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Abstract: In this paper, the optimization of network performance to support the deployment of
federated learning (FL) is investigated. In particular, in the considered model, each user owns
a machine learning (ML) model by training through its own dataset, and then transmits its ML
parameters to a base station (BS) which aggregates the ML parameters to obtain a global ML model
and transmits it to each user. Due to limited radio frequency (RF) resources, the number of users that
participate in FL is restricted. Meanwhile, each user uploading and downloading the FL parameters
may increase communication costs thus reducing the number of participating users. To this end, we
propose to introduce visible light communication (VLC) as a supplement to RF and use compression
methods to reduce the resources needed to transmit FL parameters over wireless links so as to further
improve the communication efficiency and simultaneously optimize wireless network through user
selection and resource allocation. This user selection and bandwidth allocation problem is formulated
as an optimization problem whose goal is to minimize the training loss of FL. We first use a model
compression method to reduce the size of FL model parameters that are transmitted over wireless
links. Then, the optimization problem is separated into two subproblems. The first subproblem is a
user selection problem with a given bandwidth allocation, which is solved by a traversal algorithm.
The second subproblem is a bandwidth allocation problem with a given user selection, which is
solved by a numerical method. The ultimate user selection and bandwidth allocation are obtained
by iteratively compressing the model and solving these two subproblems. Simulation results show
that the proposed FL algorithm can improve the accuracy of object recognition by up to 16.7% and
improve the number of selected users by up to 68.7%, compared to a conventional FL algorithm
using only RF.

Keywords: federated learning; model compression; visible light communication

1. Introduction

Federated learning (FL), which allows edge devices to cooperatively train a shared
machine learning model without transmitting private data, is an emerging distributed
machine learning technique [1,2]. The FL training process needs to iteratively transmit
machine learning parameters over wireless links. However, due to dynamic wireless
channels and imperfect wireless transmission, the performance of FL will be significantly
affected by wireless communication. In addition, due to limited communication resources,
the number of users that can participate in FL is limited.
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1.1. Related Work

A number of prior studies in [3–16] have investigated important problems related
to wireless network optimization of FL. The works in [3–6] provided a comprehensive
survey of existing studies and summarized open problems in FL. One key challenge is the
contradiction between the huge communication costs required by FL parameter transmis-
sion and the limited available communication resources [5]. Therefore, on one hand, the
existing studies in [7–12] proposed to compress the FL model parameters to reduce the
communication cost. In particular, the authors of [7] proposed a sparsification and quanti-
zation method that compresses the trained FL model. In addition, they also proposed a low
rank method and a random mask method, which directly learns a model from a restricted
space. In [8], the authors combined quantization and sparsification to implement sketched
updates with low sparsity rate. The work in [9] proposed a sparse ternary compression
(STC) method that incorporates gradient sparsification, ternary quantization, and lossless
encoding, which further improves the compression gains. The authors of [10] proposed
to introduce the STC in [9] into structured updates, and thus they focused on compres-
sion during the training phase, instead of compressing the trained FL model. Overall, as
demonstrated in [7,10], FL model compression can significantly reduce communication
costs with minor impact on training accuracy.

On the other hand, the studies in [13–16] proposed to optimize resource allocation
to improve communication efficiency in FL. In [13], the authors studied a joint learning,
wireless resource allocation, and user selection optimization problem to improve FL per-
formance. In [14], the trade-off of time and energy consumption, and the trade-off of
computational and communication delay have been studied. Meanwhile, the authors
of [15] optimized a joint computation and transmission problem, whose goal is to minimize
the total energy consumption with communication constraints such as limited computa-
tional resources and transmission energy. In addition, the authors of [16] formulated an
optimization problem of resource allocation and introduced the use of artificial neural
networks (ANNs) to predict the unselected users’ FL model parameters to improve the FL
convergence speed and training loss.

Based on the above research, we can observe that the existing studies focus on im-
proving the communication efficiency either by reducing the transmission data amount
or optimizing wireless resource allocation to improve the data rate of each user. As a
complement of RF, visible light communication (VLC) has advantages including having
large, license-free bandwidth, high energy efficiency, and being free of interference to the
RF systems. Introducing VLC into FL can significantly supplement the communication
resources for FL training. In addition, model compression can be introduced to further
reduce the resources needed to transmit FL model parameters and increase the number of
users participating in FL training.

1.2. Contribution

The main contribution of this paper is a novel hybrid VLC/RF FL algorithm, that
jointly optimizes user selection, bandwidth allocation, and model compression (USBA-
MC). To the best of our knowledge, this is the first work that introduces the use of VLC
techniques for FL performance optimization. The contributions are summarized as follows.

• We propose a USBA-MC algorithm over a hybrid VLC/RF system. In the USBA-MC
algorithm, each user obtains a local FL model by training through its own dataset and
transmits the model parameters to a base station (BS). The BS aggregates the received
local models to generate a global FL model and transmits it back to each user. For
the considered FL model, the performance is significantly affected by wireless factors
such as available bandwidth and users’ channel state information. This formulates a
joint user selection and bandwidth allocation problem, whose goal is to minimize the
FL training loss.

