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Abstract: In this paper, a new variational Bayesian-based Kalman filter (KF) is presented to solve
the filtering problem for a linear system with unknown time-varying measurement loss probability
(UTVMLP) and non-stationary heavy-tailed measurement noise (NSHTMN). Firstly, the NSHTMN
was modelled as a Gaussian-Student’s t-mixture distribution via employing a Bernoulli random vari-
able (BM). Secondly, by utilizing another Bernoulli random variable (BL), the form of the likelihood
function consisting of two mixture distributions was converted from a weight sum to an exponential
product and a new hierarchical Gaussian state-space model was therefore established. Finally, the
system state vector, BM, BL, the intermediate random variables, the mixing probability, and the
UTVMLP were jointly inferred by employing the variational Bayesian technique. Simulation results
revealed that in the scenario of NSHTMN, the proposed filter had a better performance than current
algorithms and further improved the estimation accuracy of UTVMLP.

Keywords: variational Bayesian; Kalman filter; measurement loss probability; mixture distribution;
non-stationary heavy-tailed measurement noise

1. Introduction

Under the minimal mean square error criteria, the KF is the optimal estimator for
the linear Gaussian state-space model [1,2]. KF has been widely employed in a variety of
applications [3–5]. Unfortunately, in many practical applications, when the sensor pro-
duces intermittent faults, the actual measurement of the sensors may not be accurately
represented by the KF measurement model [6,7]. If the random measurement loss occurs,
the measurement of the sensors contains only pure noise. In this situation, the estimation
accuracy of a typical KF will drop significantly or even diverge. Various filtering methods
have been developed to address the measurement loss filtering issue, such as the intermit-
tent KF (IKF) [8,9]. However, IKF has an important assumption: the measurement loss
probability is known. In practical applications, the measurement loss probability is usually
unknown and the IKF is no longer applicable in this case [7].

In order to address the filtering issues of the unknown measurement loss probability
of the linear system, the first Bayesian Kalman filter and the second Bayesian Kalman
filter were designed by estimating the process and posterior distribution of the measure-
ment loss, respectively [10]. The above two filters, however, are no longer valid if the
unknown measurement loss probability is time-varying. Recently, the variational Bayesian-
based adaptive KF (VBAKF) was derived for a linear system with unknown time-varying
measurement loss probability (UTVMLP) and both the system vector and UTVMLP are
jointly estimated by introducing the variational Bayesian technique [7]. Additionally,
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VBAKF shows excellent performance in the context of white Gaussian measurement noise
with known statistical characteristics. Unfortunately, in realistic engineering applications,
measurement outliers may occur at various periods due to environmental changes and
unreliable sensors, resulting in NSHTMN, i.e., when the system runs healthily, the measure-
ment noise is the Gaussian-distributed, and when the time-varying measurement outliers
erode the system, the measurement noise is heavy-tail-distributed [11,12]. In the scenario
of NSHTMN, the estimation accuracy of VBAKF will drop sharply.

Recently, some mixture distribution-based algorithms have been presented to address
NSHTMN, such as the Gaussian-Student’s t-mixture distribution-based KF (GSTKF) [13,14].
However, the filtering problem with UTVMLP and NSHTMN cannot directly solved by
employing a mixture distribution, that is, under the scenario of UTVMLP and NSHTMN,
the current likelihood function is a weighted sum of double-mixture distributions, which is
an unclosed and unconjugated distribution that makes the Bayesian inference difficult to
employ directly.

In this paper, a new variational Bayesian-based KF is presented to settle the filtering
issue for linear discrete-time systems with UTVMLP and NSHTMN. Firstly, the Gaussian-
Student’s t-mixture distribution with BM is employed to model the NSHTMN. Secondly,
the form of the likelihood function is converted to an exponential product and constructs
a new hierarchical Gaussian state-space model by utilizing BL. Thirdly, the variational
Bayesian method is introduced to simultaneously estimate the system state vector, BM,
BL, the intermediate random variables, the mixing probability, and the UTVMLP. Finally,
a numerical simulation experiment reveals that the proposed filter has better estimation
accuracy but is more time-consuming than existing filtering algorithms in the scenarios of
NSHTMN and UTVMLP.

The contributions of this paper are as follows:

(a) By employing a Bernoulli-distributed variable, the NSHTMN is modelled as a Gaussian-
Student’s t-mixture distribution;

(b) The measurement likelihood function is converted from the weight sum of two
mixture distributions to an exponential product and a new hierarchical Gaussian
state-space model is therefore derived;

(c) The system state vector, UTVMLP, and the unknown variables are simultaneously
estimated by utilizing the variational Bayesian technique;

(d) Numerical simulation results indicate that the proposed filter has better performance
than that of existing algorithms in the scenarios of NSHTMN and UTVMLP

2. Problem Formulation

Consider the linear stochastic system with the following state and measurement equations:

xt = Ft−1xt−1 + et−1 (1)

yt = btHtxt + gt (2)

where xt ∈ Rm denotes the system state vector; Ft−1 ∈ Rm×m denotes the state tran-
sition matrix; et ∈ Rm represents the Gaussian-distributed white process noise vector
with a zero mean value and covariance matrix Qt; yt ∈ Rn represents the measurement
vector; Ht ∈ Rn×m is the measurement matrix; gt ∈ Rn is the white NSHTMN vector;
and t represents the index of discrete time. The phenomenon of measurement loss is
described by introducing the identically distributed and mutually uncorrelated measure-
ment loss defined as the Bernoulli random variable (BL) bt, which is expressed by the
following equations.

p(bt = 1) = E[bt] = γt (3)

p(bt = 0) = 1− E[bt] = 1− γt (4)

where γt ∈ [0, 1] denotes the time-varying measurement loss probability. Note that the
value of γt is unknown in this paper. The initial Gaussian-distributed system state vector
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x0 is the random vector with mean x̂0|0 = 0 and covariance matrix P0|0. Additionally, it
is assumed that the initial system state vector x0, the noise vectors et−1 and gt, and the
Bernoulli random variable bt are mutually independent.

