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Abstract: We review some analytic, measure-theoretic and topological techniques for studying ergod-
icity and entropy of discrete dynamical systems, with a focus on Boole-type transformations and their
generalizations. In particular, we present a new proof of the ergodicity of the 1-dimensional Boole
map and prove that a certain 2-dimensional generalization is also ergodic. Moreover, we compute
and demonstrate the equivalence of metric and topological entropies of the 1-dimensional Boole
map employing “compactified”representations and well-known formulas. Several examples are in-
cluded to illustrate the results. We also introduce new multidimensional Boole-type transformations
invariant with respect to higher dimensional Lebesgue measures and investigate their ergodicity and
metric and topological entropies.

Keywords: discrete transformations; invariant measure; ergodicity; entropy; Bernoulli type
transformations; Boole-type transformations; fibered multidimensional mappings; induced
transformations

1. Introduction

With its origins going back several centuries, analysis of discrete dynamical systems
has become an increasingly central methodology for many mathematical problems related
to a wide range of applications in modern science and engineering. Our focus on the
ergodic, topological and metric entropy aspects of discrete dynamical systems, especially
those of Boole-type, [1–14] is apt owing to the importance and enduring interest in these areas
of mathematical inquiry [13–29]. Ergodicity and entropy are properties of considerable interest
in many fields; especially in statistical mechanics and thermodynamics [15,19,21,30–33], discrete
mathematics, numerical analysis, chaos theory, statistics and probability theory as well as in
electrical and electronic engineering.

The measurable dynamical systems oriented concept of metric entropy (K-S entropy)
was introduced by A. N. Kolmogorov [34] as a useful invariant that could be used, for
example, to solve the problem of showing the nonequivalence of the Bernoulli 2- and
3-shifts. It was also observed that the metric entropy is related to the exponential growth of
distinguishable orbits, which in turn has a certain communication interpretation following
from the fact that information theory models can be reformulated as Bernoulli schemes
(cf. [35]). As a matter of fact, in that same year, C. Shannon independently introduced
his theory of transmission along noisy channels and defined his entropy as a measure of
information content. Interestingly, but not really surprising in view of the communication
interpretation, Shannon entropy shares many features with metric entropy.

Topological entropy (AKM entropy) was introduced in 1965 by Adler, Konheim and
McAndrew [36], and can be viewed as a means of providing an analog of K-S entropy
for dynamical systems on topological spaces, independent of any measure-theoretic struc-
ture. All three versions of entropy are connected in a variety of aspects, as indicated, for
example, in [35]. One of the more profound and rigorous connections is the variational
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principle stating that the topological entropy is the supremum of the metric entropy over
all invariant Borel probability measures on the phase space of the dynamical system, as
shown in [37]; a result that, for instance, is useful in studying weighted metric entropies
(see, e.g., [38]). Ergodicity is another property of dynamical systems that is useful in estab-
lishing relationships between K-S and AKM entropy, such as in Theorem 2 of [35], and is
a companion theme of this investigation. Moreover, ergodicity enables the derivation of
precise formulas for K-S entropy for certain kinds of discrete dynamical systems, which
can be used to determine the generally much harder to compute topological entropy when
the two entropies can be shown to be equal. As we shall show, these ideas come into play
in significant ways when dealing with Boole-type mappings.

It should be noted that the finiteness of the phase space, say X, is required in the
classical definitions of dynamical systems entropies: the finiteness of the measure of X—
so that it can be re-scaled to a probability measure—in the case of metric entropy and
finiteness of open subcoverings of X guaranteed by the compactness of the phase space for
topological entropy. Unfortunately, the Boole maps investigated in the sequel are invariant
for Lebesgue measures that are only σ-finite on noncompact Euclidean spaces. So, for
example, the nice Krengel–Rokhlin formulas for ergodic maps cannot be applied directly
to compute the metric entropy nor can the fundamental Adler–Konheim–McAndrew
definition of topological entropy be employed. Fortunately, methods, which essentially
involve some sort of compactification, have been devised to deal with σ-finite invariant
measures and noncompact spaces such as in [39–45]. We note that the extensions of metric
entropy and similar invariants to the nonsingular domain, include Krengel’s entropy of
conservative measure-preserving maps and its extension to nonsingular maps, Parry’s
entropy and his nonsingular version of the Shannon–McMillan–Breiman theorem, and
critical dimension by Mortiss and Dooley. Unfortunately, these invariants are usually less
informative than their classical counterparts and more difficult to compute.

Our investigation is organized as follows. In Section 2, we describe some elements
of metric entropy that are closely linked to ergodicity such as the Shannon–McMillan–
Breiman theorem and the Krengel–Rokhlin formula and recall some useful results from
classical measure theory. In addition, we define the notion of smooth fibered mapping
for which metric entropy formulas can often be found, and illustrate applications of the
elements and results to some examples; namely, the period-doubling measurable dynamical
system and the classical continued fraction system. Next, in Section 3, we employ the
results from Section 2 together with some limiting, compactification-type techniques and an
entropy equivalence theorem to compute the K-S and AKM entropy of the (1-dimensional,
Lebesgue measure invariant) Boole map dynamical system. Moreover, we present a new
proof of the ergodicity of this Boole system, which is shorter than the original of Adler
and Weiss [46], and compute the metric entropies of some 1-dimensional variations of the
classical Boole system. Next, we introduce a class of higher-dimensional generalizations of
the classical Boole system in Section 4 and prove the ergodicity of a 2-dimensional version.
We also discuss the very useful concept of an induced transformation and some of its
characterizations. Finally, we summarize the results obtained and indicate a few interesting
directions for related future research in Section 5.

2. Metric Entropy, Ergodicity and Bernoulli Shifts

It is well known that metric entropy [17,26,47,48] for a measure preserving mapping
f : X → X on the probability space (X;B, µ), is invariant under appropriately defined
isomorphisms of X, so it is a useful numerical invariant of measurable dynamical systems.
The K-S entropy hµ( f ) ∈ R+ of a map f : X → X is defined as follows: the entropy of a
countable measurable partition ξ := {Aj ∈ X : X := ä

j∈N
Aj, Aj ∩ Ai = ∅, i, j ∈ N} of the

probability space (X,B, µ) is defined [35,47–49] by means of the classical Gibbs expression:

Hµ(ξ) := − ∑
j∈N

µ(Aj) ln µ(Aj). (1)
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Then one can naturally construct an induced infinite sequence of refinements of the parti-
tions of the form

ξn( f ) = ∨n−1
i=0 f−iξ := {Ak0 ∩ f−1 Ak1 ∩ f−2 Ak2 ∩ . . .

∩ f−n+1 Akn−1 : Akj
∈ ξ, k j ∈ N, j = 0, n− 1} (2)

for arbitrary n ∈ N and, whereupon (1), the metric entropy hµ( f ) ∈ R+ is defined as

hµ( f ) := sup
Hµ(ξ)<∞

lim
n→∞

n−1Hµ(ξn( f )). (3)

There is an analogous definition of the topological entropy hT( f ) for a continuous map
on a topological space (X;T) described in sources such as [35,36] for compact spaces and
in [44,45] for noncompact spaces. Computing metric entropy tends to be quite a bit easier
than topological entropy. However, calculation hµ( f ) via definition (3) is generally very
difficult, which naturally led researchers to find simpler methods for determining the
metric entropy. Ergodicity, which is an important property in its own right, turns out to be
a key to substantial simplifications in computing K-S entropy, such as in the the following
result of Shannon–McMillan–Breiman [17,48,49]:

Theorem 1. Let a measurable mapping f : X → X on the probability space (X;B, µ) be ergodic
and let ξ be a countably infinite generating partition of X, for which Hµ(ξ) < ∞. Then for µ-almost
every x ∈ X,

hµ( f ) = − lim
n→∞

n−1 ln µ(An( f ; x)), (4)

where sets An( f ; x) ∈ ξn( f ), n ∈ N, are chosen so that x ∈ An( f ; x), n ∈ N.
The expression (4) simplifies the calculation of metric entropy for ergodic systems, but

a fairly high level of difficulty remains. A further, very substantial simplification under
the added assumptions of differentiability and dilation, was obtained by Krengel [50]
and Rokhlin [51,52]; namely, if the measurable dynamical system (X;B, µ, f ) is ergodic,
X is a metric space and f is a differentiable dilation in the sense that the Radon–Nikodym
derivative f ′µ(x) := dµ ◦ f (x)/dµ(x) at all points x ∈ X of the shifted measure µ ◦ f with
respect to the probability measure µ is measurable and satisfies the dilation condition
infx∈X f ′µ(x) > 1, then we have the simple formula

hµ( f ) =
∫

X
ln f ′µ(x)dµ(x), (5)

strongly based on the Lyapunov exponents [48] of the mapping f : X → X on the probabil-
ity space (X;B, µ).

