efficiently from one point to another. This, coupled with a high
CC, makes for easy navigation between ideas and also increases the likelihood of
exploring many possible ways to navigate between these ideas. The APL is given by
the equation

APL =
1

N(N − 1) ∑
i 6=j

d(Vi, Vj) (3)
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where d(Vi, Vj) represents the path length from node i to node j.
4. Hubs (H) are nodes which have a large number of edges. The threshold number of

edges to qualify to be a hub, in general, is determined by the nature of the problem
itself. We use the minimum number of chapters from all the texts examined to decide
a threshold to qualify for a hub. This number turns out to be 6 based on the book by
Faires [30].

In addition, other general characteristics of the books are also examined such as the
ratio of nodes to edges, and the specific topics that qualify as hubs across the different books.

4. Results
4.1. Power Law Distribution

Throughout the effort to meaningfully analyze quantitative patterns exhibited through
these network representations of course-oriented textbooks, it initially became visually
evident via generation of node-oriented degree distributions relative to frequency that
there is a natural power law exhibited through these connections. Power laws occur in
many natural and man-made systems, such as the frequency of particular words in a
human language and population density ([39]). With these extensive applications to social
structures, a natural hypothesis to generate is that the frequency of connections formed
between topics in a given text will follow this relationship. While ’power law’ acts as a
blanket term for many different types of data distributions, we in particular seek a pure
power law following the aforementioned probability distribution of the form P(x) = c x−α,
where c is a constant and α is a shape parameter generally provided as a positive real
number greater than one, with x = the number of directly connected edges to a provided
node, and P(x) = frequency of nodes possessing this connectivity index. The implication
of this distribution is that there tends to be a high frequency of low-level connectivity; that
is, many nodes have a low number of directly connected edges, while few nodes have a
very high connectivity relative to other nodes in the network. This pattern indicates that
superior connectivity is not necessarily expected to be the standard, and only the most
pertinent topics introduced in the text are intended to be assigned as a common theme by
which other introduced subject matter acts as a vehicle for consistent scaffolding of the
main ideas behind each chapter and/or section.

It is worth noting that the associated parameters output by MATLAB, the primary
computer algebra system we employed to carry out many relevant computations, generates
parameters labeled k and σ. However, we are able to obtain a simple transformation in
order to rewrite our power law distribution in the aforementioned format, where c = k/σ2

and α = (k + 1)/k. This transformation simply corresponds to the assumed format that
MATLB operates within when generating fitted distributions belonging to the family of
power law probability functions.

In a pure sense, a power law only fits the definition of a probability distribution
provided that x > xmin, where we can meaningfully interpret xmin to be equal to one (if
xmin = 0, we have no connections). Initially, many modern computer algebra systems
will generate a fitted power law by testing the tail behavior of the input histogram plot,
and use this information as a metric to decide whether or not the relationship is that of a
Generalized Pareto, or should be reasonably approximated using a polynomial function
with a finite tail. This assumption is unreasonable in this application because the meaning
derived from this assignment is that a negative α-value and thus a positive exponent can
equivalently be interpreted to mean that the range of the fitted tail following a power law
fit is infinite, which certainly is not expected to be the case when dealing with data based
on the confines of a printed textbook: Certainly, there exists a reasonable upper bound on
the number of connections that can be formed. Thus, due to this decision, in our efforts
we strictly fixed on fitting every text’s distribution to a pure power law with positive
α values, yielding negative exponents, that fits our outlined probability mass function
through analysis of a discrete number of links between various introduced topics.
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However, a reasonable question to consider in this work is: ’How can one be sure
that these fitted models, under these outlined parameters, are truly representative of the
empirical model?’ While the data seems to draw visual cues towards the likelihood of
belonging to the family of the power law distribution, this is certainly not sufficient to
verify the accuracy of this hypothesis. While there is no doubt that every provided degree
distribution is heavily right-skewed, there certainly exist various other distributions with
arbitrary parameters that retain the same quintessential tail behavior known to belong to
the exponential family: For example, a gamma distribution with α = θ = 2.

To combat this ambiguity, the standard default method commonly sought, involves
plotting the log of the frequency against the log of the relative ranking of empirical data
and attempting to establish a linear relationship. However, this among other commonly
used methods for analyzing power-law data, such as least-squares fitting, can produce
substantially inaccurate estimates of parameters for power-law distributions, and even in
cases where such methods return accurate answers they are still unsatisfactory because
they give no indication of whether the data obey a power law at all [40]. Furthermore,
inconsistent bin width of the inputted data further accentuated by sampling error-induced
data noise can cause outlier values to be heavily magnified and obscure the true underlying
distribution. It is for this reason that alternate methods become prominent to verify the
integrity of the true nature underlying the data observed. Similar to the method outlined
in the previously cited publication, which makes use of the Kolmogorov-Smirnov statistic,
plotting the quantiles of the empirical distribution against the quantiles of the theorized
distribution proves an effective choice as the expected density of the underlying function is
preserved by comparison of ordered statistics, very much in the spirit of the aforementioned
statistic. Thus, to ensure that our data fits well within the context of that of a pure power law,
we make use of the quantile method of grouping our empirical data relative to the assumed
underlying distribution to ensure homogeneous trends between uniform groupings. We
can also verify the accuracy of the fitted distribution by verifying the CDF of a given
network degree distribution also follows a power law with a less steep gradient, which
again verifies the efficacy of this assumption.

These statistical corroborations and power law distribution fits can be observed in
Figures 3 and 4 below:

(a) (b)

Figure 3. A Q-Q plot for the (a) CME and (b) Pathways books shows a linear profile indicating the strong possibility of a
power law distribution.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. This graph shows the degree distribution for the various textbooks along with the power law fit superimposed.
The various panels represent different books, namely: (a) Ambramson (b) Blitzer, (c) CME, (d) COMAP, (e) Faires, (f) Larson,
(g) Pathways (combined), (h) Rockswold and (i) Stewart.