It can be seen from Equations (1)–(4) that the ideal measurement was received by
the sensor when bt = 0 and the measurement loss with UTVMLP occurred when bt = 1.
Meanwhile, the measurement noise is NSHTMN due to measurement outliers, that is,
when the system runs healthily, the measurement noise is Gaussian-distributed, and when
measurement outliers erode the system, the measurement noise is heavy-tail-distributed.
The NSHTMN and UTVMLP can result in estimation errors or even in filtering divergence.
Therefore, a new variational Bayesian-based Kalman filter with NSHTMN and UTVMLP
will be proposed.

3. Proposed Variational Bayesian-Based Kalman Filter

In this section, a new variational Bayesian-based Kalman filter is proposed to address
the filtering issue for a linear system with NSHTMN and UTVMLP. Firstly, the Gaussian-
Student’s t-mixture distribution is utilized to model the NSHTMN and the hierarchical
form is derived. Secondly, by converting the measurement likelihood function into an
exponential multiplication, a new hierarchical Gaussian state-space model is established.
Thirdly, by using the variational Bayesian method, the system state and unknown variables
are simultaneously estimated. Finally, the required mathematical expectations are given.

3.1. Gaussian-Student’s t-Mixture Distribution

The NSHTMN vector can be modeled as the Gaussian-Student’s t-mixture distribu-
tion by employing another mixing-defined Bernoulli random variable (BM), ζt, and the
probability density function (PDF), p(gt) is given as

p(gt) =
1

∑
ζt=0

∫
[N(gt; 0, Rt)]

ζt [ST(gt; 0, Rt, µ)](1−ζt)p(ζt|ϕt)p(ϕt)dϕt ζt ∈ {0, 1} (5)

where N(x; 0, Σ) represents the Gaussian PDF with a zero mean vector and covariance
matrix Σ, and ST(x; 0, Y,ω) represents the student’s t-PDF with a zero mean vector, co-
variance matrix Y, and degree of freedom (dof) parameterω. Rt represents the covariance
matrix of the nominal measurement noise. The PDF of the mixing probability ϕt and the
probability mass function (PMF) of ζt are defined as follows, respectively.

p(ϕt) = Be(ϕt; h0, 1− h0) (6)

p(ζt|ϕt) = ϕt
ζt(1− ϕt)

(1−ζt) (7)

where Be(x;σ, κ) represents the Beta PDF with shape parameters σ and κ.
Due to the hierarchical properties of the student’s t-distribution, Equation (5) can be

rewritten as such:

p(gt) =
1

∑
ζt=0

∫ +∞

0

∫
[N(gt; 0, Rt)]

ζt [N(gt; 0, Rt/βt)]
(1−ζt)p(βt)p(ζt|ϕt)p(ϕt)dϕtdβt (8)

p(βt) = G
(

βt,
µ

2
,

µ

2

)
(9)

where G(x, a, b) represents the Gamma PDF with shape parameter a and rate parameter b,
and βt represents the intermediate random variable.
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3.2. New Hierarchical Gaussian State-Space Model (HGSSM)

According to Equations (2)–(4), the measurement likelihood PDF is derived as Based
on Equation (2), the following equation can be obtained.

p(yt|xt, γt) =
1
∑

bt=0
p(yt, bt|xt, γt)

= p(yt|xt, bt = 1)p(bt = 1) + p(yt|xt, bt = 0)p(bt = 0)
= (1− γt)p(yt|xt, bt = 1) + γt p(yt|xt, bt = 0)

(10)

p(yt|xt, bt = 1) = pgt(yt −Htxt) (11)

p(yt|xt, bt = 0) = pgt(yt) (12)

where pgt(·) represents the measurement noise PD. Substituting Equations (11) and (12) in
Equation (10) results in

p(yt|xt, γt) = (1− γt)pgt(yt −Htxt) + γt pgt(yt) (13)

Remark 1. The measurement likelihood PDF in Equation (13) is an unclosed and un-
conjugated weighted sum form, and it is impossible to infer the system state vector and
unknown parameters directly by utilizing the variational Bayesian. The weighted sum will
then be converted into an exponential multiplication form to address this problem.

The PMF of BL bt is given as

p(bt|γt) = (1− γt)
bt γt

(1−bt) (14)

Exploiting Equations (13) and (14), the measurement likelihood PDF is reformulated as

p(yt|xt, γt) =
1
∑

bt=0
p(yt|xt, bt)p(bt|γt)

=
1
∑

bt=0

[
(1− γt)

bt
[
pgt(yt −Htxt)

]bt γt
(1−bt)

[
pgt(yt)

](1−bt)
]

=
1
∑

bt=0

[[
pgt(yt −Htxt)

]bt
[
pgt(yt)

](1−bt)
]

p(bt|γt)

(15)

According Equation (15), the exponential multiplication-formed likelihood PDF
p(yt|xt, bt) is given as follows.

p(yt|xt, bt) =
[
pgt(yt −Htxt)

]bt
[
pgt(yt)

](1−bt) (16)

Remark 2. The variational Bayesian method must select the suitable conjugate-prior
distributions for unknown variables. Therefore, the appropriate prior PDFs to construct a
new HGSSM are selected.

