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Abstract: Currently, the world is still facing a COVID-19 (coronavirus disease 2019) classified as
a highly infectious disease due to its rapid spreading. The shortage of X-ray machines may lead
to critical situations and delay the diagnosis results, increasing the number of deaths. Therefore,
the exploitation of deep learning (DL) and optimization algorithms can be advantageous in early
diagnosis and COVID-19 detection. In this paper, we propose a framework for COVID-19 images
classification using hybridization of DL and swarm-based algorithms. The MobileNetV3 is used as a
backbone feature extraction to learn and extract relevant image representations as a DL model. As
a swarm-based algorithm, the Aquila Optimizer (Aqu) is used as a feature selector to reduce the
dimensionality of the image representations and improve the classification accuracy using only the
most essential selected features. To validate the proposed framework, two datasets with X-ray and
CT COVID-19 images are used. The obtained results from the experiments show a good performance
of the proposed framework in terms of classification accuracy and dimensionality reduction during
the feature extraction and selection phases. The Aqu feature selection algorithm achieves accuracy
better than other methods in terms of performance metrics.

Keywords: feature selection; metaheuristic; atomic orbital search; dynamic opposite-based learning

1. Introduction

In December 2019, COVID-19 was declared as a new coronavirus which resulted in
an explosive outbreak in China [1]. Due to its highly contagious characteristics, it swept
over more than 220 countries with more than 200 million confirmed cases and more than
4.3 million deaths. This pandemic has the second rank among all documented pandemics
based on the number of deaths after the 1918 flu pandemic [2]. More than 40% of these
confirmed cases and deaths are reported in only three countries: namely the United States,
Brazil, and India, as shown in Figure 1. The symptoms of this disease are fever, dry
cough, loss of smell and taste, dyspnea, fatigue, and malaise [3]. It may produce acute
complications for persons who suffer from other chronic diseases such as hypertension,
respiratory system diseases, autoimmune diseases, diabetes, and cardiovascular diseases.
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Figure 1. The structure of MobileNetV3 blocks and components.

Diagnosis of COVID-19 infection using X-ray imaging of the chest has been reported
as an accurate diagnosis technique [4]. The conventional human-based detecting technique
that depends on the technical experience of a physician or radiologist is inefficient, inac-
curate, time consuming, limited, and outdated [5]. The implementation of this technique
is subjected to human errors, resulting in the misdiagnosing of the disease. This problem
is exacerbated in remote regions where there is a lack of expert physicians. The develop-
ment of advanced artificial intelligence techniques (AI) allows medical researchers and
scientists to develop advanced tools, software, and instruments that can help medical radi-
ologists overcome the problems related to human-based detecting techniques [6]. The last
two years have seen a surge in the applications of AI in the diagnosis and forecasting
of COVID-19 [7–12]. Many approaches have been developed to detect and differentiate
between COVID-19 disease and conventional viral pneumonia using chest X-ray and CT
images [13]. Zhao et al. [14] investigated the relationship between COVID-19 pneumo-
nia and CT images of the chest. The results revealed typical features observed in the
examined images of COVID-19 cases; this finding allows researchers to apply AI in the
image processing of chest X-rays and CT of COVID-19 cases. Bernheim et al. [15] reported
that the CT images of the infected COVID-19 cases are characterized by the existence of
typical hallmarks such as consolidative opacities, ground-glass opacities, and crazy-paving
patterns. Pezzano et al. [16] developed a convolutional neural network (CNN) to detect
ground-glass opacities in the CT images of COVID-19 infected cases. Yasin et al. [17]
correlated the disease severity to patients’ sex and age based on X-ray images.

The most common used AI reported in the literature to diagnose COVID-19 infec-
tions based on CT or X-ray images is CNN models such as VGG-16, VGG-19, Xception,
AlexNet, ResNet50V2, CoroNet, LeNet-5, ResNet18, and ResNet 50 [18,19]. The integration
between machine learning methods and the so-called metaheuristic (MH) optimization
techniques [20,21] has also been reported in the literature as a correct approach with reason-
able computational cost. Canayaz [22] developed a hybrid deep neural network-integrated
with metaheuristic optimizers to diagnose COVID-19 infections. A dataset contains three
groups of X-ray images, namely normal, pneumonia, and COVID-19, and was used to
train the model. The images were preprocessed using the contrast-enhancing technique.