We note that the dilation condition plays an important role in the existence of an
invariant measure µ on X for f : X → X as shown in [47–49,53–57] for a wide class of
measurable spaces.

In particular, let a smooth (C1) measure preserving mapping f : X → X, defined on a
metric space X be dilating [47,48,55,56], so that infx∈X f ′µ(x) > 1. Furthermore, let the finite
generating partition ξ := {Aj ∈ X : j = 1, k}, k ∈ N, be such that sets f (Aj) ⊂ X, j = 1, k,
are measurable and the reduced (restriction) mappings f j : Aj → f (Aj), j = 1, k, are
invertible and measurable. Then extend the inverse mappings f−1

j : f (Aj)→ Aj, j = 1, k,
arbitrarily, but measurably, to the whole space X. Then, the entropy of the probabilistic
measure invariant mapping f : X → X can be calculated, owing to the Gibbs Formula (1),
as

hµ( f ) := sup
ξ

H(ξ| f−1B) = − sup
ξ

∑
j=1,k

∫
X

χAj(x) ln E(χAj | f
−1B)(x)dµ(x), (6)
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where mappings E(χAj | f
−1B) : X → R, j = 1, k, denote the corresponding conditional

expectations of the characteristic functions χAj(◦) : X → R, j = 1, k, with respect to the
σ-algebra f−1B. Taking into account that for any function F ∈ L1(X;R) one has for any
x ∈ X the expansion

F(x) = ∑
j=1,n

χAj(x|B)F ◦ f−1
j ◦ f (x) (7)

with respect to the Borel σ-algebra B, from the corresponding definition of the integrated
conditional expectation value

∑
j=1,n

∫
X

F ◦ f (x)E(χAj | f
−1B)(x)dµ(x) = ∑

j=1,n

∫
Aj

F ◦ f (x)dµ(x), (8)

it follows from (6) and (8) that∫
X F ◦ f (x)E(χAj ◦ f | f−1B)(x)dµ(x) =

∫
Aj

F ◦ f (x)dµ(x)

=
∫

Aj
F ◦ f (x)

(
dµ◦ f (x)

dµ(x)

)−1
dµ ◦ f (x) =

∫
ϕAj

F(y)
χ f (Aj)

(y)

f ′µ◦ f−1
j (y)

dµ(y)
∣∣∣∣ y→ f (x)
(measure

invariance)

=
∫

Aj
F ◦ f (x)

χ f (Aj)
◦ f (x)

f ′µ◦ f−1
j ◦ f (x)

dµ(x) =
∫

X F ◦ f (x)
χ f (Aj)

◦ f (x)

f ′µ(x) dµ(x),

(9)

or equivalently,

E(χAj | f
−1B)(x) =

χ f (Aj)
◦ f (x)

f ′µ(x)
(10)

for all x ∈ X and j = 1, k. Now, having substituted the conditional expectation func-
tions (10) into (6), one finally obtains

hµ( f ) = − sup
ξ

∑
j=1,n

∫
Aj

χAj(x) ln E(χAj | f
−1B)(x)dµ(x) = (11)

= ∑
j=1,n

∫
Aj

ln f ′µ(x)dµ(x) =
∫

X
ln f ′µ(x)dµ(x)

with respect to the covering finite generating partition ξ, which coincides with (5). If
the measurable metric space (X;B, µ) is finite dimensional and the probabilistic measure
dµ(x) = dλ(x), x ∈ X (the normalized Lebesgue measure on X), then the Radon–Nikodym
derivative f ′µ(x) = |J f (x)| at point x ∈ X is the absolute value of the usual Jacobian of the
differentiable mapping f : X → X, and then the Krengel–Rokhlin entropy expression (5)
becomes

hµ( f ) =
∫

X
ln det |J f (x)|dλ(x). (12)

Using the Shannon–McMillan–Breiman expression (4), Formula (5) was also proved
by Yuri [57] for multidimensional mappings with finite range structure subject to the
corresponding partitions ξn(ϕ), n ∈ N, induced by a fixed generating partition ξ ∈ 2X , X ⊂
Rn. Among this class of mappings there are so called “fibered” mappings f : X → X
satisfying the following conditions [5,14,26,57–62]:

(a) there is an invariant Lebesgue equivalent probability measure µ : B → R+, for which
there exist positive constants c1, c2 ∈ R+, such that c1λ(E) ≤ µ(E) ≤ c2λ(E) for every
Borel set E ⊂ X;

(b) there is a finite or countably infinite digit set Dj, j = 1, N;
(c) there is a mapping k : X → D, D := ×j=1,N Dj, such that the sets Xi := k−1{i} = {x ∈

X : k(x) = i}, i ∈ D, are measurable and form a partition ξ(X) of the space X, that is,
ti∈DXi = X;
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(d) the restrictions f |Xi : Xi → X, i ∈ D, are injective and smooth.

Then one can see [5,51,57] that under the additional conditions imposed on the map
f : X → X :

∑
i∈D

λ(Xi) < ∞; ∨n∈N f−1(ξ)X)) = τ ∈ X, (13)

for some point τ ∈ X, it appears to be ergodic and equivalent to the weak Bernoulli shift
mapping Tf : D∞ → D∞, where

Tf : (k1, k2, k3, . . . kn, . . . )→ (k2, k3, . . . kn, . . . ) (14)

with respect to the isomorphism ψ : X 3 x → (k2, k3, . . . kn, . . . ) ∈ D∞,

Xn(x) := X(k1, k2, k3, . . . , kn; x)⇐⇒ (k1, k2, k3, . . . kn, . . . ), (15)

determined for the admissible rank-n cylinder sets Xn(k1, k2, k3, . . . , kn) ⊂ X, n ∈ N, for
which

Xn(k1, k2, k3, . . . , kn) := ∩j=1,nXkj
(x), (16)

and on which we shall not dwell.
In many concrete cases the ergodicity of a mapping f : X → X can be proved

more effectively using standard measure theoretical calculations. In particular, using the
construction above one can employ a slightly modified approach to [14,48,49] for proving
ergodicity, making use of the following two classical measure theory [63,64] lemmas.

Lemma 1. (Hahn–Caratheodory–Kolmogorov extension theorem) Let A be an algebra of
subsets of X and B(A) denote the σ-algebra generated byA. Suppose that a mapping µ : A → [0, 1]
satisfies the conditions:

(a) µ(∅) = 0; (b) if An ∈ A, n ∈ N, are pair wise disjoint and if tn∈NAn ∈ A, then
µ(tn∈NAn) = ∑n∈N µ(An). Then there is a unique probability measure µ : B(A) → [0, 1],
which is an extension of the mapping µ : A → [0, 1].

Lemma 2. Let (X,B, µ) be a probability space and suppose thatA ⊂ B is an algebra that generates
B, that is B = B(A). Suppose there exists C > 0 such that for a fixed B ∈ B one has

µ(B)µ(I) ≤ Cµ(B ∩ I) (17)

for all I ∈ A. Then the measure µ(B)µ(B̄) = 0, where B̄ := X\B ∈ B denotes the complement of
the set B ∈ B.

Owing to the weak equivalence of the above “fibered” mappings f : X → X, X ⊂ Rn,
to the Bernoulli shifts [47,48,57] (14), one can state the following important result.

Theorem 2. Let the cylinder sets of a smooth “fibered” mappings f : X → X with finite range
structure satisfy the conditions of Lemma 2 for the case of the Lebesgue measure λ on X. Then, if
the invariant measure µ is absolutely equivalent to the Lebesgue measure λ on X, the mapping
f : X → X is ergodic.