The one-step predicted PDF p(xt|y1:t−1) of system state vector xt is assumed as being
Gaussian distributed as follows.

p(xt|y1:t−1) = N
(

xt; x̂t|t−1, Pt|t−1

)
(17)

where x̂t|t−1 represents the mean vector and Pt|t−1 represents the covariance matrix. Both
x̂t|t−1 and Pt|t−1 can be updated by the typical Kalman filter, which is given as

x̂t|t−1 = Ft−1 x̂t−1|t−1 (18)

Pt|t−1 = Ht−1Pt−1|t−1HT
t−1 + Qt−1 (19)
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In employing Equations (8), (9) and (16), the conditional likelihood PDF p(yt|xt, bt, β, ζt)
is derived as

p(yt|xt, bt, βt, ζt) =
[
N(yt; Htxt, Rt)

ζt N(yt; Htxt, Rt/βt)
(1−ζt)

]bt

×
[
N(yt; 0, Rt)

ζt N(yt; 0, Rt/βt)
(1−ζt)

](1−bt)

= N(yt; Htxt, Rt)
ζtbt N(yt; Htxt, Rt/βt)

(1−ζt)bt

×N(yt; 0, Rt)
ζt(1−bt)N(yt; 0, Rt/βt)

(1−ζt)(1−bt)

(20)

It can be seen from Equations (6)–(9), (13) and (20) that the measurement vector yt
depends on system state vector xt, intermediate random variable βt, BM ζt, BL bt, mixing
probability ϕt, and measurement loss probability γt. The following joint-prior PDF must
be calculated, i.e.,

p(Ξ|y1:t−1 ) = p(xt|y1:t−1)p(βt)p(bt|γt)p(ζt|ϕt)p(ϕt)p(γt|y1:t−1),
Ξ , {xt, βt, bt, ζt, γt, ϕ} (21)

where the definitions of p(γt), p(ζt|ϕ), p(β), p(bt|γt), and p(xt|y1:t−1) are given in
Equations (6), (7), (9), (14) and (17), respectively. Additionally, p(γt|y1:t−1) denotes the
prior PDF of the time-varying measurement loss probability, which can be assumed as the
following Beta distribution.

p(γt|y1:t−1) = Be
(

γt; η̂t|t−1, δ̂t|t−1

)
=
∫

p(γt−1|y1:t−1)p(γt|γt−1)dγt−1
(
Bayes′ theorem

) (22)

where the shape parameters η̂t|t−1 and δ̂t|t−1 can be calculated by introducing the forgetting
factor ρ ∈ (0, 1] as follows.

η̂t|t−1 = ρη̂t−1|t−1 (23)

δ̂t|t−1 = ρδ̂t−1|t−1 (24)

where η̂t−1|t−1 and δ̂t−1|t−1 represent posterior shape parameters.
The proposed new HGSSM is comprised of Equations (14) and (17)–(24). System

state vector xt, intermediate random variable βt, BM ζt, BL bt, mixing probability ϕt,
and measurement loss probability γt will be simultaneously estimated by utilizing the
variational Bayesian method.

3.3. Variational Bayesian Approximation of the Joint Posterior PDFs

Aiming at the estimation of the unknown variables of the new HGSSM, the joint
posterior PDF p(Ξ|yt ) with Ξ , {xt, βt, bt, ζt, ϕt, γt} is required to be solved. However,
the analytical solution of p(Ξ|yt ) is not accessible. The variational Bayesian approach
is therefore employed to determine an approximate PDF for p(Ξ|yt ) and to compute an
approximate solution [15–17], i.e.,

p(Ξ|y1:t ) ≈ qa(xt)qa(βt)qa(bt)qa(ζt)qa(ϕt)qa(γt) (25)

where θ represents an arbitrary element of Ξ and qa(θ) denotes the approximate PDF
or PMF. By minimizing the Kullback–Leibler divergence (KLD) between p(Ξ|y1:t ) and
qa(xt)qa(βt)qa(bt)qa(ζt)qa(ϕt)qa(γt), qa(θ) can be obtained as follows.

{qa(xt), qa(βt), qa(bt), qa(ζt), qa(ϕt), qa(γt)} = argminKLD
(qa(xt)qa(βt)qa(bt)qa(ζt)qa(ϕt)qa(γt)||p(Ξ|y1:t ))

(26)

KLD(qa(A)||p(A)) ,
∫

qa(A) log
qa(A)

p(A)
dA (27)
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where KLD(qa(A)||p(A)) represents the KLD between qa(A) and p(A), and the optimal
solution of Equation (26) can be calculated via the following formula [15,17].

log qa(θ) = EΞ−θ [log p(Ξ, y1:t)] + cθ (28)

where E(θ) denotes the mathematical expectation operation, Ξ−θ signifies a grouping of
all the components in Ξ apart from θ, and the constant with regard to θ is denoted by
cθ . Additionally, the fixed-point iteration technique is utilized to derive the approximate
formation of qa(θ) due to the fact that estimated parameters are mutually coupled.

The joint PDF p(Ξ, y1:t) in Equation (26) can be derived as

p(Ξ, y1:t) = N(yt; Htxt, Rt)
ζtbt N(yt; Htxt, Rt/βt)

(1−ζt)bt

×N(yt; 0, Rt)
ζt(1−bt)N(yt; 0, Rt/βt)

(1−ζt)(1−bt)N
(

xt; x̂t|t−1, Pt|t−1

)
×G

(
βt,

µt
2 , µt

2
)

ϕt
ζt(1− ϕt)

(1−ζt)(1− γt)
bt γt

(1−bt)

×Be(ϕt; h0, 1− h0)Be
(

γt; η̂t|t−1, δ̂t|t−1

)
p(y1:t−1)

(29)

Proposition 1. Let θ = xt and by using Equation (29) in (28), q(s+1)
a (xt) can be updated as

Gaussian, i.e.,
q(s+1)

a (xt) = N
(

xt; x̂(s+1)
t|t , P(s+1)

t|t

)
(30)

where q(s+1)
a (·) represents the approximate PDF in the (s + 1)th iteration, while the mean

vector x̂(s+1)
t|t and the covariance matrix P(s+1)

t|t are assumed to be updated in accordance
with the traditional Kalman filter as follows.