Entropy 2021, 23, 1383 3 of 17

Features were extracted using deep learning models, namely GoogleNet, VGG19, AlexNet,
and ResNet. The best features were selected using two metaheuristic optimizers, namely
grey wolf optimizer and particle swarm optimizer. Then, the features were classified using
a support vector machine.

An advanced hybrid classification approach consists of a CNN model and the marine
predators optimizer, and the fractional-order algorithm has been developed to detect the
infection of COVID-19 based on X-ray images [23]. CNN was used to extract features
from the images, while the marine predators optimizer integrated with a fractional-order
algorithm was used to select the essential features. The results obtained by the proposed
approach were compared with those obtained by other metaheuristic optimizers such
as henry gas solubility optimizer, slime mold algorithm optimizer, whale optimization
optimizer, particle swarm optimizer, sine cosine algorithm, genetic algorithm, grey wolf op-
timizer, Harris hawks optimizer, and standalone marine predators optimizer. The proposed
approach results revealed its excellent performance compared to the other algorithms in
terms of high detection accuracy and low computational cost.

A hybrid metaheuristic optimizing the approach, in which the marine predators
optimizer is incorporated with the moth-flame optimizer, was used for image segmentation
of COVID-19 cases [24]. The latter optimizer was used as a subroutine in the former
optimizer to avoid trapping into local optima. The proposed approach outperformed other
advanced optimizers such as the Harris hawks optimizer, grey wolf optimizer, particle
swarm optimization, grasshopper algorithm, cuckoo search optimizer, spherical search
optimizer, moth-flame optimizer, and standalone marine predators optimizer. An improved
cuckoo search optimizer using a fractional calculus algorithm was used to classify X-ray
images of COVID-19 cases into normal, COVID-19, and pneumonia patients [25]. Four
heavy-tailed distributions, namely Cauchy distribution, Mittag-Leffler distribution, Weibull
distribution, and Pareto distribution, were utilized to strengthen the model performance.
The proposed model showed its superiority over other feature selection techniques such as
the genetic algorithm, Henry gas solubility optimizer, Harris hawks optimizer, salp swarm
optimizer, whale algorithm, and grey wolf optimizer.

Another machine learning/metaheuristic optimizing approach was proposed to detect
COVID-19 infections based on X-ray images [26]. The important features were extracted
from the processed images using a machine learning algorithm called fractional exponent
moments. The computational process was accelerated using a multicore computational
scheme. Then, a hybrid manta-ray foraging/differential evolution optimizer was used to
select the important features. The selection of essential features and excluding irrelevant
features help accelerate the classification process, which is accomplished using the k-nearest
neighbors technique.

However, most of the presented COVID19 image classification methods have limita-
tions that affect classification accuracy. It has been noticed that these limitations result from
either the strategy used to extract the features or the approach used to reduce the number
of selected features. Therefore, this motivated us to present an alternative COVID-19 image
classification method.

Within this study, we developed an alternative COVID-19 image classification tech-
nique that combined the advantages of MobileNetV3 and a new MH technique named
Aquila Optimizer (Aqu) [27]. The MobileNetV3 is used to extract the features from the
tested images and then, using the binary version of Aquila Optimizer (Aqu) as a feature
selection (FS) method, to determine the relevant features. Aqu algorithm has established its
performance in several applications, including oil production forecasting [28], and global
optimization [29].

The main contributions of this paper are summarized as follows:

1. Develop a COVID-19 cases detection framework by incorporating MobileNetV3 and
Aquila Optimizer as feature extraction and selection algorithms, respectively.
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2. Propose a new feature selection using the binary version of Aquila Optimizer, in ad-
dition, using MobileNetV3 to learn and extract the image embedding from the
COVID-19 images.

3. Evaluate the performance of the developed method using two datasets with X-ray
and CT images of COVID-19.

4. Compare the efficiency of the developed approach with other methods.

The structure of the remaining parts of this study is as follows: Section 2 introduces
the background of MobileNetV3 and Aquila Optimizer algorithm. Section 3 presents the
stages of the developed method. The comparison results are given in Section 4. Finally, we
introduce the conclusion and future work of the current study in Section 5.