• To solve this problem, we first introduce a model compression method to reduce the
size of FL model parameters that are transmitted over wireless links. To this end, we
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first sort the model parameters and design a threshold selection mechanism according
to the sparsity rate. Then, we cut off the redundant model parameters based on the
threshold and, thus, compress an FL model of each user.

• Following the model compression, we separate the joint user selection and bandwidth
allocation problem into two subproblems. The first subproblem is a user selection
problem with a given bandwidth allocation, which is solved by a traversal algorithm.
The second subproblem is a bandwidth allocation problem with a given user selection,
which is solved by a numerical method. The ultimate user selection and bandwidth
allocation are obtained by iteratively compressing the model and solving these two
subproblems.

Simulation results show that the proposed FL algorithm can improve the accuracy
of object recognition by up to 16.7% and improve the number of selected users by up to
68.7%, compared to a conventional FL algorithm using only RF.

The remainder of this paper is organized as follows. In Section 2, we introduce the
hybrid VLC/RF system model. Section 3 introduces a model compression method. The
joint user selection, bandwidth allocation, and model compression algorithm is described
in Section 4. Simulation results are presented and discussed in Section 5. Finally, Section 6
draws some important conclusions.

2. System Model and Problem Formulation

In this section, we first introduce a hybrid VLC/RF system for FL. Then, we intro-
duce the computational model and the communication models of RF and VLC systems.
Finally, based on the established model, we introduce a user selection and bandwidth
allocation problem.

2.1. FL Model

In this model, each user n stores a local dataset Dn with Dn being the number of
training data samples. Therefore, the total number of training data samples of all users
is D = ∑N

n=1 Dn. We assume that the training data samples of user n can be expressed
by {xn, yn} with xn = [xn1, . . . , xnDn ] and yn = [yn1, . . . , ynDn ], where each xni is an input
vector of the FL algorithm and yni is the output of xni.

For each user, the FL training purpose is to find the model parameter ω that minimizes
the loss function:

Jn(ω) :=
1

Dn
∑i∈Dn

fi(ω), (1)

where fi(ω) is a loss function that captures the performance of the FL algorithm. For
example, for a linear regression FL, the loss function is fi(ω) = 1

2 (xi
Tω− yi)

2 [14].
All users aim to minimize the following global loss function:

min
ω∈Rd

J(ω) :=
N

∑
n=1

Dn

D
Jn(ω). (2)

To solve (2), the BS will first transmit the global FL model parameters to its users, and
users will use the received global FL model parameters to train their local FL models. Then,
the users will transmit their local FL model parameters to the BS to update the global FL
model. For strongly convex objective J(ω), the maximum number of global iterations that
an FL algorithm needs to converge is [17]

K(ε, θ) =
o(log(1/ε))

1− θ
, (3)

where ε is the accuracy of global model and θ is the accuracy of local model. We consider a
fixed global accuracy ε.
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2.2. FL Based on Hybrid VLC/RF System

Due to the limited wireless bandwidth, only a subset of users can be selected for
FL training, which can seriously degrade the training accuracy. To enable more users to
join the FL training process, we design a hybrid VLC/RF system. The system structure is
shown in Figure 1.

Figure 1. Illustration of FL based on a hybrid VLC/RF system.

The considered system consists of one BS, home gateways, and users cooperatively
performing an FL algorithm for data analysis and inference. Denote the total users by a
set N of N users. Denote the indoor users by a set N1 of N1 users and the outdoor users
by a set N2 of N2 users. In this model, the BS will send the global FL model parameters
to outdoor users by RF. Meanwhile, the BS transmits the global model parameters to the
home gateways which are connected to the indoor VLC access points (APs). Then, the
VLC APs transmit the global FL model parameters to indoor users through the visible
light signal. Assuming that the BS and home gateways are connected by fiber on which bit
errors can be negligible.

In indoor scenarios, each VLC AP consists of an LED lamp. Each user is served by the
AP that provides the strongest signal. In addition, we assume that all indoor users can be
covered by visible lights. We also assume that there is a central unit (CU) which controls
both VLC and RF systems. Note that there is no interference between the RF and VLC
systems, which is a key benefit of introducing VLC for the deployment of FL over wireless
networks.

2.3. Computational Model

Let cn be the number of CPU cycles for user n to process one sample of data. As the
data size of each training data sample is equal, the number of CPU cycles required for user
n to execute one local iteration is cnDn. Denote the CPU-cycle frequency of user n by fn.
Then, the energy consumption of user n updating its local FL model in one global iteration
can be expressed as follows:

EP
n =

ναncnDn

2
fn

2 log(1/θ), (4)

where n = 1, 2, ..., N, αn
2 is the effective capacitance coefficient of the computing chipset of

user n, and ν is a positive constant that depends on the data size of training data sample
and the number of conditions in the local problem [14].