x̂(s+1)
t|t = x̂t|t−1 + K(s+1)

t

(
yt −Ht x̂t|t−1

)
(31)

P(s+1)
t|t = P̂(s+1)

t|t−1 −K(s+1)
t HtP̂

(s+1)
t|t−1 (32)

K(s+1)
t = P̂(s+1)

t|t−1 HT
t

(
HtP̂

(s+1)
t|t−1 HT

t +
~
R
(s+1)

t

)−1

(33)

where K(s+1)
t represents the Kalman gain matrix. The modified measurement noise covari-

ance matrix at (s + 1)th iteration
~
R
(s+1)

t is formulated as

~
R
(s+1)

t =
Rt

E(s)[ζt]E(s)[bt] + E(s)[1− ζt]E(s)[bt]E(s)[βt]
(34)

where E(s)[·] represents the mathematical expectation of variables in the sth iteration.

Proof: see Appendix A.

Proposition 2. Let θ = βt and by using Equation (29) in Equation (28), q(s+1)
a (βt) can be

updated as Gamma, i.e.,

q(s+1)
a (βt) = G

(
βt; π

(s+1)
t , ν

(s+1)
t

)
(35)

where the shape parameter π
(s+1)
t and rate parameter ν

(s+1)
t are formulated as

π
(s+1)
t = 0.5

(
nE(s+1)[1− ζt] + µt

)
(36)

ν
(s+1)
t = 0.5

[
tr
(

G(s+1)
t R−1

t

)
+ µt

]
(37)
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where n represents the dimension of the measurement vector, tr(·) represents the trace
operation, and G(s+1)

t is defined as

G(s+1)
t = E(s)[1− ζt]

{
E(s)[bt]

[
HtP

(s+1)
t|t HT

t +
(

yt −Ht x̂
(s+1)
t|t

)(
yt −Ht x̂

(s+1)
t|t

)T
]

+E(s)[1− ζt]E(s)[1− bt]yt(yt)
T
} (38)

Proof: see Appendix B.

Proposition 3. Let θ = bt and by using Equation (29) in Equation (28), q(s+1)
a (bt) can be

updated as the Bernoulli distribution. The posterior probabilities p(bt = 1) and p(bt = 0)
of BL bt are given as

p(s+1)(bt = 1)∆(s+1) exp
{

E(s)[log(1− γt)]− 0.5tr
(

C(s+1)
t R−1

t

)
+ 0.5nE(s)[1− ζt]E(s)[log(βt)]

}
(39)

p(s+1)(bt = 0) = ∆(s+1) exp
{

E(s)[log(γt)]− 0.5tr
(

D(s+1)
t R−1

t

)
+ 0.5nE(s)[1− ζt]E(s)[log(βt)]

}
(40)

where ∆(s+1) represents the normalizing constant and the parameters C(s+1)
t and D(s+1)

t
are, respectively, defined as

C(s+1)
t =

{
E(s)[ζt] + E(s)[βt]E(s)[1− ζt]

}[
HtP

(s+1)
t|t HT

t +
(

yt −Ht x̂
(s+1)
t|t

)(
yt −Ht x̂

(s+1)
t|t

)T
]

(41)

D(s+1)
t =

{
E(s)[ζt] + E(s)[βt]E(s)[1− ζt]

}
ytyT

t (42)

Proof: see Appendix C.

Proposition 4. Let θ = ζt and by using Equation (29) in (28), q(s+1)
a (ζt) can be also updated

as the Bernoulli distribution. The posterior probabilities p(ζt = 1) and p(ζt = 0) of BM ζt
are given as

p(s+1)(ζt = 1) = ∇(s+1) exp
{

E(s)[log(ϕt)]− 0.5tr
(

V(s+1)
t R−1

t

)}
(43)

p(s+1)(ζt = 0) = ∇(s+1) exp
{

E(s)[log(1− ϕt)]− 0.5tr
(

W(s+1)
t R−1

t

)
+ 0.5nE(s)[log(βt)]

}
(44)

where ∇(s+1) also represents the normalizing constant and the definitions of parameters
V(s+1)

t and W(s+1)
t are, respectively, given as

V(s+1)
t = E(s)[bt]

[
HtP

(s+1)
t|t HT

t +
(

yt −Ht x̂
(s+1)
t|t

)(
yt −Ht x̂

(s+1)
t|t

)T
]

+E(s)[1− bt]ytyT
t

(45)

W(s+1)
t = E(s)[bt]E(s)[βt]

[
HtP

(s+1)
t|t HT

t +
(

yt −Ht x̂
(s+1)
t|t

)(
yt −Ht x̂

(s+1)
t|t

)T
]

+E(s)[1− bt]E(s)[βt]ytyT
t

(46)

Proof: see Appendix D.

Proposition 5. Let θ = ϕt and by using Equation (29) in (28), q(s+1)
a (ϕt) can be updated as

the Beta distribution, i.e.,

q(s+1)
a (ϕt) = Be

(
ϕt; h(s+1)

t , d(s+1)
t

)
(47)
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where the shape parameters h(s+1)
t and d(s+1)

t are formulated as

h(s+1)
t = E(s+1)[ζt] + h0 (48)

d(s+1)
t = E(s+1)[1− ζt] + 1− h0 (49)

Proof: see Appendix E.

Proposition 6. Let θ = γt and by using Equation (29) in Equation (28), q(s+1)
a (γt) can be

also updated as the Beta distribution, i.e.,

q(s+1)
a (γt) = Be

(
γt; η̂

(s+1)
t , δ̂

(s+1)
t

)
(50)

where the definitions of shape parameters η̂
(s+1)
t and δ̂

(s+1)
t are given as

η̂
(s+1)
t = E(s+1)[1− bt] + η̂t|t−1 (51)

δ̂
(s+1)
t = E(s+1)[bt] + δ̂t|t−1 (52)

Proof: see Appendix F.