2. Background
2.1. MobileNetV3

Convolutional neural network architectures have been proposed recently to tackle
many different problems and improve their performance in terms of speed and size.
Efficient convolutional neural networks implementing the depthwise convolution struc-
ture such as NASNet [30], MobileNets [31,32], EfficientNet [33], MnasNet [34], and Shuf-
fleNets [35] are considered as a key technique in many computer vision applications [36–39]
known by fast training process. The depthwise convolutional kernel is a learnable param-
eter applied to each input channel separately from the training images to extract spatial
information. Moreover, depthwise convolutional kernels are shared across all input chan-
nels, increasing model efficiency and reducing computation cost. However, the depthwise
convolutional kernel size can be difficult to learn, thus increasing the complexity of the
training process of the depthwise convolutions. In the upcoming paragraphs, we briefly
discuss the recently proposed MobileNetV3 [32] architecture.

Previously developed MobileNetV1 and MobileNetV2 were improved with a new
version called MobileNetV3, proposed by Howard et al. [32] using network architecture
search (NAS). The used NAS technique called NetAdapt algorithm was used to search
for the best kernel size and find the optimized MobileNet architecture to fulfill the low-
resourced hardware platforms in terms of size, performance, and latency. The MobileNetV3
introduced several building components and blocks inspired by the previous versions,
as shown in Figure 1. In addition, MobileNetV3 possesses a new nonlinearity called hard
swish (h− swish), which is a modified version of the sigmoid function introduced in [40].
The h-swish nonlinearity is defined as in Equation (1), which is employed to minimize the
number of training parameters and reduce the model complexity and size.

h− swish(x) = x · σ(x) (1)

σ(x) =
ReLU6(x + 3)

6
(2)

where σ(x) represents the piece-wise linear hard analog function.
As shown in Figure 1, the MobileNetV3 block contains a core building block called

the inverted residual block, which includes a depthwise separable convolution block and a
squeeze-and-excitation block [34]. The inverted residual block is inspired from the bottle-
neck blocks [41], where it uses an inverted residual connection to connect the input and
output features on the same channels and improve the features representations with low
memory usage. The depthwise separable convolutional contains a depthwise convolu-
tional kernel applied to each channel and a 1× 1 pointwise convolutional kernel with batch
normalization layer (BN) and the ReLU or h− swish activation functions. The depthwise
separable convolutional is used to alter the traditional convolution block and reduce the
model capacity. The squeeze-and-excitation (SE) block is used to pay more attention to the
relevant features on each channel during training.
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2.2. Aquila Optimizer (Aqu)

Aquila Optimizer (Aqu) [27] is a new population-based optimizer that is classified as
a metaheuristic optimization technique. The mathematical formulation of this optimizer is
presented in this section. The social behavior of Aquila inspires the Aqu algorithm during
the hunting process of its prey. Like other population-based metaheuristic techniques, Aqu
starts with N agents with an X initial population. This initialization process is executed
using the following formula.

Xij = r1 × (UBj − LBj) + LBj, i = 1, 2, ....., N j = 1, 2, . . . , Dim (3)

where LBj and UBj are the lower and upper bounds of the exploration domain. r1 ∈ [0, 1]
is a randomly generated parameter, and Dim is the population size.

Once the population is initialized, the algorithm executes exploitation and exploration
processes until the optimal solution is obtained. There are two main implemented strategies
during exploitation and exploration processes [27].

The first strategy is implemented to execute the exploration process considering the
average agents (XM) and the best agent Xb. This strategy is mathematically formulated
as follows:

Xi(t + 1) = Xb(t)×
(

1− t
T

)
+ (XM(t)− Xb(t) ∗ rand), (4)

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, . . . , Dim (5)

where T is the total number of iterations, while the search process is controlled using(
1−t

T

)
.