Example 1. One of the simplest examples is given by the doubling (2x mod 1) map

f : [0, 1) 3 x → {2x} ∈ [0, 1), (18)

where k : [0, 1) 3 x → b2xc ∈ {0, 1} := D.
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The doubling map is ergodic [49] with respect to the finite Lebesgue measure dλ(x) =
dx, x ∈ [0, 1), and allows the generating partition ξ = {X0 = [0, 1/2), X1 = [1/2, 1)},
X0 t X1 = [0, 1) = X. Its entropy is easily calculated using the Krengel–Rokhlin Formula (5), as

hµ( f ) =
∫ 1

0
ln | f ′(x)|dx =

∫ 1

0
ln 2dx = ln 2, (19)

which is a well-known [47,48] result.
As for the ergodicity of (18), it can be easily proved by representing any number

x ∈ [0, 1) as a binary expansion

x := (·x0x1x2 . . . xn . . . ) = ∑
j∈Z+

xj2−(j+1), (20)

where x ∈ {0, 1} = D. Denoting for convenience the set of all such expansions by Y =
{(·x0x1x2 . . . xn . . . ) : xj ∈ {0, 1}} ' {0, 1}Z+ makes it clear that the mapping (18) is
equivalent to the left Bernoulli shift

Tf (·x0x1x2 . . . xn . . . ) = (·x1x2 . . . xn . . . ) (21)

for any element (·x0x1x2 . . . xn . . . ) ∈ Y. Now one can introduce so called dyadic intervals
or cylinder sets

I(k0, k1, . . . , kn−1) = {x ∈ [0, 1) : xj = k j, j = 1, n− 1}, (22)

where, for instance, I(0) = [0, 1/2), I(1) = [1/2, 1), I(0, 0) = [0, 1/4), and I(0, 1) =
[1.4, 1/2) . If A denotes the algebra of finite unions of such cylinders, it generates the
usual Borel σ-algebra B of the interval [0, 1). Moreover, if one takes two separate points
x 6= y ∈ [0, 1), their expansions are different at some place n ∈ Z+ so these numbers
belong to different disjoint cylinders. Now define the following inverse to (18) mappings
σ0 : [0, 1)→ [0, 1/2), and σ1 : [0, 1)→ [1/2, 1), where

σ0(x) =
{

x/2, i f x ∈ [0, 1/2) , (23)

σ1(x) =
{

(1 + x)/2, i f x ∈ [1/2, 1),

where ϕ ◦ σj(x) = x, j = 0, 1, for any x ∈ [0, 1) and whose actions on elements of the set Y
are the corresponding right shifts:

σ0(·x0x1x2 . . . xn . . . ) = (·0x0x1x2 . . . xn . . . ), (24)

σ1(·x0x1x2 . . . xn . . . ) = (·1x0x1x2 . . . xn . . . ),

It follows from definitions of cylinder sets (22) and actions (24) that

In := I(k0, k1, . . . , kn) = σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn([0, 1)), (25)

with a readily calculated Lebesgue measure

λ(In) = 2−(n+1) ∑
j∈Z+

2−j = 2−n (26)

for any n ∈ N.
We are now in a position to apply Lemmas 1 and 2. Let a measurable set B ⊂ [0, 1) be

f -invariant and calculate the Lebesgue measure
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λ(B ∩ In) =
∫
[0,1) χB∩In(x)dx =

∫
[0,1) χB(z)χIn(x)dx =

∫
In

χB(x)dx
=
∫
[0,1) χB(σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn(x))d(σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn(x))

=
∫
[0,1) χϕ̃−nB(σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn(x))d(σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn(x))

=
∫
[0,1) χB(ϕ̃n ◦ σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn(x))d(σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn(x))

=
∫
[0,1) χ B(x)d(σk0 ◦ σk1 ◦ σk2 ◦ . . . ◦ σkn(x))

=
∫
[0,1) χ B(x)σ′k0

σ′k1
σ′k2

. . . σ′kn
(x)dx = 2−nλ(B) = λ(In)λ(B),

(27)

that is λ(In)λ(B) = λ(B ∩ In) ≤ Cλ(B ∩ In), where C = 1. Thus, either the Lebesgue
measure λ(B) = 1 or λ(B) = 0, so the doubling map (18) is ergodic.

Example 2. A very interesting example is given by the classical continued fraction expansion via
the Gauss ergodic mapping

f : [0, 1) 3 x → {1/x} ∈ [0, 1). (28)

whose fibering is defined by the mapping k : [0, 1) 3 x → b1/xc ∈ N := D, with a generating
partition of sets Xi = (1/(i + 1), 1/i], i ∈ N, X = ti∈NXi.

The probabilistic invariant measure is the well-known Gauss measure dµ(x) =
dλ(x)/[(1 + x) ln 2], where dλ(x) := dx, x ∈ [0, 1). The related entropy hµ( f ) of the Gauss
mapping (28) is given by the Krengel–Rokhlin integral

hµ( f ) =
1

ln 2

∫ 1

0

ln | f ′(x)|
1 + x

dx =
1

ln 2

∫ 1

0

ln x−2

1 + x
dx =

−2
ln 2

∫ 1

0

ln x
1 + x

dx = (29)

=
−2
ln 2

1∫
0

(
∑

n∈Z+

(−1)nxn ln x

)
dx =

1
ln 2 ∑

n∈Z+

1
n2 =

π2

6 ln 2
,

coinciding with the well-known [47,48,65] result. The ergodicity of the map (28) can be
easily proved by reducing it [49] via the continued fraction expansion to a Bernoulli shift
and applying Lemmas 1 and 2.

Namely, take a number x ∈ [0, 1) and denote by [x0, x1, . . . , xn, . . . ] its continuous
fraction expansion:

x =
1

x0+

1
x2 + . . .

1
xn + . . .

, (30)

where xi ∈ Z+ for all indices i ∈ Z+. Observe here that the induced continuous fraction
mapping acts by left shifting as Tϕ[x0, x1, . . . , xn, . . . ] = [x1, . . . , xn, . . . ] for any expan-
sion (30). This expansion [x0, x1, . . . , xn, . . . ] can be reduced to n-th by defining for every
t ∈ [0, 1) the rational t-fraction

[x0, x1, . . . , xn−1 + t] :=
Pn(x0, x1, . . . , xn−1; t)
Qn(x0, x1, . . . , xn−1; t)

, (31)

where Pn(x0, x1, . . . , xn−1; t) and Qn(x0, x1, . . . , xn−1; t) are coprime polynomials in the
variables x0, x1, . . . , xn−1 ∈ Z+ and t ∈ [0, 1) for all n ∈ N. If we define the n-th order poly-
nomials Pn = Pn(x0, x1, . . . , xn−1) := Pn(x0, x1, . . . , xn−1; 0) and Qn = Qn(x0, x1, . . . , xn−1)
:= Qn(x0, x1, . . . , xn−1; 0), it is easy to see that the following iterative expressions hold:

Pn(x0, x1, . . . , xn−1; t) = Pn + tPn−1,

Qn(x0, x1, . . . , xn−1; t) = Qn + tQn−1,

Pn(x0, x1, . . . , xn−1) = Qn−1(x1, . . . , xn−1), (32)

Pn+1(x0, x1, . . . , xn−1, xn; t) = xnPn + Pn−1 + tPn,

Qn+1(x0, x1, . . . , xn−1, xn; t) = xnQn + Qn−1 + tQn
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for any t ∈ [0, 1) and arbitrary n ∈ N. By setting the parameter t = 0 in (32), one readily
obtains derives the following iterative relationships for all n ∈ N :

Pn+1 = xnPn + Pn−1, Qn+1 = xnQn + Qn−1 (33)

with initial conditions P0 = 0, P1 = 1 and Q0 = 1, Q1 = x0 ∈ Z+. In particular, the follow-
ing invariant condition Qn Pn−1− Pn Qn−1 = (−1)n and inequality Qn−1 ≤ Qn readily
follow from (33) for all n ∈ N. Let k0, k1, . . . , kn−1 ∈ N for every n ∈ N and de-
fine the cylindrical intervals In ⊂ [0, 1) as the corresponding collection of rational t-
fractions

In = In(k0, k1, . . . , kn−1) := {[k0, k1, . . . , kn−1 + t] : t ∈ [0, 1)}. (34)

Defining the inverse mappings [0, 1) 3 x → k
k+x ∈ I1(k) ⊂ [0, 1), k ∈ N, one easily

obtains the composition

σk0 ◦ σk1 ◦ . . . ◦ σkn−1 : [0, 1)→ In(k0, k1, . . . , kn−1) ⊂ [0, 1) (35)

for every n ∈ N. Moreover, the condition ϕn ◦ σk0 ◦ σk1 ◦ . . . ◦ σkn−1(x) = x holds for every
x ∈ [0, 1) and n ∈ N. Now we select any t ∈ [0, 1), note that

σk0 ◦ σk1 ◦ . . . ◦ σkn−1(t) = [k0, k1, . . . , kn−1 + t] =
Pn + tPn−1

Qn + tQn−1
, (36)

and estimate the Lebesgue measure of the interval (34) to be

λ(In) :=
∫
[0,1) χIn(t)dt =

∫
In

dt =
∫
[0,1) |Jσk0

◦σk1
◦...◦σkn−1

(t)|dt

=
∫
[0,1) |

d
dt

(
Pn+tPn−1

Qn+tQn−1

)
|dt =

∫
[0,1)

dt
|Qn+tQn−1|2

∈
[

1
4Q2

n
, 1

Q2
n

]
,

(37)

where we took into account that 0 < Qn−1 ≤ Qn for all n ∈ N.
At this stage, we are in a position to estimate the Lebesgue measure λ(B ∩ In) for the

intersection B ∩ In of an invariant set B = f−1B = f−nB ⊂ [0, 1) and arbitrary cylindrical
interval In ⊂ [0, 1), n ∈ Nas

λ(B ∩ In) =
∫

In
χB(x)dx

=
∫
[0,1) χB(σk0 ◦ σk1 ◦ . . . ◦ σkn−1(x))dx

=
∫
[0,1) χϕ−nB(σk0 ◦ σk1 ◦ . . . ◦ σkn−1(x))|Jσk0

◦σk1
◦...◦σkn−1

(x)|dx
=
∫
[0,1) χB(ϕn ◦ σk0 ◦ σk1 ◦ . . . ◦ σkn−1 x)|Jσk0

◦σk1
◦...◦σkn−1

(x)|dx
=
∫
[0,1) χB(x)|Jσk0

◦σk1
◦...◦σkn−1

(x)|dx =
∫
[0,1) χB(x) dt

|Qn+xQn−1|2

≥ 1
4Q2

n
λ(B) ≥ 1

4 λ(In)λ(B),

(38)

which is consistent with Lemma 2 with C = 4. Consequently, from the estimate (38) one
deduces that the measure λ(B) = 1 or λ(B) = 0, thus proving the ergodicity both of the
Lebesgue measure dλ(x), x ∈ [0, 1), and the invariant Gauss measure dµ(x) = dx

(1+x) ln 2 , x ∈
[0, 1), on the unit interval [0, 1).