Furthermore, the computational time per local iteration of user n can be denoted as
cnDn

fn
, n = 1, 2, ..., N. The computational time, however, depends on the number of local
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iterations, which is upper bounded by o(log(1/θ)). Therefore, the required computational
time of user n for data processing is

tP
n =

νcnDn log(1/θ)

fn
. (5)

2.4. RF Transmission Model

We use the orthogonal frequency division multiple access (OFDMA) technique for
both uplink and downlink RF transmissions. The uplink rate of user n is given by

rU
n =

RU

∑
i=1

rU
n,iB

Ulog2(1 +
Pnhn

∑
i′∈U′n

Pi′ hi′ + BU NRF
0

), (6)

where rU
n = [rU

n,1, ..., rU
n,RU ] is a resource block allocation vector and RU is the total number

of RBs that the BS can allocate to the users. rU
n,i ∈ {0, 1} and

RU

∑
i=1

rU
n,i = 1; rU

n,i = 1 implies

that RB i is allocated to user n; otherwise, we have rU
n,i = 0; U

′
n represents the set of users

that are located at the other service areas and transmit data over RB i; BU is the bandwidth
of each RB and Pn is the transmit power of user n; hn is the channel gain between user n
and the BS; NRF

0 is the noise power spectral density; ∑
i′∈U′n

Pi′ hi′ is the interference caused

by the users that are located in other service areas and use the same RB.
On the other hand, the downlink data rate of the BS transmitting global FL model

parameters to each user n is given by

rD
n =

RD

∑
i=1

rD
n,iB

Dlog2(1 +
PBhn

∑
j∈B′

PBhnj + BD NRF
0

), (7)

where BD is the bandwidth of each RB that the BS used to transmit the global FL model to
each user n; rD

n = [rD
n,1, ..., rD

n,RD ] is a RB allocation vector with RD being the total number of

RBs that the BS can be used for FL parameter transmission. rD
n,i ∈ {0, 1} and

RD

∑
i=1

rD
n,i = 1;

rD
n,i = 1 indicates that RB i is allocated to user n; otherwise, we have rD

n,i = 0; PB is the

transmit power of the BS; B
′

is the set of other BSs that cause interference to the BS that
performs the FL algorithm; hnj is the channel gain between user n and BS j. Let BR be the
total RF bandwidth, and we have RU × BU + RD × BD ≤ BR. For simplicity, we assume
BU = BD which means the bandwidth of an uplink resource block is equal to that of a
downlink RB.

Denote the data size in bit of an FL model that each user needs to upload by sL. To
upload the local FL model within transmission delay requirement tU

n , we have tU
n rU

n ≥ sL.
Meanwhile, the required energy of user n transmitting FL parameters is EM

n = tU
n Pn.

Similarly, we assume that the data size in bit of the global parameters which are transmitted
to users is sG. To download the global FL model within transmission delay tD

n , we have
tD
n rD

n ≥ sG.

2.5. VLC Transmission Model

The optical channel gain of a line-of-sight (LoS) channel can be expressed as [18]

u =

{
(m+1)Ap

2πd2 Ts(θ)g(θ)cosm(ϕ) cos(θ), 0 < θ ≤ ΘF,
0, θ > ΘF,

(8)
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where m = − 1
log2(cos(θ1/2))

is the Lambertian index which is a function of the half-intensity
radiation angle θ1/2, Ap is the receiver’s physical area of the photo-diode, d is the distance
from the VLC AP to the optical receiver, ϕ is the angle of irradiation and θ is the angle of
incidence, ΘF is the half angle of the receiver’s file of view (FoV), Ts(θ) is the gain of the
optical filter, and the concentrator gain g(θ) can be written as

g(θ) =

{
n2

0
sin2ΘF

, 0 < θ ≤ ΘF,

0, θ > ΘF,
(9)

where n0 is the refractive index. For a given user n connected to a VLC AP k, the signal-to-
interference-plus-noise ratio (SINR) can be written as

snk =
(γunkPv)

2

NVLC
0 B + ∑l 6=k (γunl Pv)

2 , (10)

where γ is the optical to electric conversion efficiency, Pv is the transmitted optical power
of a VLC AP, NVLC

0 is the noise power spectral density, unk is the channel gain between user
n and the VLC AP k, unl is the channel gain between user n and the interfering VLC AP l,
and B is the bandwidth of each VLC RB. Each user is served by a single VLC AP which has
the largest SINR for the user. In the VLC systems, optical OFDMA is employed. It is known
that the input signal of the LEDs is amplitude constrained. Therefore, the classical Shannon
capacity formula for complex and average power constrained signal is not applicable in
VLC. Therefore, the lower bound of achievable data rate is used, which can be expressed
as [19]

rn =
RV

∑
i=1

rV
n,i

B
2

log2(1 +
2

πe
sn), (11)

where sn is the largest SINR which is evaluated as sn = max{sn1, ..., snK}, where K is the
total number of VLC APs; rV

n = [rV
n,1, ..., rV

n,RV ] is a RB allocation vector with RV being

the total number of VLC RBs, rV
n,i ∈ {0, 1} and

RV

∑
i=1

rV
n,i = 1; rV

n,i = 1 indicates that RB i is

allocated to user n; otherwise, we have rV
n,i = 0. Similarly, we have: RV × B ≤ BV , where

BV is the total bandwidth of VLC.
As the data size of global parameters is sG, the downlink transmission delay of indoor

user n in each global iteration will be tdn = sG

rn
.