In the second strategy, the exploration of the agents is updated based on the Levy
flight (Levy(D)) distribution and Xb. This strategy is mathematically formulated as follows:

Xi(t + 1) = Xb(t)× Levy(D) + XR(t) + (y− x) ∗ rand, (6)

Levy(D) = s× u× σ

|υ|
1
β

, σ =

Γ(1 + β)× sine(πβ
2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

 (7)

where β = 1.5 and s = 0.01, while υ and u are randomly generated parameters. In
Equation (6), XR is a randomly selected agent. Moreover, x and y are used to follow the
spiral tracking shape, and they are mathematically formulated as follows:

y = r× cos(θ), x = r× sin(θ) (8)

r = r1 + U × D1, θ = −ω× D1 + θ1, θ1 =
3× π

2
(9)

where U = 0.00565 and ω = 0.005. r1 ∈ [0, 20] is a randomly generated parameter.
In [27], the first strategy is utilized to update the agents during the exploitation process

based on XM and Xb, and it is mathematically formulated as follows:

Xi(t + 1) = (Xb(t)− XM(t))× α− rand + ((UB− LB)× rand + LB)× δ, (10)

where δ and α denote the adjustment parameters of exploitation process. rand ∈ [0, 1] is a
randomly generated parameter.

In the second strategy, the agent is updated during the exploitation process using the
quality function QF, and Xb, Levy. This strategy is mathematically formulated as follows:

Xi(t + 1) = QF× Xb(t)− (G1 × X(t)× rand)− G2 × Levy(D) + rand× G1, (11)
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QF(t) = t
2×rand()−1

(1−T)2 (12)

Furthermore, G1 specifies the employed motions during tracking the best solution,
and it is given as:

G1 = 2× rand()− 1, G2 = 2× (1− t
T
) (13)

rand is a function that generates random values, and G2 specifies decreased values from 2
to 0, and it is given as:

G2 = 2× (1− t
T
) (14)

3. Proposed Framework

In this section, the general framework of the developed COVID-19 image classification
method is described.

3.1. MobileNetV3 for Feature Extraction

The fine-tuning process of MobileNetV3 and feature extraction phase are described
in this section. The main objective is to extract relevant image embeddings relying on a
pretrained model on different COVID-19 image datasets. Meanwhile, the extracted image
embedding in this phase is fed into the feature selection phase, discussed in the next
section. Compared to previous studies, the feature selection phase employs a new swarm
optimization technique to enhance the recognition accuracy, select only essential features,
and reduce the features representation space of the overall proposed framework.

As described in Section 2.1, efficient convolutional neural networks such as Mo-
bileNetV3 [32] act as suitable models to perform image recognition where they can act
as a core component in the feature extraction phase. We used a pretrained model of Mo-
bileNetV3 trained on the ImageNet dataset to avoid training the model from scratch and
speed up the learning process. More specifically, the MobileNetV3-Large pretrained model
was used in our experiments and adapted to the COVID-19 recognition task via transfer
learning and fine-tuning. We follow the standard procedure to fine-tune the MobileNetV3
model and extract the relevant image embeddings. First, we change the top two output
layers of the MobileNetV3 model used for image classification with a 1× 1 point-wise
convolution to extract images features. The 1× 1 point-wise convolution can act as a
multilayer perceptron (MLP) to perform image classification or dimensionality reduction
by integrating different nonlinearity operations. In addition, other 1× 1 point-wise convo-
lutions have been added on the top of the model for fine-tuning the model’s weights on
different datasets based on the classification task. Second, after fine-tuning the model, we
flatten the output of the 1× 1 point-wise convolution used for feature extraction to generate
image embeddings with the size of 128 for each image in the dataset. Lastly, the extracted
image embeddings are fed into the feature selection phase.

Figure 2 shows the architecture of the modified MobileNetV3 for COVID-19 images
feature extraction. The feature extraction phase was performed after fine-tuning the
model for 100 epochs during ten randomly initialized runs where we used the model
resulting in the highest classification accuracy on each dataset. A batch of size 32 and a
stochastic gradient descent approach named RMSprop were used to fine-tune the model
with a learning rate set to 1× 10−4. Data augmentation was employed during the data
preprocessing phase to overcome overfitting and improve the model’s generalization.
The data augmentation transformation such as random crop, random horizontal flip,
color jitter, and random vertical flip was used alongside original image resizing to shape
224× 224.
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Figure 2. The architecture of MobileNetV3 used for feature extraction.