3. One-Dimensional Boole-Type Mappings, Invariant Ergodic Measures and
Their Entropies

The classical one-dimensional Boole [4] mapping is defined as

β : R\{0} 3 x → x− 1/x ∈ R. (39)

Adler and Weiss in [46] proved that (39) is ergodic with respect to the infinite invariant
σ-finite Lebesgue measure dλ(x) := dx, x ∈ R := X. Their proof of the ergodicity relied
heavily on the measure theoretic reduction of β to the corresponding induced [47–49]
transformation βA : [−1, 1] → [−1, 1] ⊂ R on the covering set A := [−1, 1], for which
R = ∪n∈Nβ−n(A) modulo a set of measure zero. The β-invariance of the Lebesgue
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measure dλ(x) := dx, x ∈ R, is easily checked making use of the Perron–Frobenius theory;
namely, for preimages u± := u±(x) ∈ R, x ∈ R, where β(u±(x)) = x, u++ u− = x, u−
u+ = −1, it is straightforward to show that

∑± du±(x) = ∑±
∣∣∣ du±

dx

∣∣∣dx = ∑±
dx

|JB(u±)| = ∑±
dx

(1+u−2
± )

=

= ∑±
u2
±dx

(1+u2
±)

=
(u2

++2 +u2
−)dx

1+(u+u−)2+u2
++u2

−
=

(u2
++2+u2

−)dx
2+u2

++u2
−

= dx,
(40)

coinciding exactly with the Lebesgue measure on R.

Remark 1. Here we remark that the Boole transformation (39) is σ-finite and nonsingular on R;
that is, for any A ⊂ R, µ(β−1 A) = 0 iff µ(A) = 0. Moreover, for nonsingular transformations
f : X → X the following properties [1] are equivalent: (i) f is conservative and ergodic; (ii) for
every set A ⊂ X, µ(A) > 0 implies µ(X\ ∪n∈N f−n A) = 0; (iii) for every set A ⊂ X, µ(A) > 0
implies that for a.e. x ∈ X there exists an integer nA > 0, such that f nA(x) ∈ A; (iv) for all sets
A, B ⊂ X, µ(A)µ(B) > 0 implies the existence of an integer n > 0, such that µ( f−n A ∩ B) >
0; v) any A ⊂ X, f−1(A) ⊂ A implies that µ(A) = 0 ∨ µ(Ā) = 0, where Ā := X\A, the
complementary set to A ∈ B.

We now consider a limiting version of the corresponding distributed Krengel type
entropy of the Boole mapping (39) with respect to the σ-finite set of probabilistic measures
dµ(r) := dx/(2r) on compact intervals [−r, r] ⊂ R as r → ∞, which unfortunately can
readily be shown to yield

hµ(β) = lim
r→∞

1
2r

∫ r

−r
ln(1 + x−2)dx = lim

r→∞

1
r

∫ r

0
ln(1 + x−2)dx = lim

r→∞

1
r

I(r) = 0, (41)

since I(r) is bounded on (0, ∞). Not only is this entropy result counterintuitive, it is not
actually valid since we cannot use the Krengel–Rokhlin formula (5) directly to calculate the
entropy of maps of σ-finite measure preserving dynamical systems on spaces of infinite
measure. Consequently, we propose to use a result from [11] for approximate Boole
transformations that satisfy the necessary conditions for the validity of (5), which enables
the calculation of the desired result as a limit. To this end, we define

βα : R\{0} → R, (42)

where βα(x) := αx− (1/x) and 0 < α < 1. The following (differential) probability measure
on R, is absolutely continuous with respect to the (differential) Lebesgue measure dx and
βα-invariant for all α ∈ (0, 1):

dµα(x) :=

√
(1− α)dx

π[x2(1− α) + 1]
(43)

It is worth mentioning that the measure (43), suitably de-regularized, weakly tends
to the Lebesgue measure dλ = dx on R; that is, w-limα↑1

πdµα√
(1−α)

= dλ subject to the space

C0(R;R). Now we can use the invariant probability measure (43) in the Krengel–Rokhlin
formula (5) to obtain the following result in the limit:

hµ(β) := lim
α↑1

hµα(βα) = lim
α↑1

∫
R

ln
(
(αx2 + 1)[(1− α)x2 + 1]
(1 + α− α2)x2 + (α− 1)

) √
(1− α)dx

π[x2(1− α) + 1]
(44)

=
2
π

∫ ∞

0
ln(1 + x−2)

dx
1 + x2

∣∣∣∣
x=tan s

=
4
π

∫ π/2

0
ln(1/ sin s)ds,

so that
4
π

∫ π/2

0
ln(

1
s
)ds ≤ hµ(β) ≤ 4

π

∫ π/2

0
ln(

π

2s
)ds, (45)
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and

ln 2 <
4
π

∫ π/2

0
ln(

1
s
)ds ' 1.09 ≤ hµ(β) ≤ 2 =

4
π

∫ π/2

0
ln(

π

2s
)ds. (46)

Therefore, inasmuch as isomorphic measurable dynamical systems have the same
entropy, (46) implies, for example, that β is not isomorphic to the doubling map (18).
Additionally, it should be mentioned that the metric entropy of (42) can also be obtained
using Pesin’s formula whenever α is positive and α 6= 1 (cf. [66]).

Admittedly, one might well question the limit-based computation (44) of the entropy.
In particular, it is not rigorous because the very first equality, due to the fact entropy is only
upper semi-continuous, is really just a lower bound. Therefore, we now use a compacti-
fication procedure to both confirm the result and also determine the topological entropy,
which, as is well known [37], bounds the measure-theoretic entropy. We start by using
what is essentially 1-dimensional stereographic projection and smooth extension to obtain
a representation of the Boole map on the unit circle S1 := {(X, Y) ∈ R2 : X2 + Y2 = 1} in
the X, Y-plane via the commutative diagram

R\{0} β−→ R
ϕ ↓ ↓ ϕ

S1 β̃−→ S1 ⊂ R2

(47)

where

ϕ(x) :=
(

2x
x2 + 1

,
x2 − 1
x2 + 1

)
= (X(x), Y(x)) = (cos θ, sin θ), ϕ−1(X, Y) =

Y + 1
X

, (48)

and

β̃(X, Y) := ϕ ◦ β◦ϕ−1(X, Y) =
(

1 + 3Y2
)−1(

4XY, 5Y2 − 1
)

=
(

1 + 3 sin2 s
)−1(

2 sin 2θ , 5 sin2 s− 1
)

. (49)

Observe that β̃ is a smooth (= C∞) surjection of the unit circle onto itself, having
among others the properties that there is a unique fixed point at the north pole, (0, 1)
corresponding to θ = s = π/2 and β̃(1, 0) = β̃(−1, 0) = (0,−1), so β̃2(1, 0) = β̃2(−1, 0) =
β̃(0,−1) = (0, 1). It is also worth noting that the differential of arclength ds for which
dµ̃ := ds/2π is a natural (differential) probability measure on S1 satisfies

ds :=
√

dX2 + dY2 =
2dx

x2 + 1
. (50)

It is straightforward to show from its definition that probability measure µ̃ on S1 is ab-
solutely continuous with respect to the Lebesgue measure associated to the representation
of the unit circle as R/Z and that it is β̃-invariant. Moreover, a simple calculation reveals
that β̃ is a dilation µ̃-almost everywhere on S1; in fact, d

ds β̃(s) > 1 except at the fixed point
(0,1). Consequently, the Krengel–Rokhlin formula can be used to compute the entropy, so
that owing to the change of variables formula for integrals and (44), we find that

hµ̃(β̃) =
1

2π

∫
S1

ln
(

d
ds

β̃(s)
)

ds =
1
π

∫
R

ln(1 + x−2)
dx

1 + x2 =
4
π

∫ π/2

0
ln(1/ sin u)du. (51)

Serendipitously, this formula for the K-S entropy of the measurable dynamical system(
S1,M, µ̃, β̃

)
can also be used to obtain the formula for the topological entropy of the

topological dynamical system
(
S1,T, β̃

)
, whereM is the (Borel) µ̃-measurable subsets of

the unit circle and T is the Euclidean subspace topology on S1. In fact, it is not difficult to
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verify that the hypotheses of Theorem 3 of [35] are satisfied for
(
S1,M, µ̃, β̃

)
and

(
S1,T, β̃

)
,

so it follows that

hT(β̃) = hµ̂(β̃) =
4
π

∫ π/2

0
ln(1/ sin u)du. (52)

Next, we present a new proof of the ergodicity of the Boole transformation (39)—a
variant of the approach in [59]—that is more concise than the original due to Adler and
Weiss [46].