2.6. Problem Formulation

Next, we introduce the optimization problem. Our goal is to minimize the global
loss function under time, energy, and bandwidth allocation constraints. The minimization
problem is given by

min
B,BD ,BU ,S

J(ω) (12)

s. t. RU × BU + RD × BD ≤ BR, (12a)

RV × B ≤ BV , (12b)

tdn + tU
n + tP

n + td ≤ Tround,∀n ∈ S1, (12c)

tD
n + tU

n + tP
n ≤ Tround,∀n ∈ S2, (12d)

S1 ∪ S2 = S, (12e)

EM
n + EP

n ≤ γnE, ∀n ∈ N, (12f)

RU = |S|, RD = |S2|, RV = |S1|, (12g)
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where S denotes the set of selected users participating in FL, S1 denotes the set of selected
indoor users, S2 denotes the set of selected outdoor users, and |.| denotes the cardinality of a
set. In addition, Tround is the time threshold for each round and td denotes the delay between
BS and the home gateway. In addition, γnE is the energy constraint of user n. (12a) and (12b)
are the bandwidth constraints of RF link and VLC link, respectively. Constraint (12c) is
the delay constraint of each round for all selected indoor users while (12d) is the delay
constraint of each round for all selected outdoor users. (12e) denotes the set of selected users.
In addition, (12f) is the energy consumption requirement of performing an FL algorithm.

3. Model Compression

In this section, we first analyze the optimization problem (12) so as to figure out
how the communication factors affect the FL performance. Then, we introduce a model
compression method to reduce the size of FL model parameters that are transmitted over
wireless links so as to increase the number of users that participate in FL.

3.1. Problem Analysis

To simplify problem (12), we first provide the following lemma:

Lemma 1. Given the transmit power of each user, the optimization problem (12) can be transformed
into an optimization problem aiming to maximize the total size of data samples of the selected users,
which can be denoted as

max
B,BD ,BU ,S

N1

∑
n=1

RV

∑
i=1

DnrV
n,i +

N

∑
n=N1+1

RD

∑
i=1

DnrD
n,i (13)

s. t. RU × BU + RD × BD ≤ BR, (13a)

RV × B ≤ BV , (13b)

tdn + tU
n + tP

n + td ≤ Tround,∀n ∈ S1, (13c)

tD
n + tU

n + tP
n ≤ Tround,∀n ∈ S2, (13d)

S1 ∪ S2 = S, (13e)

EM
n + EP

n ≤ γnE, ∀n ∈ N, (13f)

RU = |S|, RD = |S2|, RV = |S1|, (13g)

Proof. Minimizing the global loss function is equivalent to minimizing the gap between the
global loss function J(ωt) at time t and the optimal global loss function J(ω∗). According
to the Theorem 1 in [13], the gap is caused by the packet error rate (PER) and the number
of selected users. Here, we do not consider the packet errors and hence, we have qi = 0.
Using the same simplification method in [13], the optimization problem can be transformed
to problem (13). This ends the proof.

3.2. Model Weights Compression

From problem (13), we observe that as the number of users that implement FL in-
creases, the gap decreases, and the performance is improved. This is coincide with the
experimental conclusions in [20]. To maximize the number of users in FL, we introduce a
model compression method to reduce the transmission delay, energy, and bandwidth, so
as to increase the number of users that participate in FL. In particular, the FL model has
data redundancy during training and, thus, we prune the connections with small weight
updates to reduce the size of transmission model parameters. Meanwhile, although the
model compression will lose a part of model information, the experiments in [9,10,21] have
proved that appropriate compression methods do not significantly affect the convergence
speed and accuracy under proper sparsity rates. In this section, we first introduce a com-
pression method with non-fixed thresholds. Then, we analyze the impact of the model
compression on the optimization problem (13).
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An FL model needs to be carefully compressed without affecting the global model
training. The change of weights in a model can be used to evaluate their importance [22].
Therefore, an appropriate pruning threshold is the key for FL model compression. To
ensure that the gradients of an FL model are in the same order, we first normalize the
gradients in each layer [23]. In particular, the gradients of an FL model can be given by

Gτ
n = Train(Wτ

n, Dn)−Wτ
n, (14)

where Gτ
n ∈ Rd1×d2 is the gradients of user n at iteration τ, Wτ

n ∈ Rd1×d2 is the trained
local model weights, and τ ∈ {1, . . . , T} is a global iteration; d1 and d2 represent the
output and input dimensions, respectively; and Train(Wτ

n, Dn) refers to the trained model
weights of user n. For a given sparsity rate, we obtain a threshold according to the sorted
gradients. In particular, the weights less than the threshold are set to 0, while those larger
than the threshold are set to 1. This process can be expressed by a sparsifying filter mask
Mn ∈ Rd1×d2 for user n. Therefore, the compressed local model weights can be written as

Wn,C = Wn ⊗Mn, (15)

where Wn ∈ Rd1×d2 is the local model weights of user n and ⊗ is the Hadamard product.
Similarly, the compressed global model weights can be expressed as

WC = W⊗M, (16)

where W ∈ Rd1×d2 is the global model weights and M ∈ Rd1×d2 is the sparsifying filter
mask for the BS. From (16), we observe that each user receives the same sparse global
model.