In a mathematically rigorous sense, the construction of these quantile plots is gener-
ated by taking the cumulative distribution functions of our empirical data set F and our
hypothesized power law distribution G, and obtaining their respective inverses F−1, G−1,
aka the quantile f unctions, and plotting them on the x and y axes. In this process, the k-th
quantile of F is compared to the k-th quantile of G, where meaningful choices of k are
usually specified by splitting into quartile iterations. While many quantile spacing options
exist, a natural choice to employ in our study was, given n discrete samples, to space all
k quantiles along the uniform distribution k/(n + 1), k = 1, 2, . . . , n, in order to prevent
distortion or uneven spacing of sample values. In a general sense, the corresponding
measure of accuracy is determined by the size of the sample itself, allowing the model to
self-adjust to prevent unearned weight from extreme outlier values.

If the two data sets are identical, we obtain overlapping plots along the line Fk = Gk.
However, in the pursuit of collecting real-world data, we accept some reasonable tolerance
of error; that is, we say that |F−1 − G−1| < ε for some ε close to zero. In the examples
provided, we see that the data sets follow each other closely and, despite local regions of
fluctuation, the two appear highly correlated and follow a reasonably linear relationship.
The theoretical desired result here is that the output produces a perfect linear relationship, in
this case preserving mathematical integrity because outliers are no longer heavily skewing
the data, of which is the primary concern for every other previously mentioned problematic
schema. As observed in the above figures, a sample of quantile plots are provided in which
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the observed trend largely consists of a reasonably constant gradient, verifying that the
underlying hypothesized power law is indeed the true distribution.

This discovery is particularly compelling because the vast majority of scaling parame-
ters observed in power laws tend to lie in the interval (2, 3). However, there exist observed
parameters in our sample space that go as high as nearly 70, with a significant amount
that are approximately 20. What does this tell us? Because highly negative exponents
cause larger values of x to decay more rapidly, a distribution in which α is estimated to
be extraneously positive has an uncharacteristically thinner tail relative to other observed
samples. Thus, the data is comparatively more right-skewed, which tells us that the degrees
in that network tend to be significantly lower and thus less highly connected than texts with
shape parameters falling closer to the expected range. With respect to patterns observed in
other metrics, it was observed that nearly all the measured texts held Average Path Lengths
between three and four, meaning that these successful texts all share the feature that no
more than four topics are expected to exist between any two chosen topics in order to
present an effective pedagogical model by which an instructor may follow to form a strong
basis upon which further, deeper connections may be introduced if deemed necessary for a
particular person’s needs. Moreover, Average Local Clustering Coefficients for texts with
particular low average path length tend to be in or near the interval (0.3, 0.4), allowing one
to draw the conclusion that any given topic’s close neighbors should remain fairly easily
accessible in a sampling of curriculum about 40% of the time. However, does this imply
by itself that a given text is objectively superior to another? Due to the complex nature of
the connectivity of curriculum, a more accurate picture is generated by considering the
ramifications of all observed metrics relative to one another, and identifying strong suits
based on a particular instructor’s or student body’s particular needs.

While one might be inclined to raise suspicion with respect to the texts that retain
extremely negative exponents when fitted to a power law, a reasonable question arises:
Do there exist distributions that are better suited for these texts? Due to the nature of the
plotted DD of each text, and the property that all are heavily right-skewed, another possible
distribution that could capture this behavior is that of the exponential distribution (relative
to the exponential distribution, we obtained a single scale parameter µ equal to the mean
and the standard deviation of the fitted model). To test this hypothesis that a power law
may not hold, an exponential fit was performed on the DD of the two texts with the lowest
exponents (in this case, the Rockswold text and the Larson text), and quantile plots were
generated to test the empirical distributions against the hypothetical fitted distributions.

The results reveal similar results for both tested distributions: There is a reasonably
proper fit for approximately the first two quartiles, but beyond that exists significant
outlier behavior in both the power law and exponential fits. This is indicative of two
possible conclusions: The first is that extreme outliers are reasonably expected as they
indicate an unexpectedly large number of connections being formed for few topics, thus
potentially inducing saturation of content. The second possible conclusion is that these
texts in particular are not reasonably fitted by either distribution. However, in either
scenario, the conclusion appears valid as these tests were performed on texts that exhibited
considerably lower metrics than other textbooks sampled. So, if the power law fit is a
reasonable model, the fact that these course frameworks do not follow the proper trend
indicates that, by inherent construction, perhaps there are elements of these texts that do
not follow what might be considered more desirable pedagogical techniques, and thus
are not well-captured by a distribution that properly represent texts with considerably
improved metrics.

To test the fit of a model that is likely inappropriate relative to our understanding of
pedagogical connectivity, we include a QQ-plot of a fitted normal distribution for both
aforementioned texts. Our qualitative results indicate that this is, in fact, a poor choice of
model; the relative quantiles are highly mismatched and deviate heavily from any sort of
linear relationship, which provides reasonable insight into the notion that, should there
exist more suitable models other than those we tested and hypothesized, we can expect
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that they are at least similar in quality to the power law and exponential, likely belonging
to the family of right-skewed distributions.

While any given text might serve one educator or student’s goal more than another,
and perhaps it is possible that a textbook might serve a certain environment well with the
supplementation of content by a good teacher, the observation of these traits when com-
pared across all texts permeates the suspicion that successful texts should exhibit similar
connectivity trends, and should be actively considered when choosing an appropriate text
to guide one’s lessons.