Theorem 3. The one-dimensional Boole transformation (39) is ergodic with respect to the invariant
Lebesgue measure λ on R.

Proof. As mentioned above, our argument can be reduced to Theorem 2, by using the
relation of (54) to the doubling mapping T : [0, 1) 3 s→ {2s} ∈ [0, 1). As was also shown
in [14,26,60], the Boole transformation (39) is related to the doubling mapping T : [0, 1) 3
s→ {2s} ∈ [0, 1) via the commutative diagram

[0, 1)
cot(π◦)→ R

β→ R
↓↑ Id ↓ π−1 cot−1

[0, 1) T→ [0, 1)
α−1(π◦)→ [0, 1)

, (53)

where α−1 : [0, 1) → [0, 1) is a diffeomorphism, defined by α(s) := π−1[π/2 +
tan−1(πs/2)], s ∈ [0, 1), related to the map (39) as

β = cot π ◦ α−1 ◦ T(π−1) ◦ cot−1 . (54)

Now β̂ : [0, 1)→ [0, 1), β̂ := α−1(π) ◦ T, is equivalent to (54), where

β̂(s) := π−1 cot−1(β(cot(πs))) (55)

for any s ∈ [0, 1). As every a ∈ [0, 1) has the binary expansion

a := (·k0k1k2 . . . kn . . . ) = ∑
j∈Z+

k j2−(j+1), (56)

one can define the so-called proper [14,60] cylindrical sets In := In(k0, k1, . . . , kn) ⊂
[0, 1), n ∈ Z+, as

In = {(σkn−1 ◦ α) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(t) : t ∈ [0, 1)} (57)

where σ0(s) = s/2, if s ∈ [0, 1/2), and σ1(s) = (1 + s)/2, if s ∈ [1/2, 1). Note also that
β̂ ◦ (σkj

◦ α)(s) = s for every s ∈ [0, 1), k j ∈ {0, 1}, j = 0, n− 1. The Lebesgue measure of
the interval (57) can be easily estimated as follows:

λ(In) =
∫

In
dx =

∫
R

χIn(x)dx
∣∣∣∣
x=cot(πt)

(58)

=
∫
[0,1)
|J(σkn◦α)◦(σkn−1

◦α)◦...◦(σk0
◦α))(t)|dt

=
∫
[0,1)

(σ′kn−1
α′(tn−1))(σ

′
kn−1

α′(tn−1)) . . . (σ′k0
α′(t))dt,

where the derivatives σ′kj
= 1/2, α′(tj) = 2/[1 + 3 sin2(πtj)], tj := σkj

◦ α ◦ . . . ◦ σk0 ◦
α(t), j = 0, n− 1, t ∈ [0, 1). Since

λ(σ0 ◦ α)([0, 1)]) = 1/2 = λ(σ1 ◦ α([0, 1]),
σkj
◦ α ◦ . . . ◦ σk0 ◦ α([0, 1)) ⊂ [1/2j+1, 1/2j)

(59)
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for any j = 0, n− 1, owing to the classical mean value theorem applied to (59), one easily
finds that

α′(t̄j)) = 2−j/[3 sin2(πt̄j) + 1], (60)

where t̄j ∈ (1/2j+1, 1/2j) ⊂ [0, 1) for all j ∈ 0, n. Hence, owing to the evident inequalities
2t ≤ sin(πt) ≤ πt for all t ∈ [0, 1/2), one derives the estimates

2−j

exp[3(π2−j)2 ≤
2−j

3 sin2(π2−j) + 1
≤ 2−j

3 sin2(πtj) + 1
≤ (61)

≤ 2−j

3 sin2(π2−(j+1)) + 1
≤ 2−j

3(2−(j+1))2 + 1

for any j = 0, n. Thus, from expressions (58) and (61) one immediately deduces the required
Renyi-type estimates [14,47–49,63,67–69].

exp(−3π2)

2n(n+1)/2 ≤
exp[ π2(−4+4−n)]

2n(n+1)/2 =
n
∏
j=0

2−j

exp[3(π2−j)2 ≤ λ(In) ≤

≤
n
∏
j=0

2−j

3(2−(j+1))2+1
≤ 2−n(n+1)/2

n
∑

j=0
3(2−(j+1))2+1

= 2−n(n+1)/2

2−4−(n+1) ≤ 4/7
2n(n+1)/2

(62)

for all n ∈ Z+. In particular, it follows from (62) that limn→∞ λ(In) = 0, meaning that the
family of these cylindrical sets generates [26,60,64] the Borel σ-algebra B on the interval
[0, 1). Thus, we are now in a position to apply Lemmas 1 and 2. So, let a measurable
set B ⊂ [0, 1) be invariant; i.e., B = β−1B = β−nB, n ∈ N, and calculate the following
Lebesgue measure:

λ(B ∩ In) =
∫
[0,1) χB∩In(t)dt =

∫
[0,1) χB(t)χIn(t)dt =

∫
In

χB(t)dt
=
∫
[0,1) χB((σkn ◦ α ) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(t))×
×d((σkn ◦ α) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(x))

=
∫
[0,1) χβ−nB((σkn ◦ α) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(x))×
×d((σkn ◦ α) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(x))

=
∫
[0,1) χB(β̂n ◦ (σkn ◦ α) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(t))×
×d((σkn ◦ α) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(t)).

(63)

Since the composition β ◦ (σkj
◦ α) = Id for any j = 0, n, from (63) one deduces

λ(B ∩ In) =
∫
[0,1) χ B(x)d((σkn ◦ α) ◦ (σkn−1 ◦ α) ◦ . . . ◦ (σk0 ◦ α)(x))

=
∫
[0,1) χ B(x)σ′kn

α′σ′kn−1
α′σ′kn−2

α′ . . . σ′k0
α′(x)dx

≥ exp(−3π2)

2n(n+1)/2λ(In)
λ(In)λ(B) ≥ 7

4 exp(3π2)
λ(In)λ(B);

that is, the Lebesgue measure satisfies λ(In)λ(B) ≤ Cλ(B ∩ In) for all n ∈ Z+, where
C = 4 exp(3π2)/7. Thus, owing to Lemma 2, either λ(B) = 1 or λ(B) = 0, which proves
the ergodicity of the Boole mapping (39) with respect to the same invariant Lebesgue
measure λ on R and completes the proof.

It is also worth mentioning here the well-known result [1,13,47,48,70,71] that the
doubling map (18) is isomorphic to the 1-dimensional Boole-type transformation

f : R 3 x → (x− 1/x)/2 ∈ R, (64)
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which is invariant with respect to the probability measure dµ(x) = dx/[π(1 + x2)], x ∈ R,
and has entropy

hµ( f ) = 1
π

∫
R

ln[(1+x−2)/2]dx
(1+x2)

= 2
π

∫ ∞
0

ln[(1+x−2)/2]dx
(1+x2)

= 2
π

∫ ∞
0

ln(1+x−2)dx
(1+x2)

− 2 ln 2
π

∫ ∞
0

dx
(1+x2)

= 2
π

∫ ∞
0

tan−1 x dx
(1+x2)x − ln 2 = 4

π

(
π
2 ln 2

)
− ln 2 = ln 2,

(65)

coinciding with that of (19). The Boole mapping (39) was also generalized [1] in the form

R\{bj : j = 1, N} 3 x → f̃ (x) := αx + a−
N

∑
j=1

β j

x− bj
∈ R, (66)

where a, bj ∈ R, j = 1, N, α, β j ∈ R+, j = 1, N, and analyzed in [1,3,11,72,73]. For α = 1,
a = 0, the ergodicity result was proved in [3,74–76] by making use of a specially devised
inner function method. The related spectral aspects of the mapping (66) were in part also
studied in [1,3]. In spite of these results, the case α 6= 1 is still challenging, with the only
available related results [1,3] being for the special case of (66)

R 3 x → f#(x) := αx + a− β

x− b
∈ R (67)

for α = 1/2, and arbitrary a, b ∈ R and β ∈ R+. Invariant measures and ergodicity related
to (67) were analyzed in [11,70–72] using their equivalence to

[0, 1) 3 s :→ T(s) = 2s mod 1 ∈ [0, 1), (68)

following from the commutative diagram

[0, 1) T→ [0, 1)
ϕ ↓ ↓ ϕ

R
f#→ R

, (69)

for which the condition ϕ ◦ T = ϕ ◦ f#, where ϕ(s) := (2β)1/2 cot(πs) + 2a, s ∈ [0, 1), holds.
The Krengel–Rokhlin formula (5) can be used to calculate the corresponding measure-
theoretic entropy of the f#, yielding hµ( f#) = ln 2, which is the entropy of the shift
map (19).