The gradients that are not transmitted to the BS or the users are called residuals [24],
which will be used for the local model training and the global FL model generation.
Therefore, residuals can be used to mitigate the errors caused by the sparsification and
accelerate the FL convergence speed [21]. In particular, the residuals of user n can be
defined by

RT
n =

T

∑
τ=1

(Gτ
n −Gτ

n,C) = RT−1
n + GT

n −GT
n,C, (17)

where RT
n ∈ Rd1×d2 is the accumulation of the residuals at iteration T, and Gτ

n,C ∈ Rd1×d2

denotes compressed Gτ
n. Similarly, residuals of the BS can be defined by

RT =
T

∑
τ=1

(Gτ −Gτ
C) = RT−1 + GT −GT

C, (18)

where Gτ ∈ Rd1×d2 is the model gradients at the BS, and Gτ
C ∈ Rd1×d2 is the compressed

Gτ .
During transmissions, users only need to transmit the positions of non-zero parameters

and their values. Through receiving these information, the BS can recover the model, and
get the sparsifying filter masks. We assume the initial model weights is WI ∈ Rd1×d2 , the
final output is WF ∈ Rd1×d2 and the matrix with all elements of 1 is 1. The overall process
of model compression is shown in Algorithm 1.

Let pn and p be the sparsity rate corresponding to Mn and M. Then, the size of the
compressed local FL model and the compressed global FL model can be expressed as
sL

C = sL · pn and sG
C = sG · p, respectively. Using the proposed compression scheme, the

optimization problem (13) can be rewritten by
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max
B,BD ,BU ,S

N1

∑
n=1

RV

∑
i=1

DnrV
n,i +

N

∑
n=N1+1

RD

∑
i=1

DnrD
n,i (19)

s. t. RU × BU + RD × BD ≤ BR, (19a)

RV × B ≤ BV , (19b)

tdn,C + tU
n,C + tP

n + td,C ≤ Tround,∀n ∈ S1, (19c)

tD
n,C + tU

n,C + tP
n ≤ Tround,∀n ∈ S2, (19d)

S1 ∪ S2 = S, (19e)

EM
n,C + EP

n ≤ γnE, ∀n ∈ N, (19f)

RU = |S|, RD = |S2|, RV = |S1|, (19g)

where tdn,C =
sG

C
rn

, tU
n,C =

sL
C

rU
n

, tD
n,C =

sG
C

rD
n

and EM
n,C = tU

n,C · Pn. Accordingly, we denote the
compression algorithm that reduces the communication costs in each iteration by MC
(sL, sG).

Algorithm 1 : FL Model Compression

1: Input: WI

2: for τ ∈ {1, . . . , T} do
3: for n ∈ {1, . . . , N} do
4: Client n does:
5: (Wt−1

C , M)← DownloadBS→n(Wt−1
C )

6: Wt
n ← Wt−1

C + (1−M)⊗Wt−1
n

7: Gt
n ← Train(Wt

n, Dn) + Rt−1
n −Wt

n
8: Mn ← Compress(Gt

n)
9: Gt

n,C ← Gt
n ⊗Mn

10: Wt
n,C ← Wt

n ⊗Mn

11: Rt
n ← Gt

n −Gt
n,C

12: Save(Rt
n, Wt

n)
13: Uploadn→BS(Wt

n,C)
14: end for
15: BS does:
16: for n ∈ S = S1 ∪ S2 do
17: (Wt

n,C, Mn)← Wt
n,C

18: end for
19: Wt

C ← Aggregate( 1
|S| ∑n∈S Wt

n,C) + Rt−1

20: Wt ← Wt
C + (1−M1)⊗ (1−M2) · · · ⊗ (1−Mn)⊗Wt−1

21: Gt ← Wt −Wt−1

22: M← Compress(Gt)
23: Gt

C ← Gt ⊗M
24: Wt

C ← Wt ⊗M
25: Rt ← Gt −Gt

C
26: Save(Rt, Wt)
27: TransmitsBS→n(Wt

C)
28: end for
29: Return WF

4. The Proposed Algorithm

To solve (19), in this section, we propose a joint user selection, bandwidth allocation,
and model compression algorithm, USBA-MC, which divides problem (19) into two sub-
problems and solve them iteratively. In particular, we first fix the bandwidth allocation
and optimize user selection. Then, the problem of bandwidth allocation is formulated and
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solved with the obtained subset of the selected users. The model compression and these
subproblems are iteratively solved until a convergent solution of (19) is obtained.