A plot of the aforementioned selected texts’ DD fitted to an exponential distribution,
as well as their respective quantile plots for every tested distribution, can be observed in
the Figure 5 below.

4.2. Comparing the Network Profiles

While a large portion of our observations regarding fitting distributions to a given
text’s degree distribution relied on qualitative analysis of QQ-plots, we further verified
these assumptions by conducting a χ2 goodness-of-fit test in which we seek to reject or
fail to reject our null hypothesis H0: The underlying distribution follows a power law.
Following conventions with respect to this method, if our computed p-value is less than
a predetermined α chosen based on our desired level of confidence, we reject H0, and
otherwise we fail to reject H0. The results were highly inspiring and promising alike: For
every text included in the sample of this study, we found that for α = 0.05 we fail to reject
H0 and thus uncover compelling evidence that a power law is a suitable model to describe
the nature of the layout of topic relavance in a text of similar quality to those in our sample.
For the two texts that appeared to have outlier parameter values in the context of a power
law fit, we conducted two additional χ2 tests in which our respective null hypotheses were
that the underlying distribution follow (i.) an exponential distribution and (ii.) a normal
distribution. In these tests, again with α = 0.05, we found p to be significantly less than
0.05, with a range of [0.025, 0.035] for the exponential case and a range of [0, 0.026] for the
normal case. This allows us to conclude that, amongst these three distributions, the choice
of a power law is an exceedingly ideal case and appears to accurately capture the behavior
of the underlying characteristics of such models, allowing further research efforts to seek
out desirable properties based on these observable patterns. These p-values pertaining to
the power law case for each textbook can be observed in the Table 2 below.

The primary significance that emerges with assigning a fitted distribution is the
comparison of meaningful metrics relative to other values extracted. A particularly clear
pattern we have observed is that the exponent of the fitted distribution and the average
path length generally exhibit a positively correlated relationship. One can interpret this
to mean that texts with more rapidly-decaying tails, and thus more novel connections,
tend to be more locally clustered by means of edge connectivity. While this might seem
immediately intuitive, this certainly should not be expected to be the standard case. For
example, it is plausible that a given network have low individual connectivity across nodes,
yet the global trend is very spread out and disconnected, visually appearing as a sort of
extended ‘branched-out’ graph. To couple rapidly-decaying fitted models with efficient
traversing between topics implies that while individual ideas present in the text are not
applied heavily to each other in a global sense, there is highly efficient ‘meaning-making’
in these course templates permeated by the fact that presented topics are introduced in a
highly intentional manner. Low connectivity tells us that a given portion of the intended
syllabus is isolated in terms of extension of application, yet easily accessible through other
units indicated by minimal average path length.
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(a) (e)

(b) (f)

(c ) (g)

(d) (h)

Figure 5. A visual display of the degree distribution behavior of two texts with outlier power law
parameter values. (a–d) display the DD and all aforementioned Q-Q plots of Rockswold, while (e–h)
display the same information for Larson.

Another non-trivial observation is that networks with a greater number of nodes
tend to produce higher average local clustering coefficients. While this can naively be
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thought of as a symptom of greater sampling frequency, it is also significant to consider
that a significantly greater percentage of hubs arises in higher-density networks. Thus,
not only are these texts accessing a greater breadth of information, but they seem to be
doing so with greater depth and significance upon consideration of topics introduced as
a result. While we continue to question what makes certain texts (and therefore courses)
more effective than others, it seems that a meaningful effort to bridge the gap between
instructor convenience and student accessibility both play a clear role in the success of
retention and connectivity as one progresses through this course, or even perhaps future
courses that call on this material. While it is unsurprising that networks displaying high
average local clustering coefficients tend to yield greater concentration of hubs, to do so
amidst a rich curriculum (both in density and meaning) speak to the ability to continue
forging meaning in the classroom, and continually placing this effort at the forefront of
future textbook and classroom design.

Table 2. The results of the network analysis for all texts are summarized in this table. Quantities computed include the
average path length, clustering coefficient, number of hubs, percentage of nodes that are hubs, number of edges and nodes
for each text.