3.4. Calculation of the Required Mathematical Expectations

The required mathematical expectations E(s+1)[βt], E(s+1)[log(βt)],
E(s+1)[bt], E(s+1)[1− bt], E(s+1)[ζt], E(s+1)[1− ζt], E(s+1)[log(ϕt)], E(s+1)[log(1− ϕt)],
E(s+1)[log(γt)], and E(s+1)[log(1− γt)] in Section 3.3 are defined, respectively, as follows:

E(s+1)[βt] =
π
(s+1)
t

ν
(s+1)
t

(53)

E(s+1)[log(βt)] = −Ψ
(

π
(s+1)
t

)
− log

(
ν
(s+1)
t

)
(54)

E(s+1)[bt] =
p(s+1)(bt = 1)

p(s+1)(bt = 1)p(s+1)(bt = 0)
(55)

E(s+1)[1− bt] = 1− E(s+1)[bt] (56)

E(s+1)[ζt] =
p(s+1)(ζt = 1)

p(s+1)(ζt = 1)p(s+1)(ζt = 0)
(57)

E(s+1)[1− ζt] = 1− E(s+1)[ζt] (58)

E(s+1)[log(ϕt)] = Ψ
(

h(s+1)
t

)
−Ψ

(
h(s+1)

t + d(s+1)
t

)
(59)

E(s+1)[log(1− ϕt)] = Ψ
(

d(s+1)
t

)
−Ψ

(
h(s+1)

t + d(s+1)
t

)
(60)

E(s+1)[log(γt)] = Ψ
(

η
(s+1)
t

)
−Ψ

(
η
(s+1)
t + δ

(s+1)
t

)
(61)

E(s+1)[log(1− γt)] = Ψ
(

δ
(s+1)
t

)
−Ψ

(
η
(s+1)
t + δ

(s+1)
t

)
(62)

where Ψ(·) represents the digamma function [18].
The presented variational Bayesian-based Kalman filter with UTVMLP and NSHTMN

consists of Equations (18), (19) and (30)–(62). Table 1 describes the implementation of the
proposed new KF.
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Table 1. The proposed variational Bayesian-based Kalman filter with UTVMLP and NSHTMN
(one-time step).

Inputs: x̂t−1|t−1, Pt−1|t−1, Qt−1|t−1, Rt−1|t−1, yt, Ft−1, Ht, n, m, µt, h0, η̂t−1, δ̂t−1, NI , ς

Time update:
1. Obtain x̂t|t−1 and Pt|t−1 utilizing Equations (18) and (19) (time update of typical Kalman filter).
Variational measurement update:
2. Initialization: x̂(0)t|t = xt|t−1, P(0)

t|t = Pt|t−1, E(0)[βt] = 1, E(0)[log(βt)] = 0, E(0)[bt] = η̂t−1/δ̂t−1,

E(0)[1− bt] = 1− E(0)[bt], η̂
(0)
t = η̂t−1, δ̂

(0)
t = δ̂t−1, E(0)[ζt] = 1, E(0)[ζt] = 1− E(0)[ζt],

E(0)[log(ϕt)] = Ψ(h0)−Ψ(1), E(s+1)[log(1− ϕt)] = Ψ(1− h0)−Ψ(1),

E(s+1)[log(γt)] = Ψ
(

η̂
(0)
t

)
−Ψ

(
η̂
(0)
t + δ̂

(0)
t

)
, E(s+1)[log(1− γt)] = Ψ

(
δ̂
(0)
t

)
−Ψ

(
η̂
(0)
t + δ̂

(0)
t

)
for s = 0 : NI − 1.
3. Update q(s+1)

a (xt) by Equation (30).

4. Obtain x̂(s+1)
t|t , P(s+1)

t|t , and
~
R
(s+1)
t by utilizing Equations (31)–(34) (typical Kalman filter).

5. Update the Gamma-distributed q(s+1)
a (βt) by Equation (35).

6. Obtain π
(s+1)
t , ν

(s+1)
t , and G(s+1)

t by utilizing Equations (36)–(38).
7. Update the Bernoulli-distributed q(s+1)

a (bt).
8. Obtain p(s+1)(bt = 1), p(s+1)(bt = 0), C(s+1)

t , and D(s+1)
t by utilizing Equations (39)–(42).

9. Obtain E(s+1)[bt] and E(s+1)[1− bt] by utilizing Equations (55) and (56).
10. Update the Bernoulli-distributed q(s+1)

a (ζt).
11. Obtain p(s+1)(ζt = 1), p(s+1)(ζt = 0), V(s+1)

t , and W(s+1)
t by utilizing Equations (43)–(46).

12. Obtain E(s+1)[ζt] and E(s+1)[1− ζt] by utilizing Equations (57) and (58).
13. Update the Beta-distributed q(s+1)

a (ϕt) by Equation (47).
14. Obtain h(s+1)

t and d(s+1)
t by utilizing Equations (48) and (49).

15. Obtain E(s+1)[log(ϕt)] and E(s+1)[log(1− ϕt)] by utilizing Equations (59) and (60).
16. Update the Beta-distributed q(s+1)

a (γt) by Equation (50).
17. Obtain η̂

(s+1)
t and δ̂

(s+1)
t by utilizing Equations (51) and (52).

18. Obtain E(s+1)[log(γt)] and E(s+1)[log(1− γt)] by utilizing Equations (61) and (62).
19. If

(
‖ x̂(s+1)

t|t − x̂(s)t|t ‖ / ‖ x̂(s)t|t ‖
)
≤ ς, the iteration stopped.