4.1. Optimal User Selection

Given the bandwidth of each RB, (19) can be further simplified as

max
S

N1

∑
n=1

RV

∑
i=1

DnrV
n,i +

N

∑
n=N1+1

RD

∑
i=1

DnrD
n,i (20)

s. t. tdn,C + tU
n,C + tP

n + td,C ≤ Tround,∀n ∈ S1, (20a)

tD
n,C + tU

n,C + tP
n ≤ Tround,∀n ∈ S2, (20b)

S1 ∪ S2 = S, (20c)

EM
n,C + EP

n ≤ γnE, ∀n ∈ N, (20d)

RU = |S|, RD = |S2|, RV = |S1|. (20e)

We can observe from (20) that if the bandwidth of each RB is fixed, the subset of selected
users is determined by the users’ computing power and channel condition. We denote the
algorithm that optimizes user selection under fixed bandwidth allocation by Algorithm 2.

Algorithm 2 : User Selection Algorithm GetS(BU ,BD,B)

1: Input: N1,N2
2: for n ∈ N1 do
3: if tdn,C + tU

n,C + tP
n + td,C ≤ Tround, and EM

n,C + EP
n ≤ γnE then

4: S1 ← n
5: end if
6: end for
7: for n ∈ N2 do
8: if tD

n,C + tU
n,C + tP

n ≤ Tround, and EM
n,C + EP

n ≤ γnE then
9: S2 ← n

10: end if
11: end for

4.2. Optimal RB Bandwidth

With an obtained subset of users, we need to find the optimal B, BU , and BD that can
further optimize the capability of the hybrid VLC/RF systems. Note that the larger the
bandwidth of a RB is, the smaller the delay can be, implying more users can be potentially
selected. Based on this observation, the optimal RB bandwidth allocation problems are

max BU (21)

s. t. RU × BU + RD × BD ≤ BR, (21a)

BU = BD, (21b)

RU = |S|, RD = |S2|, (21c)

and

max B (22)

s.t. RV × B ≤ BV , (22a)

RV = |S1|. (22b)

Lemma 2. The maximum bandwidth of a RB can be obtained when RU × BU + RD × BD = BR
and RV × B = BV .
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Proof. We use the contradiction method to prove Lemma 2. First, we assume that maximum
BU

0 , BD
0 , and B0 exist when (21a) and (22a) are not equal. Therefore, we have

BU
0 =BD

0 <
BR

|S|+ |S2|
, (23)

and

B0 <
BV

|S1|
. (24)

However, when (21a) and (22a) are equal, BU
1 , BD

1 , and B1 satisfy the following equations:

BU
1 =BD

1 =
BR

|S|+ |S2|
, (25)

and

B1 =
BV

|S1|
. (26)

Obviously, BU
1 =BD

1 > BU
0 =BD

0 and B1 > B0, which contradicts the assumption. This
ends the proof.

Therefore, we have

BU = BD =
BR

RU + RD =
BR

|S|+ |S2|
, (27)

and

B =
BV

RV =
BV

|S1|
. (28)

4.3. Iterative Solution

In each iteration, we first use the proposed model compression method to reduce the
transmission delay and energy. Then, we update the selected users based on the constraints,
using GetS(BU ,BD,B). Finally, the bandwidth allocation is obtained by the given selected
users, which is denoted by GetB(S). The iteration ends when both the user selection and
bandwidth allocation remain fixed. Obviously, the algorithm can always reach convergence
after a certain number of iterations. We summarize the proposed USBA-MC algorithm in
Algorithm 3.

Algorithm 3 : USBA-MC Algorithm

1: Input: B0, BD
0 , BU

0
2: (tU

n,C, tD
n,C, tdn,C, EM

n,C)←MC(sL, sG)

3: S0 ← GetS(BU
0 , BD

0 , B0)
4: for τ ∈ {1, . . . , T} do
5: (BU

τ , BD
τ , Bτ)← GetB(Sτ−1)

6: (tU
n,C, tD

n,C, tdn,C, Ecom
n,C )←MC(sL, sG)

7: Sτ ← GetS(BU
τ , BD

τ , Bτ)
8: if Sτ == Sτ−1 and (BU

τ , BD
τ , Bτ) == (BU

τ−1, BD
τ−1, Bτ−1) then

9: break
10: end if
11: end for
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4.4. Convergence, Implementation, and Complexity Analysis

(1) Convergence Analysis : We first analyze the convergence of the proposed algorithm.
Let the indoor user selection vector be s1 = [s1

1, . . . , sN
1 ] and outdoor user selection vector

be s2 = [s1
2, . . . , sN

2 ], where sn
1 = 1/sn

2 = 1 indicates user n performs the FL algorithm;
otherwise, we have sn

1 = 0/sn
2 = 0. Assume that the gradient ∇J(ω(s1, s2)) of J(ω(s1, s2))

is uniformly Lipschitz continuous with respect to ω(s1, s2) [25]. Therefore, we have

||∇J(ωt+1(s1, s2))−∇J(ωt(s1, s2))|| ≤ L||ωt+1(s1, s2)−ωt(s1, s2)||, (29)

where ωt(s1, s2) is the global model at step t, L is a positive constant, and || · || denotes the
norm. Assume that J(ω(s1, s2)) is strongly convex with positive parameter µ. Therefore,
we have

J(ωt+1(s1, s2)) ≥ J(ωt(s1, s2)) + (ωt+1(s1, s2)−ωt(s1, s2))T∇J(ωt(s1, s2))
+ µ

2 ||ωt+1(s1, s2)−ωt(s1, s2)||2.
(30)