Book APL CC % H # H Edges/Nodes Mean Edges per Node Power-Law Exponent p-Value

Abramson 19.0047 0.2662 11.54 9 116/78 1.487 −5.851 0.14

Blitzer 3.7652 0.0481 12.33 9 109/73 1.493 −16.881 0.16

Carlson 3.9001 0.2725 21.83 31 268/142 1.887 −16.6774 0.07

Stewart 3.361 0.0417 15.00 9 101/60 1.683 −28.357 0.06

Faires 3.2133 0.3414 35.25 43 327/122 2.680 −38.478 0.84

CME 3.4179 0.4152 32.03 41 314/128 2.453 −29.716 0.06

Larson 3.6915 0.156 14.63 6 66/41 1.610 −68.315 0.051

COMAP 3.6908 0.3397 21.19 32 302/151 2 −22.996 0.22

Rockswold 3.4128 0.2815 11.76 14 192/119 1.613 −55.960 0.07

5. Network Resilience Analysis

While the metrics we have computed thus far seem to have some tendencies to cluster
relative to one another, against what basis are we comparing these values? Intuitively, one
valid choice for an attempt to standardize these metrics might be what one could consider
an ‘optimal curriculum’. A possible definition for an optimal curriculum would be one in
which every observed connection across all sampled texts is made, including all aspects of
what independent authors and publishers consider to be paramount for the discussion and
implementation of precalculus in a course. With this in mind, we constructed such a ‘union
graph’ in which we take the union of all encoded textbooks, yielding a network consisting
of 697 total unique nodes and 1614 unique edges. We then computed all relevant metrics
that we wished to compare the sampled texts to establish a yardstick against which all
included textbooks could be compared to measure relative effectiveness in the context of a
maximally efficient and inclusive course design. Upon such computation, we found that
the APL for this union graph was 5.1108, and the CC was 0.3166. While these both measure
reasonably within the range of corresponding values for each individual text, one may
draw the reasonable conclusion that any text that retains a lower APL than the union is able
to traverse introduced topics more efficiently than a course in which all possible reasonable
connections might be made; similarly, any text with a greater CC than the union retains
higher relevance to its relative neighbors, indicating a strong proximity to closely clustered
subject matter and thus a higher potential for students to develop significant meaning
across the course by observing rich connections across a large proportion of material.
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Additionally, we tested via quantile plots whether or not the union graph’s DD tended
to follow a power law distribution or an exponential distribution, as heavily indicated
by its right skew and tail behavior. The quantile plots revealed that while both retain
significant outliers until about the sixtieth percentile, the power law has a slightly better
relative regression to the power law fit versus the exponential; although the exponential
has a greater density of sample values within the first quartile, this behavior becomes much
more deviated heading towards the median than the former, having significantly more
negative concavity than the power law’s quantile plot. With the reasonable assumption
that, in practice, information provided and discussed early on in the trajectory of a course
is typically better absorbed by students in the classroom, this potentially indicates that
a significant presence of topics introduced that fall below the standard for a hub makes
for an effective lesson template, preventing the potential saturation of information as it
is further developed. The quantile plots of both fitted distributions, as well as the union
graph’s degree distribution fitted to a power law, are provided below in Figure 6.

(a) (b) (c)

Figure 6. A visual demonstration of the trends observed in the union of all sampled texts, where (a) is the degree distribution
fitted to a power law with relevant parameters, (b) is the Q-Q plot of the union with respect to a power law fit, and (c) with
respect to an exponential distribution fit.

5.1. Stochastic Network Simulations

While the intended process of encoding textbooks in a network format is designed to be
as purely objective as possible, the very presence of human interaction lends itself to degrees
of subjectivity. For example, given the sentence, “This function has a constant rate of change,
which we had identified previously”, most would likely agree that there is an inherent
connection displayed here between ‘function’ and ‘constant rate of change’. However,
would this warrant a further connection to ‘linear functions’? How do we resolve ‘we had
identified previously’: Perhaps by increasing the edge weight? All these considerations
are relatively proper and valid, but reveals the insight that we as independent human
beings are truly incapable of a unified, objective motive by which we can perform the same
automated process and consistently yield the same results. Even if we were to encode texts
using a word recognition algorithm, the fact that a human had to write the program could
itself lead to implicit bias that would cause differing results if written by two different
people. So, how does one overcome this obstacle?

Our solution to this problem involves a series of stochastic simulations to test the
sensitivity of dispersion across relevant metrics to this work. In the anticipated outcome
that any given person could possibly miss any given number of connections, a MATLAB
script was written that randomly selects a predetermined number of edges (where n =
# of randomly selected edges removed) from the union graph and removes them from
the network. After each iteration, the average path length and clustering coefficient are
computed and printed to be stored for reference and comparison. Because the union graph
contains 1614 edges, we started with a test case of removing five edges, and from there
moved up as percentages of the total amount: n = 80 edges as approximately five percent of
the total network, n = 160 as approximately ten percent, n = 320 as approximately twenty
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percent, and n = 800 as approximately fifty percent. If this process yields an isolated node,
we simply remove it from the graph, as this would yield an infinite average path length and
a similarly unreasonable clustering coefficient. After running each case for fifty iterations,
we computed the mean APL and CC, as well as their respective standard deviations, in
order to see how percentage of removed connections impacts the efficiency with which one
may navigate a course based on attempting to maximize all conceived links.

5.2. Simulation Results

Upon analysis of these metrics, we find that there is reasonably no significant addi-
tional error induced when five percent (n = 80) of nodes are randomly removed; with a
mean average path length of 5.7123, there is less than one additional topic one must intro-
duce on average per selected topic (as will be noted in the explanation of the union graph
metrics below) that is required to introduce in order to meaningfully move throughout
an extensive union course in precalculus, which indicates that relatively little information
is lost through this level of error. While the CC has lowered to 0.2871, this is simply an
indication that isolated nodes become less connected to their neighbors, and is reasonably
farther away from being a complete graph; however, as we will discuss below, approaching
a complete graph is not necessarily ideal in all desired scenarios.

There exists a significant separation from our initial case upon the removal of nearly
fifty percent of all nodes (n = 800), however even at this point, although there exists
significant inconsistency of APL as indicated by a particularly high standard deviation
of 2.1169, the mean APL resolves at 10.2547, which indicates a doubling of the standard
required distance one needs to move through the course content. While increasing a given
metric by one hundred percent is absolutely non-ideal, this communicates that even in the
worst of circumstances in which half of a given curriculum’s connection are dissolved, one
can still move through the subject matter with some degree of reasonability. Additionally
observed in the case of n = 800 is a mean CC of 0.2651, which further indicates that
greater-degree iterations cause any given network to be further removed from the status
of a complete graph; yet, compared to our basis as discussed below, we see that there is
no significant loss of clustering, which yields the insight that overall traversing of course
content is made reasonably more inefficient on a global scale, but there is still sufficient
opportunity to easily travel across closely connected topics. Furthermore, it is absolutely
reasonable to assume that a seasoned educator would scarcely commit an error past twenty
percent removal, which is a strong reassurance that these metrics, and thus facilitation of
precalculus subject content, retain significant resiliency in the face of pedagogical adversity.
The metrics for each of these results can be observed in the Table 3 below. Additionally,
displayed below in Figure 7 are plots of the aggregate APL and CC metrics for all iterated
values of n.

Table 3. The results of the stochastic network simulation analysis for the union of all texts are
summarized in this table. Quantities computed include the average path length, clustering coefficient,
and error metrics relative to the original union graph.