End for:
20. x̂t|t = x̂(s)t|t , Pt|t = P(s)

t|t , ht = h(s)t , dt = d(s)t , ηt = η
(s)
t , δt = δ

(s)
t

Outputs: x̂t|t, Pt|t, ht, dt, ηt, δt, ht/(ht + dt), ηt/(ηt + δt)

4. Simulations

Aimed at demonstrating the superiority of the presented filter in the scenario with
UTVMLP and NSHTMN, a numerical example is simulated. The process and measurement
equations of the stochastic system are, respectively, given as [7]

xt =

[
0.6 0.4
0.1 0.9

]
xt−1 + et−1 (63)

yt = bt
[

1 −2
]
xt + gt (64)

where the Gaussian process noise et−1 and the NSHTMN gt are given as [12]

et−1 ∼ N(0, Qt) (65)

gt ∼ N(0, Rt) t ∈ [1, 100](Gaussian)

gt ∼
{

N(0, Rt)w.p. = 0.98
N(0, 500Rt)w.p. = 0.02

t ∈ [101, 200](slightly heavy− tailed)

gt ∼
{

N(0, Rt)w.p. = 0.95
N(0, 500Rt)w.p. = 0.05

t ∈ [201, 300](moderately heavy− tailed)

gt ∼ N(0, Rt) t ∈ [301, 400](Gaussian)

(66)



Entropy 2021, 23, 1351 10 of 18

where w.p. represents “with probability”. The true process noise covariance matrix Qt
with parameter M = 1 and the nominal measurement noise covariance matrix Rt with
parameter N = 150 m2 are set as

Qt = M
[

1 1
0 1

]
(67)

Rt = N (68)

The real UTVMLP is set as

p(γt) =


0.1 t ∈ [1, 100]

0.15 t ∈ [101, 200]
0.3 t ∈ [201, 300]
0.1 t ∈ [301, 400]

(69)

From Equations (66)–(69), it can be seen that the measurement noise and UTVMLP
are divided into four stages, as shown in Table 2. The remaining system parameters are as
follows: the sampling interval ∆k = 0.01 s and the total simulation time T = 400 s. The
proposed filter is compared with the typical Kalman filter (KF) [2]; the existing variational
Bayesian-based adaptive KF with UTVMLP (VBAKF) [7]; the existing Gaussian-Student’s
t-mixture distribution-based KF (GSTKF) with Gaussian process noise [14]; and the existing
IKF with known real measurement loss probability [8]. The parameters of VBAKF are
selected as p0 = 0.5, α0 = 5, β0 = 5, ρ = 1− exp(−5), and Nm = 10. The parameters of
GSTKF are selected as vt = 5 and e0 = 0.85. The parameters of the proposed filter are
given as ρ = 0.99, µ = 5, h0 = 0.85, NI = 10, η0 = 5, and δt = 5, ς = 10−16. All filters are
programmed with MATLAB R2018a and run on a computer with Intel Core i5-6300HQ
CPU at 2.30 GHz and 8 GB of RAM.

Table 2. The stages of measurement and the corresponding measurement noise and UTVMLP.

Measurement Stage Measurement Noise UTVMLP

Stage 1, time 1 s~100s gt ∼ N(0, Rt)
(Gaussian) 0.1 (slight loss)

Stage 2, time 101 s~200 s gt ∼
{

N(0, Rt)w.p. = 0.98
N(0, 500Rt)w.p. = 0.02

(slightly heavy-tailed)
0.15 (slight loss)

Stage 3, time 201 s~300 s gt ∼
{

N(0, Rt)w.p. = 0.95
N(0, 500Rt)w.p. = 0.05

(moderately heavy-tailed)
0.3 (moderate loss)

Stage 4, time 301 s~400 s gt ∼ N(0, Rt)
(Gaussian) 0.1 (slight loss)

Aimed at evaluating the performances in the estimation of the system state vector of
all the algorithms, the root-mean square error (RMSE) and the averaged root-mean square
error (AGRMSE) are utilized as performance indicators. The definitions of RMSE and
AGRMSE of the system state are given as

RMSEx =

√√√√ 1
Mc

Mr

∑
r=1

(
(xr

t − x̂r
t )

2 + (yr
t − ŷr

t)
2
)

(70)

AGRMSEx =

√√√√ 1
McT

T

∑
t=1

Mr

∑
r=1

(
(xr

t − x̂r
t )

2 + (yr
t − ŷr

t)
2
)

(71)
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where (xr
t , yr

t) and (x̂r
t , ŷr

t) denote the actual and estimated system state at the jth Monte
Carlo run and discrete-time t, respectively. Mc = 500 represents the total Monte Carlo
run time.

Different from the proposed algorithm and VBAKF, the KF, IKF and GSTKF do not
estimate UTVMLP. Although IKF can also address the filtering problem with measurement
loss, IKF is based on the assumption that the measurement loss probability is known.
Therefore, only VBAKF and the proposed algorithm participate in the comparison of the
UTVMLP estimation performance.

Figure 1 shows the RMSExs of the proposed filter and the existing filters over 500 times
of the Monte Carlo run. Additionally, the AGRMSExs and SSRTs of different filters are
listed in Table 2. It can be seen from Figure 1 and Table 3 that in the contexts of UTVMLP
and NSHTMN, when the measurement is the Gaussian measurement noise and there is
slight loss probability, as shown in stages 1 and 4, the estimation accuracy of the proposed
filter is close to the IKF with true loss probability and the performance of the proposed
algorithm is better than the other algorithms. We can also find that the proposed algorithm
still has better performance than the existing algorithms when the measurement has heavy-
tailed measurement noise and larger measurement loss probability, as shown in stages 2
and 4. In addition, the proposed algorithm has longer SSRT and higher computational
complexity than the existing filters, which can be observed from Table 3.
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Table 3. AGRMSExs and single-step running times (SSRT) of different filters.