3.2. Developed Aqu FS Algorithm

To apply the Aqu algorithm as an FS method, its binary version is developed as
given in Figure 3. The main target of this conversion is to prepare the Aqu algorithm for
working with the discrete problem since its original version is implemented to work with
real-valued problems only. There are two stages of Aqu as FS technique, and the details of
each stage are given in the following sections.

Figure 3. Steps of Aqu for FS problem.

3.2.1. First Stage: Learning of Model

This stage aims to use the training set to learn the model to select the most relevant
features, and in this study, we used 70% from the dataset as a training set. The first process
in this stage is to set the initial value for the population X, which contains N agents. This
process is defined as:

Xi = rand ∗ (U − L) + L, i = 1, 2, . . . , N, j = 1, 2, . . . , NF (15)

where NF represents the number of features, whereas U and L are the limits of search domain.
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The next step is to obtain the binary form for each Xi, and this was produced using
Equation (16).

BXij =

{
1 i f Xij > 0.5
0 otherwise

(16)

Then, the fitness value Fiti of each Xi is evaluated using the following formula:

Fiti = λ× γi + (1− λ)×
(
|BXi|

NF

)
, (17)

In Equation (17), |BXi| stands for the number of features (i.e., the ones in BXi), whereas γi
represents the classification error using the KNN classifier that used the reduced training
set based on BXi. In addition, λ is a weight value used to balance between the two
objectives in Equation (17) (i.e., minimizing the selecting features and reducing the error of
classification).

After that, the agent with the best fitness value (Fitb) is considered the best agent Xb.
The Xb agent is used to update the other agents according to the operators of the Aqu
algorithm as discussed in Equations (4)–(14).

The next step is to check if the terminal conditions are met, then Xb is returned;
otherwise, updating the solutions is conducted again.

3.2.2. Second Stage: Evaluation of the Selected Features

Within this stage, the relevant features in the best solution Xb are used to reduce the
testing set used as input to the KNN classifier. Later, we compute the performance of the
predicted output using various performance measures.

4. Experimental Results
4.1. Dataset Description

This section describes the datasets used in the COVID-19 detection task and the
distribution of their corresponding samples. The datasets include two types of images:
X-ray and CT scan images (computed tomography scan), where Figure 4 shows examples
from each dataset. Our experiments used three different datasets to train and fine-tune the
feature extraction model, namely the COVID-CT dataset (dataset1), the COVID-XRay-6432
dataset (dataset2), and the COVID-19 radiography dataset (dataset3). We keep the same
data split after extracting image embeddings from each dataset which are fed to a feature
selection and classification phase. In the following section, a detailed description of each
dataset is given.
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COVID (Train) NORMAL (Train) PNEUMONIA (Train) NORMAL (Test)

COVID Non-COVID COVID Non-COVID

COVID Normal Lung opacity Viral pneumonia

Figure 4. 1st row: COVID-XRay-6432 dataset samples, 2nd row: COVID-CT dataset samples, and 3rd
row: COVID-19 radiography dataset samples.

1. COVID-CT dataset: This dataset was collected from two sources, including research
papers (for training) and original CT scans donated by hospitals (for testing). For the
research papers, the authors [42] collected 760 preprints from two databases including
medRxiv https://www.medrxiv.org/ (accessed on 12 October 2021) and bioRxiv https:
//www.biorxiv.org/ (accessed on 12 October 2021). The preprints were collected
from papers posted from 19 January to 25 March 2020. In total, 349 CT images
labeled as positive were collected from 216 patient cases for COVID-19. In addition,
the authors collected 397 negative CT images (Non-Covid19) to build their dataset
for a binary classification task from sources including MedPix https://medpix.nlm.
nih.gov/home (accessed on 12 October 2021) database, the LUNA7 https://luna1
6.grand-challenge.org/ (accessed on 12 October 2021) dataset, the Radiopaedia
https://radiopaedia.org/articles/covid-19-3 (accessed on 12 October 2021) website,
and PubMed https://www.ncbi.nlm.nih.gov/pmc/ (accessed on 12 October 2021)
Central (PMC). Table 1 lists the number of positive and negative Covid-19 CT images
used in our experiments.