It is also important to mention that the theory of inner functions in [1,74–76] was
used to prove the existence an f#-invariant probability measure µ# on R, such that the
generalized Boole type transformation (66) is ergodic for any N > 1, α = 1 and a = 0. It
appears that the transformation (66) is not ergodic for α = 1 and a 6= 0 since it is totally
dissipative, with wandering set Ωc( f#) := ∪W( f#) = R, where W( f#) ⊂ R are such that all
f−n
# (W), n ∈ Z+, are disjoint. An analogous result can be proved [1] for the generalized

Boole-type transformation

R 3 x → g(x) := αx + a +
∫
R

dν(s)
s− x

∈ R, (70)

where a ∈ R, α ∈ R+ and the measure ν on R (not necessary absolutely continuous with
respect Lebesgue measure) has compact support supp ν ⊂ R and satisfies the natural
conditions ∫

R

dν(s)
1 + s2 = a,

∫
R

dν(s) < ∞, (71)

which guarantee the boundedness of its entropy.
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4. Multi-Dimensional Boole Transformations: Their Entropy and Ergodicity

Multi-dimensional endomorphisms of measurable spaces are of great interest [14,47] in
many mathematical subdisciplines, including number theory, numerics, dynamical systems
theory and diverse physical applications. In this regard, we should mention [14,61,62],
which treat many interesting measure preserving and ergodic multi-dimensional mappings.
Recently, in [11,70,72,73] a class of new multi-dimensional Boole type transformations
βρ : Rn → Rn of the following form were introduced and analyzed

βρ(x1, x2, . . . , xn) := (x1 − 1/xρ(1), x2 ± 1/xρ(2), . . . , xn ± 1/xρ(n)) , (72)

for any n ∈ N and arbitrary permutations ρ ∈ Sn, where the signs ”± ” are chosen from the
nondegeneracy condition Jβρ

(x) 6= 0, x ∈ Rn\{0}. For the case n = 2, (x, y) ∈ R2\{0, 0},
one obtains the two-dimensional Boole type mapping:

β(21)(x, y) := (x− 1/y, y + 1/x), (73)

and for the case n = 3, (x, y, z) ∈ R3\{0, 0, 0}, the pair of nontrivial three-dimensional
Boole type mapping:

β(231)(x, y, z) := (x− 1/y, y + 1/z, z + 1/x), (74)

β(23−1−)(x, y, z) := (x− 1/y, y− 1/z, z− 1/x).

The infinitesimal σ-finite Lebesgue measure dλ(x, y) := dxdy, (x, y) ∈ R2 is β(21)-
invariant, as can be easily checked via the Perron–Frobenius eigenfunction condition as
follows: For the corresponding preimages (u±, v±) := (u±(x, y), v±(x, y)) ∈ R2, where
u+u− = xy−1, v+v− = −yx−1, u+ + u− = 2y−1 + x, v+ + v− = y− 2x−1, β(21)(u±, v±) =
(x, y) ∈ R2, one verifies that the measure satisfies

∑± du±dv±(x, y) = ∑±
∣∣∣J(u± ,v±)(x, y)

∣∣∣dxdy

= ∑±
dxdy

|JF(u± ,v±)| = ∑±
dxdy

(1+(u±v±)−2)

= ∑±
(u±v±)2dx

(1+(u±v±)2)
=

[2(u+v+u−v−)2 +(u−v−)2+(u+v+)2]dxdy

[1+(u−v−)2+(u+v+)2+(u+v+u−v−)2]

=
[(u−v−)2+(u+v+)2+2]dxdy

[2+(u−v−)2+(u+v+)2]
= dxdy,

(75)

coinciding with the Lebesgue measure dλ(x, y) := dxdy. As for the ergodicity of the
Lebesgue measure preserving mapping (73), the approach based on Theorem 2 employing
smooth-fibered multi-dimensional mappings does not seem to be viable. Inasmuch as that
the ergodicity result of [46] for the one-dimensional Boole mapping (39) is largely based on
the induced Kakutani transformation technique, one can expect that it is also applicable to
the two-dimensional Boole map (72).

Now we recall that the notion of the induced transformation [47–49] for an infinite
measure preserving mapping f : X → X, which was used by Adler and Weiss [46] to prove
the ergodicity of the map (39), is rather closely related to the classical Poincaré recurrence
theorem [18,48]. Namely, let (X;B, µ, f ) be a measure preserving discrete dynamical
system, where A ⊂ X is a set of positive measure satisfying the covering condition

X = ∪n∈N f−n A (76)

modulo a set of measure zero.

Remark 2. It is worth mentioning here [18,47–49] that if a measurable dynamical system (X;B, µ, f )
satisfies for arbitrarily chosen measurable A ⊂ X, µ(A) > 0, the covering condition (76), then
f : X → X is ergodic. In fact, if f is ergodic, then for an arbitrary measurable set B ⊂ X,
µ(B∆ f−1B) = 0 implies that µ(B) = 1, or µ(B) = 0. Now let A ⊂ X be a measurable set
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with µ(A) > 0 and define B := ∪n∈N f−n A. Since f−1B ⊂ B, one infers that µ( f−1B) = µ(B),
implying that µ(B∆ f−1B) = 0, so µ(B) = 1, or µ(B) = 0. Moreover, as f−1 A ⊂ B one
concludes that µ(B) ≥ µ(A), or µ(B) = 1. Whence, B = ∪n∈N f−n A = X modulo a set of
measure zero.

In general, for a probability measure space (X;B, µ) the following properties are equivalent: (i)
f : X → X is ergodic; (ii) for any A ∈ B, µ( f−1(A)4 A) = 0 implies µ(A) = 1 or µ(A) = 0;
(iii) for A ∈ B, µ(A) > 0 implies that µ(∪n∈N f−n(A)) = 1; iv) for A, B ∈ B, µ(A)µ(B) > 0
implies that there exists nA ∈ N, such that µ( f−nA(A) ∩ B) > 0; (v) for any measurable and
invariant function g : X → C, g = g ◦ f µ-almost everywhere implies that g : X → C is constant
almost everywhere.

Owing to the condition (76), the first return time τA ∈ N can now be defined as

τA(x) := inf
n∈N
{n : f n(x) ∈ A, x ∈ A}, (77)

which exists almost everywhere and is finite.

Definition 1. Let a measurable dynamical system (X;B, µ, f ) satisfy the condition (76). Then a
mapping fA : A→ A defined as

fA(x) := f τA(x)(x) (78)

for almost all x ∈ A is called the transformation induced by f : X → X on the subset A ⊂ X.

The induced transformation is characterized by the following [47–49] important theo-
rems:

Theorem 4. (M.Kac). Let a mapping f : X → X be ergodic and a measurable set A ⊂ X be such
that 0 < µ(A) < ∞. Then the average return time is proportional to the measure µ(A); that is,∫

A
τA(x)dµ(x) = µ(A). (79)

Theorem 5. The induced transformation (78) is measure preserving on the space (A,B|A, µA =
µ(A)−1µ|A, fA), where B|A := {B ∩ A : B ∈ B}, 0 < µ(A) < ∞. Moreover, if f : X → X is
ergodic, with respect to the measure µ, the induced transformation fA : A → A is ergodic with
respect to the measure µA := µ/µ(A) induced on the set A.

An instructive proof of this theorem is given below in Supplement to the article. As
was already mentioned above, this theorem was used in [46] to prove the ergodicity of
the Boole mapping (39). In addition, it was shown above that there is a second effective
essentially analytical approach to proving the ergodicity, and so it would be useful to
present two proofs, if any, of the ergodicity of the two-dimensional Boole type mapping (73).

Concerning the approach based on Theorem 5, its main technical ingredients are
intimately related to the construction of a special generating partition of the measure space
X, suggested by Kakutani and Rokhlin [51,77] for the corresponding induced mapping
fA : A→ A.