No. of Removed Nodes, n n = 5 n = 80 n = 160 n = 320 n = 800

Percent Equivalent ofTotal Edges 0.3097 4.9566 9.9132 19.8265 49.5662

Absolute Percent Error in APL 0.0666 11.7704 44.7580 66.4542 100.6488

Absolute Percent Error in CC 0.8559 9.3076 10.4080 13.9279 16.2400

Mean APL 5.1142 5.7123 7.3982 9.9291 12.9921

Standard Deviation of APL 0.0029 0.2820 0.7283 0.7835 2.1169

Mean CC 0.3138 0.2871 0.2836 0.2725 0.2651

Standard Deviation of CC 0.0028 0.0210 0.0190 0.0132 0.0146
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(a) (b)

(c) (d)

Figure 7. A visual display of both the variability of all fifty iterations for each value of n and the APL and CC metrics in
(a,b), as well as a regression for the mean APL and CC across all iterations in (c,d).

6. Discussion

There are other visual assessment tools popularly used in education, including ‘Con-
cept Maps’ [41] and ‘Y Charts’ [42,43]. Of these, concept maps come closest to the network
idea that is discussed in this paper. Concept mapping has been popular in education
for some time and were introduced by Joseph Novak in 1964 [44] to improve “students’
understanding of science concepts over a 12 year span of schooling” [41]. Since then,
they have been popularly used in various educational settings and disciplines to enhance,
synthesize information and as a reflective exercise. However, they are primarily used as a
learning tool to gauge how students make meaning, i.e., in the context of learning, rather
than how a curriculum is framed. Moreover, concept maps do not lend themselves to the
kinds of computations presented in this paper since they are less focused on the kinds
of details being addressed here. Trochim [45] rightly describes concept maps as lying at
the cusp of ‘soft science’ and ‘hard art’; the current work can therefore be viewed as an
exploration of the former, scientific aspect of this tool in the context of curricular design.

We recognize that books are written with different objectives in mind and can serve
different audiences. We therefore make our interpretations with the understanding that
the network metrics should be used to evaluate the affordances of a book. The teacher
and the student can then realize, based on their respective goals, the appropriate book to
use. However, we are also of the opinion that there are some objective traits captured by
this analysis which allows for good pedagogy and enhanced opportunities for students to
learn and make meaning. For a teacher or future author, this analysis can highlight, via the
comparisons between different books, the kinds of interventions that need to be made to
prepare students to better understand the material. If we were to take the union graph as
an ideal network in terms of topics covered and connections made, then it is worthwhile
examining how each of the books discussed here deviate on average from this ideal, null
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graph. Table 4 shows the networks ranked in terms of their closeness in traits to the union
graph, as measured in terms of its room mean square deviation (RMSD), given by

RMSDi =

√
(CC0 − CCi)2 + (APL0 − APLi)2 + (PH0 − PHi)2

3
(4)

where CC0, APL0 and PH0 represent the clustering coefficient, average path length and
percentage of nodes with are hubs for the union network. The index i = 1− 9 corresponds
to each book network. Of course, the rankings can change with depending on what metrics
are valued and in this way, the analysis allows the instructors to bring their own standards
to bear upon the decision of what network is closest to ideal.

Table 4. A ranking of texts on the basis of their root mean square deviation from the union graph.

Rank Network Composite RMSD Rank of Graph Size Based on # of Nodes

1 Pathways 1.2989 2
2 COMAP 1.7228 1
3 CME 4.8429 3
4 Stewart 5.1918 8
5 Larson 5.3651 9
6 Blitzer 6.6795 7
7 Faires 6.6892 4
8 Rockswold 7.0268 5
9 Abramson 10.7050 6

What is the significance of providing rigorous mathematical models to present a
standard model of educational practice? Through highly focused exploration of examining
intentional connection of meaning between various topics explored across all sampled texts,
the emergence of fairly predictable models indicates that neither random distributions of
navigating the depths of curricula, nor a uniform presentation in which all topics maintain
the same relative connectivity indices, are proper formats of effective and successful
learning platforms. Instead, the data generated thus far is highly indicative of finding a
meaningful balance between high frequency of low connectivity, providing temporary
satellites which yield fruitful conclusions on a particular pedagogical path with respect
to the curriculum as a whole, as well as low frequency of high connectivity, by which the
instructor and student alike are able to extend meaning-making into many novel branches
of thought that yield a unique individual interpretation within the context of the global
pursuit of holistic and cohesive course understanding. It is therefore highly relevant that
these well-regarded outlines of classroom instruction follow similar mathematical models,
as this can allow future educators and textbook writers to establish a deeper analysis of the
efficacy of intelligent design in conjunction with the student experience at the forefront of
pedagogical innovation.

While each text involved in this study holds up reasonably well in the quantile plot
analysis of the accuracy of fitting a power law distribution, there are a couple of texts that
begin to lose their linear trend when approaching outlier nodes. Upon deeper examination,
a critical question to consider is: What factors seem to contribute to the encoding of
particular texts who, when compared to the quantiles of their corresponding theoretical
distribution, do not seem to fully exhibit a proper power law?

Texts whose empirical data plots appear slightly nonlinear when placed in a Q-Q
plot (relative to other well-regressed texts, as provided previously) tend to have highly
negative exponents, with low hub percentage despite reasonably effective path lengths and
clustering coefficients. Because our data seems to suggest that highly rated effective texts,
upon aggregation of relevant metrics, tend to exhibit strong power law behavior, and a
highly negative exponent itself indicates a rapidly decaying tail and thus less extremely
well-connected nodes, a lack of highly connective topics appears to be a key component
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of the observation of patterns within effective pedagogical models of curriculum. That
is, without a high presence of hubs, deeper levels of meaning are no longer as effectively
extracted from the content, yielding much more novel connectivity and thus preventing
the paramount experience of meaningful student connection with the mathematics.