2. COVID-XRay-6432 dataset: The dataset is publicly available on Kaggle https://www.
kaggle.com/prashant268/chest-xray-covid19-pneumonia (accessed on 12 October
2021) and was gathered from various public resources. The dataset includes 6432 X-ray
COVID-19 images distributed on three classes which are COVID-19, PNEUMONIA,
and NORMAL (Non-COVID). The training set comprises 80% of the dataset, and the
test set comprises 20% of the dataset. In our experiments, 15% of the training sample
is used in the validation set and fine-tuning. Table 2 lists the number of samples in
each class.

3. COVID-19 radiography dataset: The dataset was collected by a team of researchers
from different countries and universities, including Qatar, Bangladesh, Pakistan,
and Malaysia, collaborating with medical doctors. The dataset is freely available and
frequently updated on Kaggle https://www.kaggle.com/tawsifurrahman/covid1
9-radiography-database (accessed on 12 October 2021). The dataset consists of
21,165 chest X-ray (CXR) COVID-19 images distributed on four categories which
are COVID19, lung opacity, viral pneumonia, and NORMAL (Non-COVID). In our

https://www.medrxiv.org/
https://www.biorxiv.org/
https://www.biorxiv.org/
https://medpix.nlm.nih.gov/home
https://medpix.nlm.nih.gov/home
https://luna16.grand-challenge.org/
https://luna16.grand-challenge.org/
https://radiopaedia.org/articles/covid-19-3
https://radiopaedia.org/articles/covid-19-3
https://www.ncbi.nlm.nih.gov/pmc/
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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experiment, we randomly split the data into 70%, 10%, and 20% for training, valida-
tion, and testing sets, respectively. Table 3 lists the number of samples in each class
after splitting the data.

Table 1. COVID-CT dataset samples distribution.

Class Train Validation Test

# patients COVID 130 32 54
Non-COVID 105 24 42

# images COVID 191 60 98
Non-COVID 234 58 105

Table 2. COVID-XRay-6432 dataset samples distribution.

Class Train Test

# images
COVID 460 116
Non-COVID 1266 317
PNEUMONIA 3418 855

Table 3. COVID-19 radiography dataset samples distribution.

Train Validation Test

# images 15,238 1694 4233

4.2. Performance Metrics

To assess the accuracy of the developed model, some statistical parameters were
computed, such as the mean of best values, the mean of the worst values (Max), standard
deviation, and computational time elapsed during the selection of features. Then, statistical
measures were computed during the classification phase. The mathematical form of these
measures are given as:

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Sensitivity =
TP

TP + FN
(19)

Speci f icity =
TN

TN + FP
(20)

FScore = 2× Specificity× Sensitivity
Specificity + Sensitivity

(21)

where “TP” is the abbreviation of true positives and represents the positive COVID-19
images labeled using the proposed classifier correctly. “TN” stands for the true negative
samples and represents the negative COVID-19 images that were labeled using the pro-
posed classifier correctly. “FP” is the abbreviation of false positives and represents the
positive COVID-19 images labeled using the proposed classifier incorrectly, while “FN” is
the abbreviation of false negatives and represents the negative COVID-19 images that were
labeled using the proposed classifier incorrectly.

• Best accuracy:
Bestacc = max

1≤i≤r
Accuracy (22)

where r denotes the run numbers. Fiti represents a fitness function value.
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To validate the performance of Aqu as an FS method, its results were compared with
other well-known FS methods based on MH techniques. For example, whale optimization
algorithm (WOA) [43], moth-flame optimization (MFO) [44,45], firefly algorithm (FFA) [46],
bat algorithm (BAT) [47], hunger games search (HGS) [48], transient search optimization
(TSO) [49], and Aquila Optimizer (Aqu) [27]. In this paper, the parameters of these FS
methods are assigned based on the original implementation of each method. However,
the common parameters, such as the number of iterations and population size, are set to 20
and 15, respectively. In addition, each FS method conducted 25 runs for a fair comparison
between them. All DL training and feature extraction phases were conducted on a GPU
(Graphics processing unit) of type GTX1080 from Nvidia, while the feature selection phase
has experimented on the Google collaboratory platform. For a proper validation of the
framework, other DL models such as DenseNet, VGG19, and EfficientNet were exploited
as backbone feature extraction methods using their standard architecture and parameters.