Now, if one tries to apply the measure-theoretic construction devised in [46] for prov-
ing ergodicity of the two-dimensional Boole mapping (73), some very technical difficulties
arise that appear to be too difficult to overcome. Thus, the analytical approach based on
Theorem 2 that relies on the relationship between the two-dimensional Boole mapping (73)
and the two-dimensional doubling map appears to be the only feasible choice. More
specifically (73), which for convenience in what follows we define as F := β(21), is related to
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the following two-dimensional transformation TF : [0, 1)2 3 (s, t)→ ({2s}, {2t}) ∈ [0, 1)2

on the square Y = [0, 1)2 ⊂ R2, according to the commutative diagram

[0, 1)2 cot(π◦)→ R2 F→ R2

S ↓ ↓ cot−1 π

[0, 1)2 TF(◦)→ [0, 1)2 α−1
→ [0, 1)2

, (80)

where α−1 : [0, 1)2 → R2 is the map

α−1
(

s
t

)
:=
(

α−1
1 (s, t)

α−1
2 (s, t)

)
=

 π−1 cot−1
(

2 cot{π(s+t)}
1+sin{π(s−t)}/ sin{π(s+t)}

)
π−1 cot−1

(
2 cot{π(s−t)}

−1+sin{π(s+t)}/ sin{π(s−t)}

)  (81)

owing to changing the variables x = cot(πs), y = cot(πt), (s, t) ∈ [0, 1)2, (x, y) ∈ R2,
subject to the new coordinates (s, t) ∈ [0, 1)2 and the transformation S−1 : [0, 1)2 3 (s, t)→
({s + t}, {s− t}) ∈ [0, 1)2. That this approach could be used to prove of the ergodicity
theorem of the two-dimensional Boole transformation (73), was announced in [70–72] and
is now confirmed by the following result.

Theorem 6. The two-dimensional Boole transformation F = β(21) defined in (73) is ergodic with
respect to the invariant Lebesgue measure λ on R2.

Proof. We begin by constructing the proper cylindrical subsets In := In(k0, k1, . . . , kn−1;
l0, l1, . . . , ln−1) ⊂ [0, 1)2, n ∈ Z+ :

In =

 ←−
∏

j=0,n−1

(S−1 ◦ σkj ,lj
◦ α) : (u, v) ∈ [0, 1)2

 (82)

for the diffeomorphically equivalent F̃-mapping F̃ = (F̃1, F̃2)
ᵀ : [0, 1)2 → [0, 1)2, where

TF ◦ σkj ,lj
= Id : [0, 1)2 → [0, 1)2, σkj ,lj

:= (σkj
, σlj

)−1, k j, lj ∈ {0, 1}, j = 0, n− 1, σ0(s) =

s/2, if s ∈ [0, 1/2), σ1(s) = (1 + s)/2, if s ∈ [1/2, 1) and

(F̃1, F̃2)
ᵀ = cot−1(π◦)α−1 ◦ TF ◦ S, (83)

satisfies the obvious conditions F̃1 ◦ (S−1 ◦ π−1 cot−1 ◦πσkj
◦ α1 ◦ cot(π◦))(u, v) = u,

F̃2 ◦ (S−1 ◦ π−1 cot−1 ◦πσkj
◦ α1 ◦ cot(π◦))(u, v) = v for every (u, v) ∈ [0, 1)2, k j, lj ∈

0, 1, j ∈ 0, n− 1. Now the Lebesgue measure of the cylindrical interval (82) can be now
easily estimated as follows. We have the Lebesgue interval measure

λ(In) =
∫

In
dudv =

∫
[0,1)2

χIn(u, v)dudv (84)

=
∫
[0,1)2

|J(S−1◦σkn−1,ln−1
◦α)◦(S−1◦σkn−2,ln−2

◦α)◦...◦(S−1◦σk0,l0
◦α)(u, v)|dudv

=
∫
[0,1)2 ∏

j=0,n−1

|JS−1 |Jσkj ,lj
|Jα(uj, vj)|dudv =

1
4n

∫
[0,1)2 ∏

j=0,n−1

Jα(uj, vj)|dudv

where S−1 ◦ σkj ,lj
◦ α(uj, vj) := (uj+1, vj+1) ∈ [2−(j+1), 2−j)2, ϕ̃(uj+1, vj+1) = (uj, vj), j =

0, n− 1, (u0, v0) := (u, v) ∈ [0, 1)2. Taking into account that

(S−1 ◦ σkj−1,lj−1
◦ α) ◦ (S−1 ◦ σkn−2,ln−2 ◦ α) ◦ . . . ◦ (S−1 ◦ σk0,l0 ◦ α)([0, 1)2) ⊂ [1/2j+1, 1/2j) (85)

and 2t ≤ sin πt ≤ πt, 2s ≤ sin πs ≤ πs for all s, t ∈ [0, 1/2], the subintegral Jacobian
product of (84) can be represented as
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∏
j=0,n−1

Jα(uj, vj) = ∏
j=0,n−1

[cos2 π(uj+vj)+sin2 πuj cos2 πvj][cos2 π(uj−vj)+sin2 πvj cos2 πuj]
(1−sin2 πuj−sin2 πvj+2 sin2 πuj sin2 πvj)

=

= ∏
j=0,n−1

[1−sin2 πvj+sin2 πuj sin2 πvj−1/2 sin2 2πuj sin 2πvj][1−sin2 πuj+sin2 πuj sin2 πvj+1/2 sin2 2πuj sin 2πvj]
(1−sin2 πuj−sin2 πvj+2 sin2 πuj sin2 πvj)

.

(86)

This can be readily estimated as(
3π2

4 + 1
42 − 1

)(
π2

4 −
3
2 + 1

42

)
exp

[
∑j∈N

(
1−π2

4j + 2(1−π4)

16j

)]
≤ ∏

j=0,n−1

Jα(uj, vj) ≤
[
1− π2

2 +
(

π
2
)4
]−1

exp
[
∑j∈N

(
2π2+6

4j+1 + 1
16j+1

)]
. (87)

Thus, based on the estimates (86), we readily obtain the following inequalities for the
measure (84):

C1

4n ≤ λ(In) ≤
C2

4n (88)

for any n ∈ N, where the constants are

C1 :=
(

3π2

4
+

1
42 − 1

)(
π2

4
− 3

2
+

1
42

)
exp

[
∑
j∈N

(
1− π2

4j +
2(1− π4)

16j

)]
, (89)

C2 :=
[

1− π2

2
+
(π

2

)4
]−1

exp

[
∑
j∈N

(
2π2 + 6

4j+1 +
1

16j+1

)]
.

Having the estimate (88), we are in a position allowing to apply Lemmas 1 and 2.
Whence, if a measurable set B ⊂ [0, 1)2 is F-invariant so that B = F−1B = F−nB, n ∈ N, we
compute that

λ(B ∩ In) =
∫
[0,1)2 χB∩In(u, v)dudv =

∫
[0,1)2 χB(u, v)χIn(u, v)dudv =

∫
In

χB(u, v)dudv
=
∫
[0,1)2 χB((S−1 ◦ σkn−1,ln−1 ◦ α ) ◦ (S−1 ◦ σkn−2,ln−2 ◦ α) ◦ . . . ◦ (S−1 ◦ σk0,l0 ◦ α)(t))×
×dλ((S−1 ◦ σkn−1,ln−1 ◦ α ) ◦ (S−1 ◦ σkn−2,ln−2 ◦ α) ◦ . . . ◦ (S−1 ◦ σk0,l0 ◦ α)(u, v))

=
∫
[0,1) χF−nB((S−1 ◦ σkn−1,ln−1 ◦ α ) ◦ (S−1 ◦ σkn−2,ln−2 ◦ α) ◦ . . . ◦ (S−1 ◦ σk0,l0 ◦ α))(u, v))×
×dλ((S−1 ◦ σkn−1,ln−1 ◦ α ) ◦ (S−1 ◦ σkn−2,ln−2 ◦ α) ◦ . . . ◦ (S−1 ◦ σk0,l0 ◦ α))(u, v))

=
∫
[0,1) χB(F̃n ◦ (S−1 ◦ σkn−1,ln−1 ◦ α ) ◦ (S−1 ◦ σkn−2,ln−2 ◦ α) ◦ . . . ◦ (S−1 ◦ σk0,l0 ◦ α)(u, v))×
×× dλ((S−1 ◦ σkn−1,ln−1 ◦ α ) ◦ (S−1 ◦ σkn−2,ln−2 ◦ α) ◦ . . . ◦ (S−1 ◦ σk0,l0 ◦ α))(u, v))

=
∫
[0,1)2 χ B(u, v)|J(S−1◦σkn−1,ln−1

◦α)◦(S−1◦σkn−2,ln−2
◦α)◦...◦(S−1◦σk0,l0

◦α)(u, v)|dudv

=
∫
[0,1)2 χ B(u, v) ∏

j=0,n−1

|JS−1 |Jσkj ,lj
|Jα(uj, vj)|dudv = 1

4n

∫
B ∏

j=0,n−1

Jα(uj, vj)dudv,

(90)

where we made use of the property that the composition F ◦ (S−1 ◦ σkj ,lj
◦ α) = Id for any

j = 0, n− 1. Now, it follows from (88) that

λ(B ∩ In) =
1

4n

∫
[0,1)2 χ B(u, v) ∏

j=0,n−1

Jα(uj, vj)dudv

≥ C1
4nλ(In)

λ(In)λ(B) ≥ C1C−1
2 λ(In)λ(B),

so the Lebesgue measure satisfies λ(In)λ(B) ≤ Cλ(B ∩ In) for all n ∈ Z+, where C :=
C2C−1

1 . Therefore, owing to Lemma 2, either λ(B) = 1 or λ(B) = 0, thus confirming the
ergodicity of the two-dimensional Boole mapping (73) with respect to the same invariant
Lebesgue measure λ on R2, and completing the proof.
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As mentioned above, the Lebesgue measure on R3 is invariant with respect to the
three-dimensional Boole-type transformations (74), which are also likely to be ergodic, but
the search for a proof is still ongoing.