When students are able to observe vast connections across many topics and even areas
of their own lives, we believe that the classroom experience becomes a much more con-
ducive environment to retaining information, especially as a given student moves through
future mathematics courses that will assume a proper and well-tethered understanding of
the material. Therefore, if a power law seems to not hold, one might hypothesize that this
is likely a symptom of less effective curriculum design (this is a point that deserves further
attention through a thorough analysis and comparison of various distribution functions,
the task being to find the optimal one that fits the entire DD profile). However, it is relevant
to note that every plot in this sample is highly linear through the seventy fifth percentile,
providing the notion that outliers in the data (highly connected nodes) are a critical element
of composite distribution trending. While their influence is undermined in other novel
tests (such as log plots, as previously discussed), they are appropriately stated and stressed
in their ability to display the deviations in correlation between the empirical and theoretical
relationship across the aggregate collection of sampled coursework models.

Aside from the analysis of the generated degree distributions, the networks themselves
yield incredibly valuable insights into not only the extent to which global connectivity is
achieved, but also how local behavior provides a direct lens into higher-order navigation
of scaffolding ideas and collective classroom procedure. Two of the most valuable metrics
in this discussion that emerged, despite the consideration of many others, are average
path length (APL) and average local clustering coefficient (CC). Nearly every text sampled
retained an APL between 3.0 and 4.0, indicating that efficient navigation of precalculus
discourse should keep local topics well-connected, requiring no more than a few select
topics to serve as the roadmap between any given ideas. Surely, with our minds focused
on the educational ramifications, this feels to be an appropriate conclusion, as the goal in
such a foundational mathematics course is to consistently relay the notion that the depth of
the curriculum is circumvented by the relevance of all chosen topics with respect to one
another. A successful classroom experience is not one of isolation; it is one of intention,
retention, and ever furthering the endeavor to highlight the reasons behind studying and
analyzing functions, relations, and all that which makes up a proper course. Similarly,
most CC values tend to lie between 0.3 and 0.4, indicating that any given topic should
be connected to between 30% and 40% of its direct neighbors, again easing the path each
student takes in their endurance to tether their interpretation with all previously learned
and future material.

The minimum requirement of six directly connected nodes to qualify as a hub was
chosen through the observation that the minimum number of chapters provided across all
texts examined was itself six, providing the initial conception that we are indicating a topic
that has the potential to reach across the minimum span of any given network. After imple-
menting this criterion and generating each respective network, it was discovered that there
are only two common hubs across every single textbook sampled: ‘Functions and Relations’
(F/R) and ‘Polynomial Functions’ (PF). (see Appendixes B and C for a comprehensive list
of all hubs across all the texts analyzed and a book by book breakdown) This deepens our
pursuit of answering a fundamental question that permeates the mathematical community
as a whole: What is the purpose of precalculus as its own course? Does it simply serve
as a precursor to calculus, or is there deeper intention behind the syllabus? This pattern
properly provides a reasonable response in that precalculus is the study of functions and
their individual and collective properties. In everyday life, relations bring about our human
desire to establish meaning behind call-and-response, input and output relationships. We
study mathematics because we desire the understanding of the world around us: Similarly,
students and instructors study precalculus because it refines our rigor and analytical ability
to effectively communicate the similarities and differences in classes of relationships and
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experiences through the natural world, and perhaps the unnatural that we simply have
yet to understand. There serves no better bridge between the world of entry-level and
high-level mathematics than elucidating the meaning of functions and polynomials, as
these serve as the backbone of analysis, the construction of meaning-making, and the ever-
driving wandering through the question, ‘How does this connect to our understanding,
and therefore connect understanding itself’?

The second law of thermodynamics, which dictates that the very act of using available
energy for work produces non decreasing amounts of entropy, is as applicable to this setting
as in natural phenomena [23]. We recognize that the very act of mapping a curriculum,
produces losses; our network metrics cannot possibly capture what transpires within a
classroom. The role of the teacher, as a synthesizer, story teller, bridge -builder and inspirer
goes unaddressed. There are always qualitative aspects of a system which evade the grasp
of a purely quantitative analysis. A novice teacher, who uses a book literally, will benefit
directly from the analysis presented here. A seasoned teacher who uses the textbook only
as a guide and adds their own unique perspective is already doing what we hope teachers
would, i.e., build bridges between topics and allow students to journey through the subject
in a variety of ways. In the case of such teachers as well, such a mapping can give a glimpse
of the strengths and connections that already exist and the lost opportunities that can be
built upon.

7. Conclusions

In summary, this paper uses tools from network theory to discuss the nature of
connectivity in education, presented through the example of precalculus textbooks. While
the primary focus surrounding much of this paper has been devoted to the complex nature
of a mathematics curriculum in general, there are specific takeaways for the power of
network theory to deal with issues pertaining to education and specifically, curriculum
design. The analysis would also be helpful to educators interested in the instruction
of precalculus.

The Table 4 suggests networks that perform well in accordance with Equation (4),
which is subject to the preferences of the authors. In making this choice we are implicitly
suggesting that: (a) An optimal APL allows the student to arrive at complex ideas along
a reasonably short path. While a very large APL is reflective of long-windedness, a very
short one can be dismissive of the complexity of the topic and skim over ideas that need
elaboration, thus there exists a reasonable interval over which this metric must lie. (b) The
CC needs to be sufficiently high, allowing students to find different ways to recall the
course content. (c) The number of hubs must be reasonable, i.e., the text does not take the
extreme attitudes of triviality or weight. This perspective is reflected in the power law
exponent, where a highly positive α would contain a predominantly large number of topics
with few connections and an α close to 0 would be reflective of an attitude of uniformity,
which neglects complexity and students’ struggle with advanced topics.