Filters KF IKF VBAKF GSTKF The Proposed Filter

AGRMSEx in Stage 1 10.1336 4.4326 4.7705 8.7683 4.7704

AGRMSEx in Stage 2 25.4009 11.1049 18.7603 14.4343 5.0660

AGRMSEx in Stage 3 58.0561 17.5274 35.8194 28.0354 6.3044

AGRMSEx in Stage 4 24.9129 4.4448 27.0252 9.5892 4.5081

AGRMSEx in all stages 29.6259 9.3774 21.5944 15.2068 5.1623

SSRT (ms) 0.0276 0.0925 0.1166 0.1491 0.2989
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Figure 2 shows the curves of the true and estimated UTVMLPs of VBAKF and the
proposed filter over 500 times of the Monte Carlo run. Obviously, the NSHTMN has a
great influence on the filtering performance of VBAKF and the proposed filter has better
UTVMLP estimation accuracy than VBAKF in the scenario of NSHTMN.
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Figure 2. The true and estimated UTVMLPs.

Figures 3 and 4 show the RMSExs and the estimated UTVMLPs of the proposed
filter with shape parameter µ = 3, 4, 5, 6 over the 500 Monte Carlo run, respectively. The
corresponding SSRTs of the proposed filter with µ = 3, 4, 5, 6 are 0.2991, 0.2983, 0.2993,
and 0.2989. It can be seen that the proposed filter with different shape parameters has
better performance than current algorithms in the system state and UTVMLP estimations.
Moreover, the degree of freedom parameter µ has little influence on the estimation accuracy
and time complexity of the proposed algorithm, and the recommended value of µ is
therefore set as 5.
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Figure 4. The estimated UTVMLPs of the proposed filter with µ = 3, 4, 5, 6.

Figures 5 and 6 show the RMSExs and the estimated UTVMLPs of the proposed filter
with forgetting factor ρ = 0.93, 0.95, 0.97, 0.99 over the 500 Monte Carlo run, respectively.
The corresponding SSRT of the proposed filter with ρ = 0.93, 0.95, 0.97, 0.99 is approxi-
mately equal to 0.2990. We can find that the proposed filter with ρ = 0.99 has the best
performance in the system state and UTVMLP estimations, and the value of ρ has little
effect on calculation complexity. Therefore, the recommended value of ρ is 0.99.
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Figure 5. RMSEx of the proposed filter with forgetting factor ρ = 0.93, 0.95, 0.97, and 0.99.
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Figure 7 shows the AGRMSExs of the proposed filter and the current algorithms with
the iteration number NI = 1, 2, · · · 10. We can see from Figure 7 that the proposed filter
has a smaller AGRMSEx than the existing filters when NI ≥ 3 and the proposed filter
converges faster than the existing filters. However, Table 4 shows that the setting of NI has
a huge impact on the time consumption of the proposed filter and the SSRT increases with
the increase of NI . Therefore, considering time consumption and estimation accuracy, the
recommended value of NI ranges from 4 to 10.
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Table 4. SSRT of the proposed filter with the iteration number NI = 1, 2, · · · 10.

Iteration Number NI 1 2 3 4 5

SSRT (ms) 0.0327 0.0550 0.0894 0.1307 0.1570

Iteration Number NI 6 7 8 9 10

SSRT (ms) 0.1883 0.2243 0.2451 0.2835 0.2989

5. Conclusions

In this paper, a new VB-based KF is presented to address the filtering issue with
UTVMLP and NSHTMN. The system state vector, BM, BL, the intermediate random vari-
ables, the mixing probability, and the UTVMLP are simultaneously inferred by introducing
the variational Bayesian technique. Simulation results illustrated that the proposed filter
has a better performance than existing filters in the estimations of the system state vector
and UTVMLP.

6. Future Work

The environmental factors in practical applications may be more complicated than
this paper illustrated. Apart from non-stationary heavy-tailed measurement noise and
unknown loss probability, the system process noise may also present non-stationary heavy-
tailed distribution. In terms of measurement, random delays in measurement will also
appear. Therefore, in our future research, we will further consider the factors of non-
stationary heavy-tailed process noise and random measurement delay based on the the-
oretical content of this paper. Additionally, we will design a non-linear filtering method
with lower computational complexity to verify the effectiveness in the real world.
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Appendix A. Proof of Proposition 1

Utilizing Equation (29), log p(Ξ, y1:t) can be derived as

log p(Ξ, y1:t) = −0.5ζtbt(yt −Htxt)
TR−1

t (yt −Htxt)− 0.5(1− ζt)btβt(yt −Htxt)
TR−1

t (yt −Htxt)

−0.5ζt(1− bt)yT
t R−1

t yt − 0.5(1− ζt)(1− bt)βtyT
t R−1

t yt − 0.5
(

xt − x̂t|t−1

)T
P−1

t|t−1

×
(

xt − x̂t|t−1

)
− logG

(
βt,

µt
2 , µt

2
)
+ ζt log ϕt + (1− ϕt) log(1− ζt) + (1− γt) log bt

+γt log(1− bt) + logBe(ϕt; h0, 1− h0) + logBe
(

γt; η̂t|t−1, δ̂t|t−1

)
+ cΞ

(A1)

Exploiting θ = xt in Equation (28) and utilizing (a) yields

log q(s+1)
a (xt) = −0.5E(s)[ζt]E(s)[bt](yt −Htxt)

TR−1
t (yt −Htxt)− 0.5E(s)[1− ζt]E(s)[bt]

×E(s)[βt](yt −Htxt)
TR−1

t (yt −Htxt)− 0.5
(

xt − x̂t|t−1

)T
P−1

t|t−1

(
xt − x̂t|t−1

)
+ cxt

(A2)
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By exploiting Equation (34) in Equation (A2), the posterior PDF q(s+1)
a (xt) is defined as

q(s+1)
a (xt) ∝ N

(
xt; x̂(s+1)

t|t , P(s+1)
t|t

)
N
(

yt; Htxt,
~
R
(s+1)

t

)
(A3)

Based on Equation (A3), Equation (30) can be calculated and q(s+1)
a (xt) is updated by

utilizing the measurement update of the traditional Kalman filter.