5. Supplement: Proof of Theorem 6

Let f : X → X be ergodic and consider a measurable set A ⊂ X satisfying the
condition 0 < µ(A) < ∞ together with its induced mapping fA : A → A. As the
condition (76) a priori [18,46–49] holds, one can construct the following disjoint measurable
first return iteration subsets

Xn := {x ∈ X : f n(x) ∈ A, f j(x) /∈ A, j = 1, n− 1}, (91)

where tn∈NXn = X, Xn ∩ Xm = ∅, m 6= n ∈ N, and for which

Xn+1 = f−1Xn ∩ f−1 Ā (92)

is satisfied. Using the sets (91), one constructs for all n ∈ N the sets

An := Xn ∩ A, Bn := Xn ∩ Ā, (93)

satisfying the disjoint sum property

f−1Bn = Bn+1 t An+1, (94)

tn∈NAn = A,tn∈NBn = Ā.

For any measurable subset E ⊂ A we note that

f−1
A E = tn∈N

(
f−nE ∩ An

)
, (95)

which gives rise to the equality

µ( f−1
A E) = µ(tn∈N

(
f−nE ∩ An

)
) = ∑

n∈N
µ( f−nE ∩ An). (96)

Employing the representation (94) and the measure invariance, one readily deduces
that

µ(E) = µ( f−1E) = µ( f−1E ∩ (B1 t A1))
= µ( f−1E ∩ B1) + µ( f−1E ∩ A1),

µ(Bn) = µ( f−1Bn) = µ(Bn+1 t An+2) = µ(Bn+1) + µ(An+2),
µ( f−1E ∩ B1) = µ( f−1( f−1E ∩ B1)) = µ( f−2E ∩ f−1B1)
= µ( f−2E ∩ (B2 t A2)) = µ( f−2E ∩ B2) + µ( f−2E ∩ B2),

...
µ( f−nE ∩ Bn) = µ( f−(n+1)E ∩ Bn+1) + µ( f−(n+1)E ∩ An+1),

(97)

for all n ∈ N. Consequently, we find that

µ( f−nE ∩ Bn) =
∞

∑
k=n+1

µ( f−nE ∩ An), µ(Bn) =
∞

∑
k=n+1

µ(An), (98)

which reduces to
µ( f−nE ∩ Bn) + ∑k=1,n µ( f−nE ∩ An)

= ∑n∈N µ( f−nE ∩ An) := ηA,
µ(A) = ∑∞

k=1 µ(An), µ(B1) = ∑∞
k=2 µ(An).

(99)

Whence follows the invariance of the positive quantity ηA ∈ R+ with respect to
n ∈ N and the boundedness of the measure µ(B1) ≤ µ(A), since the measure µ(A) =
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µ(tn∈NAn) < ∞ is assumed bounded. It follows immediately from the first equality of (97)
that ηA = µ(A) > 0, that is

µ( f−nE ∩ Bn) + ∑
k=1,n

µ( f−nE ∩ An) = µ(E). (100)

In light of (96), it follows from (100) and (99) that

|µ( f−1
A E)− µ(E)| = limn→∞

(
∑∞

k=n+1 µ( f−kE ∩ Ak)

+µ( f−nE ∩ Bn)) ≤ 2 limn→∞
(
∑∞

k=n+1 µ( Ak)
)
= 0

(101)

owing to the convergence condition (99) for the measure µ(A) < ∞, so µ( f−1
A E) = µ(E)

for any measurable set E ⊂ A. Therefore, the suitably induced measure on A ⊂ X,
µA = µ/µ(A), is also invariant with respect to the induced map fA : A→ A.

If we assume now that the induced mapping fA : A → A is ergodic and take an f -
invariant set D ⊂ X such that µ(D∩ A) > 0, then since either µ(D∩ A) > 0 or µ(D∩ Ā) > 0,
it follows from the expansion (95) that

f−1
A (D ∩ A) = tn∈N( f−n(D ∩ A) ∩ An)

= tn∈N(D ∩ f−n A ∩ An) = D ∩ (tn∈N( f−n A ∩ An))

= D ∩ f−1
A A = D ∩ A,

(102)

since the initial assumption ∪n∈N f−n A = X guarantees that f−1
A A = A modulo a set

of measure zero. As the induced mapping is assumed to be ergodic, from (102) and the
condition µ(D ∩ A) > 0, we immediately conclude that D ∩ A = A. Thus, based once
more on the initial assumption ∪n∈N f−n A = X one readily finds that

X = ∪n∈N f−n(D ∩ A) = ∪n∈N( f−nD ∩ f−n A) (103)

= ∪n∈N(D ∩ f−n A) = D ∩
(
∪n∈N f−n A

)
= D ∩ X = D,

meaning that the mapping f : X → X is also ergodic.
Similarly, one can also prove the converse statement. In particular, if the mapping

f : X → X is ergodic and a set E ⊂ A of positive measure is fA-invariant , then

f−1
A E = tn∈N

(
f−nE ∩ An

)
= E. (104)

Taking into account the invariance condition (104), let us construct the set G :=
E ∪ tn∈N(Bn ∩ f−nE) and calculate its inverse image under f as follows:

f−1G = f−1E ∪ tn∈N( f−1Bn ∩ f−(n+1)E)
= f−1E ∪ tn∈N

(
(Bn+1 t An+1) ∩ f−(n+1)E)

)
= f−1E ∪

(
tn∈N(Bn+1 ∩ f−(n+1)E)

)⋃
⋃

f−1E ∪
(
tn∈N(An+1 ∩ f−(n+1)E)

)
= (A1 ∩ f−1E t B1 ∩ f−1E) ∪

(
tn∈N(Bn+1 ∩ f−(n+1)E)

)⋃
⋃

(A1 ∩ f−1E t B1 ∩ f−1E) ∪
(
tn∈N(An+1 ∩ f−(n+1)E)

)
= (tn∈N(Bn ∩ f−nE))

⋃
(tn∈N(An ∩ f−nE))

= (tn∈N(Bn ∩ f−nE)) ∪ E = G.

(105)

Hence, G is f -invariant, so the ergodicity of f implies that G = X modulo a set of
measure zero. Having now taken into account that, by construction, the subset tn∈N(Bn ∩
f−nE) ⊂ Ā, it follows that the set A ⊆ E modulo a set of measure zero in X. Consequently,
from the assumption that E ⊂ A, one deduces finally that A = E, which means that the
induced mapping fA : A→ A is also ergodic, proving the theorem.
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6. Conclusions

We delineated several aspects of discrete measurable and differential dynamical
systems essential to our investigation of the classical Boole transformation and some
of its generalizations and extensions. The aspects of primary interest were metric and
topological entropy and ergodicity and their interrelationships. For example, the Rokhlin–
Krengel formula for metric entropy of ergodic systems played a key role in our treatment
of both topological and Kolmogorov–Sinai entropy. One of the main results obtained was
the calculation of the topological and metric entropy of the classical (one-dimensional)
Boole map employing a limiting approach as well as a compactification method based on
stereographic projection. In addition, we presented a new proof of the ergodicity of the
classical Boole map employing the ideas of Li and Schweiger and studied the entropy of
some simple generalizations of the Boole map.

An interesting class of multi-dimensional extensions of the classical Boole map was
introduced and the members were shown to be invariant under the Lebesgue measures of
the corresponding dimension. It was proved, using an approach based on fibered mappings,
that a particular two-dimensional member of the class is ergodic and a similar result for the
higher dimensional generalizations was conjectured. Moreover, we conjectured that the
techniques used to compute both topological and metric entropy for the one-dimensional
Boole map could be adapted for these multi-dimensional extensions as well. As for related
future research, we plan to investigate both our ergodicity and entropy conjectures in
considerable detail.
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Acknowledgments: The authors thank Z. Peradzyński, Ya. V. Mykytyuk, L. Byszewski and J. Ko-
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