We also assume that J(ω(s1, s2)) is twice-continuously differentiable. Moreover, we
assume ||∇ fi(ωt(s1, s2))|| ≤ ϑ1 + ϑ2∇||J(ωt(s1, s2))||2 with ϑ1 ≥ 0 and ϑ2 ≥ 0. The
above assumptions are easy to satisfy, such as the loss function that is linear or logistic
regression [25]. The expected convergence rate of the proposed algorithm can be obtained
by the following lemma:

Lemma 3. Given the optimal global FL model ω∗. The convergent upper bound ofE[J(ωt+1(s1, s2))−
J(ω∗)] applicable to the considered hybrid VLC/RF system satisfies

E[J(ωt+1(s1, s2))− J(ω∗)] ≤ 2ϑ1
LD (

N1
∑

n=1

RV

∑
i=1

Dn(1− rV
n,i)

+
N
∑

n=N1+1

RD

∑
i=1

Dn(1− rD
n,i))

1
1−F ,

(31)

where F = 1− µ
L + 4µϑ2

LD (
N1
∑

n=1

RV

∑
i=1

Dn(1− rV
n,i) +

N
∑

n=N1+1

RD

∑
i=1

Dn(1− rD
n,i)).

Proof. As sn
1 + sn

2 =

{
1, sn

1 = 1, sn
2 = 0 or sn

1 = 0, sn
2 = 1

0, sn
1 = 0, sn

2 = 0
, we have 1− (sn

1 + sn
2 ) ={

0, sn
1 = 1, sn

2 = 0 or sn
1 = 0, sn

2 = 1
1, sn

1 = 0, sn
2 = 0

. Therefore, we have 1− (sn
1 + sn

2 ) ≥ 0 with n =

[1, ..., N]. Then, the upper bound of E[J(ωt+1(s1, s2))− J(ω∗)] can be obtained according
to the Theorem 1 in [13] as

E[J(ωt+1(s1, s2))− J(ω∗)] ≤ FtE[J(ω0)− J(ω∗)]

+ 2ϑ1
LD

N
∑

n=1
Dn(1− (sn

1 + sn
2 ))

1−Ft

1−F ,
(32)

where F = 1− µ
L + 4µϑ2

LD

N
∑

n=1
Dn(1− (sn

1 + sn
2 )). As each resource block will be assigned to

a participated user, the upper bound can be further converted into

E[J(ωt+1(s1, s2))− J(ω∗)] ≤ FtE[J(ω0)− J(ω∗)]

+ 2ϑ1
LD (

N1
∑

n=1

RV

∑
i=1

Dn(1− rV
n,i) +

N
∑

n=N1+1

RD

∑
i=1

Dn(1− rD
n,i))

1−Ft

1−F ,
(33)
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where F = 1− µ
L + 4µϑ2

LD (
N1
∑

n=1

RV

∑
i=1

Dn(1− rV
n,i) +

N
∑

n=N1+1

RD

∑
i=1

Dn(1− rD
n,i)). From (33), we can

observe that when F < 1, Ft approximates to 0 as t increases. Therefore, E[J(ωt+1(s1, s2))−

J(ω∗)] = 1
D (

N1
∑

n=1

RV

∑
i=1

Dn(1− rV
n,i) +

N
∑

n=N1+1

RD

∑
i=1

Dn(1− rD
n,i))

1
1−F and the FL algorithm con-

verges. When 4µϑ2
LD (

N1
∑

n=1

RV

∑
i=1

Dn(1 − rV
n,i) +

N
∑

n=N1+1

RD

∑
i=1

Dn(1 − rD
n,i)) < µ

L , F < 1. As

1
D (

N1
∑

n=1

RV

∑
i=1

Dn(1 − rV
n,i) +

N
∑

n=N1+1

RD

∑
i=1

Dn(1 − rD
n,i)) ≤ 1, we only need to let ϑ2 < 1

4 . ϑ2

can satisfy this condition, as ϑ2 can be any value that satisfies ϑ2 ≥ 0. This completes
the proof.

From Lemma 3, we can also observe there is a gap 2ϑ1
LD (

N1
∑

n=1

RV

∑
i=1

Dn(1− rV
n,i) +

N
∑

n=N1+1

RD

∑
i=1

Dn(1− rD
n,i)) between E[J(ωt+1(s1, s2))] and E[J(ω∗)]. As the number of participated users

increases, the gap decreases. Meanwhile, as the number of users increases, the value of F
also decreases, which improves the convergence speed of the FL algorithm.

(2) Implementation Analysis: Then, we analyze the implementation of the proposed
algorithm. To find the optimal user selection set S, the BS must first calculate the total
delay and the energy consumption EM

n,C + EP
n of each user. In our system, the total delay

includes the RF link delay tD
n,C + tU

n,C + tP
n and the VLC link delay tdn,C + tU

n,C + tP
n + td,C.