4.3. Results and Discussion

In this subsection, the performance of the developed model is evaluated using two
datasets as given in Tables 4 and 5 and Figures 5 and 6. In general, it can be noticed
from Table 4 that the developed method can improve the performance of classification
accuracy among the two tested datasets. For example, to analyze the performance of the
developed Aqu over Dataset1, the following points can be observed: firstly, the accuracy of
Aqu is better than other methods, which nearly have a difference between the best second
algorithm (i.e., HGS) with 1.2%. Secondly, Aqu has a higher Recall, Precision, and F1 score
overall than the comparative FS methods such as HGS and BAT, which allocated the second
and third ranks, respectively. Similar to dataset1, the efficiency of Aqu using dataset2 is the
best in terms of classification accuracy, followed by BAT and HGS. In addition, the recall
value of HGS and MFO is better than all other methods (i.e., WOA, FFA, BAT, and TSO)
except for the developed Aqu method, whereas the precision value of WOA and TSO
allocate the second rank after the Aqu method, which allocates the first rank. In order to
analyze the results of the F1-score obtained using the second dataset, it can be observed
that the HGS is better than other algorithms, which allocate the second rank after the
Aqu algorithm.

Table 4. Comparison between Aqu and other methods in terms of accuracy, recall, precision, and Fs-score.

Dataset1 Dataset2

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

MFO 0.769 0.769 0.771 0.767 0.957 0.956 0.928 0.942
WOA 0.761 0.761 0.764 0.760 0.925 0.920 0.967 0.943
FFA 0.769 0.769 0.771 0.767 0.958 0.812 0.873 0.841
BAT 0.771 0.771 0.775 0.769 0.963 0.944 0.802 0.867
HGS 0.773 0.773 0.776 0.772 0.963 0.958 0.959 0.959
TSO 0.766 0.766 0.770 0.764 0.958 0.827 0.967 0.892
Aqu 0.783 0.783 0.785 0.782 0.974 0.974 0.974 0.974
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Table 5. Comparison between Aqu and other methods in terms of CPU time(s) and number of
selected features.

Dataset1 Dataset2

CPU Time (s) #FS CPU Time (s) #FS

MFO 3.481 278.5 26.654 243.5
WOA 3.260 248.5 26.572 234
FFA 4.294 260.5 27.009 250
BAT 3.602 256.5 31.179 250.5
HGS 4.115 281 31.028 162.5
TSO 3.197 141.5 24.013 142
Aqu 3.123 130 25.737 140

(a) Accuracy (b) Precision

(c) Recall (d) F1-Score

Figure 5. Average of the competitive algorithms in terms of (a) Accuracy, (b) Precision (c) Recall, and (d) F1-score.

(a) Consumption time.png (b) Features number

Figure 6. Average of each algorithm among two datasets in terms of (a) CPU time(s) and (b) number
of selected features.

Figure 5 depicts the average of each algorithm in terms of accuracy, recall, precision,
and F1-score. It can be seen from this figure that the average of the Aqu algorithm over the
two datasets is better than other methods in terms of performance measures.

Moreover, the time computational of the FS methods is computed to justify their
time complexity as given in Table 5. We can notice from the CPU time(s) values that the
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developed Aqu algorithm has the shortest time in dataset1. However, the CPU time(s) of
the Aqu algorithm over datasets is the second-best one that followed the TSO algorithm.
Meanwhile, the efficiency of Aqu to reduce the number of features is observed from the
number of selected features (i.e., the #FS column). Aqu has the smallest number of features,
130 and 140 at Dataset1 and Dataset2, respectively. In addition, from Figure 6 which shows
the average over the two datasets in terms of CPU time(s) and #FS, the high superiority of
Aqu over other methods can be seen.