While all books cover a diverse set of topics, they are structured differently and with
different intentions. If we were forced to make a recommendation for an optimal book, we
suggest one where the CC, APL and PH are closest to an ideal (or null) network, in our case
exemplified by the union graph and shown in Table 4. We are hopeful that the development
of this thinking will continue to shine light on the plight of the mathematical explorer, and
how intentional design can improve the aggregation of successful curriculum across the
subject, the discipline, and the world. We are well aware of the various shortcomings of
the study, including a more in-depth study of the distribution profile and other pertinent
network characteristics which might be useful. We hope to address them in future papers.
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Appendix A. Network Construction

The table below shows the coding for the topics identified in each text and also the
connections between topics (column 3). We demonstrate the text to network mapping
for the Stewart text as an example. A similar procedure is used to encode and map the
other texts.

Table A1. This table provides the codes and connected topics in the text by Stewart [33].

Topic Name Code Directly Connected Topics

Polynomial Functions PF RATZEROTHM, RF, REMAINALG,
DIVALG, FACTTHM,GRAPHTECH,
UPLOWBOUND, QUAD, LINEARFUNC,
NONLIN, INEQ, F/R, DESCARTES,

Rational Zero Theorem RATZEROTHM PF
Rational Functions RF PF, GRAPH, MOD, PARTFRAC,

LINEARFUNC, NONLIN, INEQ, F/R
Transformations TRANS GRAPH
Graphs GRAPH RF, TRANS, ASYM, MOD, EXP,

LOG, EQN, PERIODICFUNC, LINEARFUNC,
SYSLIN, LINPROG

Asymptotes ASYM GRAPH
Modeling MOD RF, GRAPH, EXP, LOG, EQN,

PERIODICFUNC, LAWS, TRIGRAT, MATRIX,
SYSLIN, HYPERBOLA, ELLIPSE, PARABOLA,
SEQUENCES, BIN, RECURS

Partial Fractions PARTFRAC RF
Remainder Algorithm REMAINALG PF, SYNTH
Synthetic Division SYNTH REMAINALG, DIVALG
Division Algorithm DIVALG PF, SYNTH, LONGDIV
Long Division LONGDIV DIVALG
Factor Theorem FACTTHM PF
Intermediate Value Theorem IVT GRAPHTECH
Graphing with Technology GRAPHTECH PF, IVT
Descartes’ Rule DESCARTES PF
Upper and Lower Bounds UPLOWBOUND PF
Quadratic Functions QUAD PF, QUADGRAPHING, OPTIM
Graphing Quadratics QUADGRAPHING QUAD
Optimization OPTIM QUAD
Exponential Functions EXP GRAPH, MOD, LOG, EQN, NAT, F/R
Logarithms LOG GRAPH, MOD, EXP, EQN, NAT, COM,

LIQU, F/R
Equation Representations EQN GRAPH, MOD, EXP, LOG,

TRIG, IDENT, HYPERBOLA,
ELLIPSE, PARABOLA, POLAR

Natural Log NAT LOG, EXP
Common Log COM LOG
Application: Liquids LIQU LOG
Trigonometry TRIG EXP, LOG
Right Triangle Trig RTTRI LOG
Unit Circle UNITCIRCLE LOG
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Table A1. Cont.

Topic Name Code Directly Connected Topics

Trig Identities IDENT EQN, UNITCIRCLE
Periodic Functions PERIODICFUNC MOD, RTTRI
Inverses INVERSE RTTRI
Trig Laws LAWS MOD, RTTRI
Trig Ratios TRIGRAT MOD, RTTRI
Matrices MATRIX MOD, METHODS, SYSOFEQNS
Methods of Evaluating Systems METHODS MATRICES, DET, CRAMER, GAUSSJORD
Systems of Equations SYSOFEQNS MATRIX, LINEARFUNC
Determinants DET METHODS
Cramer’s Rule CRAMER METHODS
Gauss-Jordan GAUSSJORD METHODS
Linear Functions LINEARFUNC PF, RF, GRAPH, SYSOFEQNS, F/R
Non-Linear Functions NONLIN PF, RF, SYSLIN, F/R
Systems of Non-Linear Eqns SYSNLIN GRAPH, MOD, NONLIN, INEQ
Inequalities INEQ PF, RF, SYSLIN, F/R
Linear Programming LINPROG GRAPH
Conic CONIC HYPERBOLA, ELLIPSE, PARABOLA,

POLAR, F/R
Hyperbolas HYPERBOLA MOD, EQN, CONIC
Ellipses ELLIPSE MOD, EQN, CONIC
Parabolas PARABOLA MOD, EQN, CONIC
Polar POLAR EQN, CONIC
Sequences SEQUENCES MOD, INDUCTION, BIN, RECURS, GEO,

ARITH, SERIES, F/R
Proof by Induction INDUCTION PROOF, SEQUENCES
Binomial Theorem BIN MOD, SEQUENCES
Recursion RECURS MOD, SEQUENCES
Geometric Sequences GEO SEQUENCES, PARTIALSUMS
Arithmetic Sequences ARITH SEQUENCES, PARTIALSUMS
Series SERIES SEQUENCES, PARTIALSUMS
Partial Sums PARTIALSUMS GEO, ARITH, SERIES
Proofs PROOF INDUCTION
Functions and Relations F/R PF, RF, EXP, LOG, TRIG,

LINEARFUNC, NONLIN,
INEQ, CONIC, SEQUENCES

Appendix B. Codes for Hubs in All Books

Table A2. This table provides the codes used for the hubs identified in all the books.