Appendix B. Proof of Proposition 2

Exploiting θ = βt in Equation (28) and utilizing Equation (A1) yields

log q(s+1)
a (βt) = 0.5

(
nE(s)[1− ζt] + µt − 2

)
log(βt)− 0.5βtE(s)[1− ζt]E(s)[bt]

×tr
(

A(s+1)
t R−1

t

)
− 0.5βtE(s)[1− ζt]E(s)[1− bt]tr

(
B(s+1)

t R−1
t

)
− 0.5µtβt + cβt

= 0.5
(

nE(s)[1− ζt] + µt − 2
)

log(βt)− 0.5βt

[
tr
(

G(s+1)
t R−1

t

)
+ µt

]
+ cβt

(A4)

where A(s+1)
t and B(s+1)

t are defined as

A(s+1)
t = E(s+1)

[
(yt −Htxt)(yt −Htxt)

T
]

= HtP
(s+1)
t|t HT

t +
(

yt −Ht x̂
(s+1)
t|t

)(
yt −Ht x̂

(s+1)
t|t

)T (A5)

B(s+1)
t = E(s+1)

[
yt(yt)

T
]
= yt(yt)

T (A6)

By exploiting Equations (36) and (37) in Equation (A5), we have

log q(s+1)
a (βt) =

(
π
(s+1)
t − 1

)
log(βt)− ν

(s+1)
t βt + cβt (A7)

According to Equation (A7), we can obtain

q(s+1)
a (βt) ∝ βt

(π
(s+1)
t −1) exp

(
−ν

(s+1)
t βt

)
(A8)

Based on Equation (A8), Equation (41) can be obtained.

Appendix C. Proof of Proposition 3

Exploiting θ = bt in Equation (28) and utilizing Equation (A1) yields

log q(s+1)
a (bt) = btΠ

(s+1)
ta + (1− bt)Π

(s+1)
tb + cbt (A9)

where the intermediate variables Π(s+1)
ta and Π(s+1)

tb are defined as

Π(s+1)
ta = E(s)[log(1− γt)]− 0.5tr

(
C(s+1)

t R−1
t

)
+ 0.5nE(s)[1− ζt]E(s)[log(βt)] (A10)

Π(s+1)
tb = E(s)E(s)[log(γt)]− 0.5tr

(
D(s+1)

t R−1
t

)
+ 0.5nE(s)[1− ζt]E(s)[log(βt)] (A11)

By utilizing (A9)–(A11), the posterior PMF q(s+1)
a (bt) can be formulated as

q(s+1)
a (bt) =

[
∆(s+1) exp

(
Π(s+1)

ta

)]bt
[
∆(s+1) exp

(
Π(s+1)

tb

)](1−bt)
(A12)

Based on Equation (A12), q(s+1)
a (bt) can be updated as the Bernoulli distribution.
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Appendix D. Proof of Proposition 4

Exploiting θ = ζt in Equation (28) and utilizing Equation (A1) yields

log q(s+1)
a (ζt) = ζtΣ

(s+1)
ta + (1− ζt)Σ

(s+1)
tb + cbt (A13)

where the intermediate variables Σ(s+1)
ta and Σ(s+1)

tb are defined as

Σ(s+1)
ta =

{
E(s)[log(ϕt)]− 0.5tr

(
V(s+1)

t R−1
t

)}
(A14)

Σ(s+1)
tb = E(s)[log(1− ϕt)]− 0.5tr

(
W(s+1)

t R−1
t

)
+ 0.5nE(s)[log(βt)] (A15)

By utilizing Equations (A13)–(A15), the posterior PMF q(s+1)
a (ζt) can be formulated as

q(s+1)
a (ζt) =

[
∇(s+1) exp

(
Σ(s+1)

ta

)]ζt
[
∇(s+1) exp

(
Σ(s+1)

tb

)](1−ζt)
(A16)

Based on Equation (A16), q(s+1)
a (ζt) can be updated as the Bernoulli distribution.

Appendix E. Proof of Proposition 5

Exploiting θ = ϕt in Equation (28) and utilizing Equation (A1) yields

log q(s+1)
a (ϕt) = log(ϕt)

{
h0 + E(s)[ζt]− 1

}
+ log(1− ϕt)

{
E(s)[1− ζt]− h0

}
+ cϕt (A17)

Substituting Equations (48) and (49) in Equation (A17) yields

log q(s+1)
a (ϕt) = log(ϕt)

(
h(s+1)

t − 1
)
+ log(1− ϕt)

(
d(s+1)

t + 1
)
+ cϕt (A18)

According to Equation (A18), we obtain

q(s+1)
a (ϕt) ∝ ϕ

(h(s+1)
t −1)

t (1− ϕt)
(d(s+1)

t +1) (A19)

Based on Equation (A19), Equation (47) is obtained.

Appendix F. Proof of Proposition 5

Exploiting θ = γt in Equation (28) and utilizing Equation (A1) yields

log q(s+1)
a (γt) = log(γt)

(
η̂t|t−1 − E(s+1)[bt]

)
+ log(1− γt)

(
δ̂t|t−1 + E(s+1)[1− bt]

)
(A20)

Substituting Equations (51) and (52) in Equation (A20) yields

log q(s+1)
a (γt) = log(γt)

(
η̂
(s+1)
t + 1

)
+ log(1− γt)

(
δ̂
(s+1)
t − 1

)
+ cϕt (A21)

According to Equation (A21), we obtain

q(s+1)
a (γt) ∝ γ

(η̂
(s+1)
t +1)

t (1− γt)
(δ̂

(s+1)
t −1) (A22)

Based on Equation (A22), Equation (50) is obtained.
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