4.4. Comparison with Other CNN Types

In this section, the performance of the developed method that combines the Mo-
bileNetV3 and Aqu is compared with the other three CNN types networks. These network
include VGG19 [50] (Visual Geometry Group), DenseNet [51] , and EfficientNet [33].
The main aim of this comparison is to assess the ability of MobileNetV3 to extract the
relevant features.

The comparison results between the MobileNetV3 and other CNN types are given
in Table 6. From these results, it can be seen that the MobileNetV3 can provide better
performance than other CNNs followed by DenseNet that has a high ability to extract
relevant features better than the other two networks (i.e., VGG and EfficientNet). The same
observation can be noticed in Figure 7, which depicts the average of the accuracy in all
the tested FS methods using the feature extracted from each CNN type. In addition,
the performance of Aqu based on MobileNetV3 in terms of accuracy among the two tested
datasets is given in Figure 8. From these averages, it can be noticed that the developed
method provides better results than others. In addition, the ability of Aqu to increase the
accuracy classification is better than other FS methods when using different CNN types.

Table 6. Comparison with other CNN types.

Dataset1 Dataset2
VGG DenseNet EfficientNet MobileNetV3 VGG DenseNet EfficientNet MobileNetV3

MFO 0.667 0.766 0.757 0.769 0.939 0.947 0.938 0.957
WOA 0.672 0.751 0.742 0.761 0.937 0.936 0.936 0.925
FFA 0.670 0.784 0.742 0.769 0.960 0.934 0.959 0.958
BAT 0.667 0.756 0.761 0.771 0.935 0.959 0.935 0.963
HGS 0.672 0.764 0.742 0.773 0.944 0.935 0.945 0.963
TSO 0.665 0.785 0.725 0.766 0.961 0.934 0.961 0.958
Aqu 0.676 0.777 0.751 0.783 0.972 0.973 0.971 0.974

Figure 7. Average of each CNN type overall the FS methods.
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(a) Dataset1 (b) Dataset2

Figure 8. Average of each CNN type overall the FS methods.

4.5. Influence of the Size of COVID19 Dataset

In this section, the influence of using a large number of images on the performance
of the developed method is assessed using a third dataset (i.e., COVID-19 radiography)
described in Section 4.1.

Table 7 shows the average of the results in terms of performance measures for each FS
algorithm that depends on the features extracted using MobileNetV3. From these results,
one can reach the following observations: firstly, Aqu has a high ability to enhance the
classification accuracy; in addition, it can reduce the number of features required to increase
the classification accuracy. However, the Aqu allocates the second rank after TSO in CPU
time (s) required to determine the relevant features.

Table 7. Performance of FS methods using COVID-19 radiography dataset.

Accuracy Recall Precision F1-Score CPU Time (s) #FS

MFO 0.889 0.897 0.840 0.868 15.347 61
WOA 0.886 0.885 0.828 0.855 15.593 58.5
FFA 0.910 0.885 0.828 0.855 15.632 56
BAT 0.887 0.909 0.852 0.880 18.185 57
HGS 0.894 0.884 0.827 0.855 18.306 69
TSO 0.910 0.884 0.827 0.855 15.179 63
Aqu 0.924 0.924 0.866 0.894 15.290 57

5. Conclusions

This study developed a framework to detect the COVID-19 cases from X-ray and
CT images using three datasets with a considerable amount of samples. The proposed
framework depends on the combination of the MobileNetV3 DL model and metaheuristic
(MH) techniques. Furthermore, three other DL networks were included in our experiments,
namely VGG19, DenseNet, and EfficientNet. For instance, MobileNetV3 was used to extract
the features from all existing images in each dataset. By contrast, a new MH technique
named Aquila Optimizer (Aqu) was proposed for feature selection (FS) by converting
it to binary. The extracted image embeddings from each DL network were fed to the
FS algorithm for feature space reduction and classification performance improvement.
To justify the performance of the developed method, three datasets are used with different
characteristics since they represent X-ray and CT COVID-19 images collected from different
sources. The comparison results illustrated the high performance of the developed method
based on the Aqu method over the other competitive methods.

Besides the promising results, the developed method can be extended to other ap-
plications such as agriculture, remote sensing, galaxy classification, and other image
classification tasks.
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