Hub Name Code

Functions and Relations F/R
Linear Functions LF
Polynomial Functions PF
Rational Functions RF
Trig TRIG
Conics CONICS
Sequences SEQUENCES
Limits LIMITS
Series SERIES
Graphing GRAPH
Modeling MOD
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Table A2. Cont.

Hub Name Code

Inequalities INEQ
Equations EQN
Rate of Change ROC
Average Speed AS
Constant Rate of Change CROC
Quadratic QUAD
Composition COMPOSITION
Function Notation FUNCTNOT
Inverses INV
Domain and Range D/R
Exponential Function EF
Growth and Decay GROW/DEC
Transformations TRANSF
Roots and End Behavior ROOTS/EB
Circular Motion CIRCMOT
Angle Measure ANGMES
Cosine COS
Sine SIN
Right Triangle RTTRI
Non-Right Triangles NRTTRI
Average Rate of Change AROC
Tangent TAN
Change in Quantity DELQ
Covariation COV
Proportions PROP
Box Activity BOX
Percent Change %DEL
Logarithm LOG
Technology TECH
Real Number Line REALLN
X-Y Plane XYPLANE
Applications APPS
Distance Formula DISTF
Pythagorean Theorem PYTHTHM
Parabola PARABOLA
Symmetry SYMM
Calculus CALC
Complex Numbers COMPLEX
Periodic PERIODIC
Cotangent COT
Secant SEC
Cosecant COSEC
Trigonometric Identities IDENTITIES
Sum and Difference Formulas SUMDIFF
Hyperbola HYPERBOLA
Ellipse ELLIPSE
Circle CIRC
Reflection REFLECT
Quadratic Formula QUADF
Polar Form POLAR
Radians RAD
Reciprocal RECIP
Roots of Unity ROOTUNITY
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Table A2. Cont.

Hub Name Code

DeMoivre’s Theorem DEMOIVRE
Secant Line SECLINE
Slope SLOPE
Euler’s Constant E
Factorial FACTORIAL
Tangent Line TANLN
Combinatorics COMBINATORICS
Mathematical Modeling MATHMODEL
Dependent Variable DV
Independent Variable IV
Applications: Free Falling Objects FALLINGOBJECTS
Oblique Triangles OBLIQUE
Vectors VECTORS
Differential and Difference Equations DIFFEQ
Set Representations SETS
Function Representations REP
Role of Numbers and Quantity NUMBERS
Permutations and Combinations PERMUTCOMB
Counting Principles COUNTPRINC
Probability PROB
Binomial Expansion BINEXP
Recursion RECURS
Difference Tables DIFFTAB
Tables TAB
Proof PROOF
Geometry GEOM
Analytic Geometry ANALGEOM
Coordinate Plane COORDPL
Exponent Value EXPVAL
Events EVENTS
Area Under Curve AREAUNDCURVE
Division Algorithm DIVALG
Operations OPER

Appendix C. Hubs

The table below provides the hubs for each precalculus text studies in this paper.

Table A3. The hub topics for each textbook. Note that the threshold to qualify as a hub is based on the book by Faires which
contains a minimum of six chapters.

Book Hub Names

Abramson RF, LF, PF, RF, TRIG, CONICS, SEQUENCES, LIMITS, SERIES

Blitzer GRAPH, MOD, INEQ, RF, PF, EQN, CONICS, SERIES, F/R

Pathways ROC, AS, CROC, QUAD, F/R, COMPOSITION,
FUNCTNOT, INV, D/R, EF, GROW/DEC, PF, TRANSF, ROOTS/EB,
RF, CIRCMOT, ANGMES, COS, SIN, RTTRI, NRTTRI

Stewart PF, RF, GRAPH, MOD, LOG, EF, SEQUENCES, EQN R/F

Faires R/F, LF, REALLN, XYPL, RF, APPLICATION, QUAD, D/R, GRAPH,
TECH, PYTHTHM, TRANSF, PARABOLA, SYMM, CALC,
INV, ROOTS, PF, COMPLEX, TRIG, SIN, COS, PERANG, ANG, TAN,
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Table A3. Cont.

Book Hub Names

COTAN, SEC, COSEC, IDENTITIES, SUMDIFF, RTTRI, EF, LOG,
GROW/DEC, CONICS, ELLIPSE, HYPERBOLA, CIRC, REFLECT,
QUADF, POLAR, DISTF, COMPOSITION

CME TAN, SIN, COS, PYTHTHM, GRAPH, ANG,
RADIANS, TRIG, CIRC, EQN, RECIPROCAL, COMPLEX,
DEMOIVRE, PF, IDENTITIES, SUM, RF, SECLINE, SLOPE, EF, E,
FACTORIAL, TANLN, COMBINATORICS, PERMUTCOMB,
R/F, PROB, BINEXP, RECURS, DIFFTAB, TAB, PROOF, GEOM,
ANALGEOM, COORDPL, EXPVAL, EVENTS, CALC,
AREAUNDCURVE, COUNTPRINC, ROOTUNITY

Larson DIVALG, PF, GRAPHS, MOD, EQNS, OPER

COMAP TRANSF, LINEAR, GEOMETRY, PF, F/R, GRAPHS,
MATHMODEL, TABLES, EQN, DV, IV, EXP, LOG, INVERSE, MODELING,
FALLINGOBJECTS, TECHNOLOGY, COMPLEX, PERIODIC, COS, SIN,
RADIAN, TAN, RTTRI, OBLIQUE, VECTORS, POLAR, MATRIX, ANALGEO,
PARABOLA, COUNTINGPRINC, DIFFEQ

Rockswold F/R, SETS, REP, GRAPHS, LINEAR, INEQ, NUMBERS, MODELS,
ZERO, EQN, QUADRATIC, PF, DIVISION, RF
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