In order to calculate the total delay, the BS must know the model size required by FL
algorithm and the computational time. The size of the FL model depends on the learning
task and the sparsity rate. Before implementing an FL algorithm, the BS must first transmit
the task information and model information to each user and set model sparsity rate.
Therefore, the BS will know the FL model size and sparsity rate before training. In order to
calculate the energy consumption and the computational time, the BS also needs to know
the users’ device information such as transmit power and CPU. In an FL algorithm, the
BS can learn the device information when users initially connect to the BS. Given the total
delay tD

n,C + tU
n,C + tP

n , tdn,C + tU
n,C + tP

n + td,C, and the energy consumption EM
n,C + EP

n , the
BS can compute S1 and S2 using GetS(BU ,BD,B). Given S1 and S2, the BS can compute
the bandwidth of each RB using GetB(S). As the function in (20) is linear, the USBA-MC
algorithm can determine a user selection set S to improve FL training loss.

(3) ComplexityAnalysis: With regards to the complexity of the USBA-MC algorithm,
we first analyze the complexity of the model compression algorithm. In the model
compression, the complexity depends on the number of model parameters. Let WO be
the number of model parameters, the complexity of the model compression algorithm
is O(WO log WO) [26]. Then, we analyze the complexity of the traversal algorithm. Since
the total number of users is N, the complexity of the traversal algorithm is O(N) [27]. In
addition, the complexity of the numerical method is O(1) since we only need to allocate
RBs according to the user set. Assume that the number of global iterations is T, and the
total complexity of the USBA-MC algorithm can be expressed as O(TWO log WO).

5. Simulation Results and Analysis

Consider a circular network area having a radius r = 50 m with one BS at its center.
There are N = 50 uniformly distributed users, and 80% of the users are in indoors and
20% of them are in outdoors. The system specifications are summarized in Table 1. The
following two baselines are considered: (a) the USBA algorithm in a hybrid VLC/RF
system [28] and (b) the FL algorithm in RF-only system. To comprehensively evaluate
the performance of the proposed USBA-MC algorithm in federated learning systems, we
conduct experiments related to three learning tasks: (a) the prediction task of housing price,
(b) identification task of identifying the handwritten digits from 0 to 9, and (c) identification
task of classifying 10 categories of color images.
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Table 1. Simulation parameters.

Parameter Value

Transmitted optical power per VLC AP, Pv 9 W
Modulation bandwidth for LED lamp, B 40 MHz

The physical area of a PD, Ap 1 cm2

Half-intensity radiation angle, θ1/2 60 deg.
Gain of optical filter, Ts(θ) 1.0

Receiver FOV semi-angle, ΘF 90 deg.
Refractive index, n 1.5

Optical to electric conversion efficiency, γ 0.53 A/W
Noise power spectral density, NVLC

0 , NRF
0 10−21 A2/Hz

RF total bandwidth, BR 20 MHz
Transmit power of BS, PB 1 W
The number of users, N 50

Delay requirement, Tround 2.5 s
Energy consumption requirement, γnE 2 J

Energy consumption coefficient, α 2× 10−28

user update size, s 1 Mb

In the housing price prediction task, our goal is to compare the performance of the
proposed USBA-MC algorithm under different sparsity rates, and compare the performance
of USBA-MC, baselines (a) and (b). The dataset used to train the FL algorithm is Boston
house price dataset (http://lib.stat.cmu.edu/datasets/boston (accessed on 27 March 2021))
that is randomly allocated to users equally. In this task, each user trains an FNN with one
hidden layer composed of 10 neurons.

In the identification task of handwritten digits, we train FNNs using MNIST dataset [29].
The size of neuron weight matrices are 784 × 200, 200 × 200, and 200 × 10. Sixty-thousand
handwritten digits are used to train the network and 10,000 handwritten digits are used to
test it.

Finally, we train CNNs on CIFAR-10 [30] to investigate the performance of USBA-MC
algorithm with different sparsity rates on non-IID data. The size of neuron weight matrices
are 5 × 5 × 3 × 64, 5 × 5 × 64 × 64, 2304 × 384, 384 × 192 and 192 × 10. Fifty-thousand images
are used to train the network and 10,000 images are used to test it.

5.1. Performance Over Different Sparsity Rates

Figure 2 shows the performance of the proposed USBA-MC algorithm in two learning
tasks under different sparsity rates. We use the coefficient of determination (R2) to measure
the quality of the model in the task of predicting housing price, and use the accuracy of
classification to measure the performance in the task of identifying handwritten digits.
Moreover, we calculated the average of 10 experiments to ensure the reliability of the
experimental results. It shows that the R2 values first increase and then decrease with the
sparsity rate. This is because the model information will be lost with low sparsity rate. In
particular, the best sparsity rate is 0.4 for predicting housing price and 0.2 for identifying
handwritten digital.

Figure 3 compares the predictive performance of USBA-MC, baselines (a) and (b). The
green line is the true values of data samples, and the sparsity rate of USBA-MC is set to 0.4.
Before training, we randomly select 18 samples to form a test set for testing. In Figure 3,
we can observe the proposed USBA-MC algorithm can achieve better performance than
baselines (a) and (b). In particular, the proposed FL algorithm can improve the R2 by up to
11% and 15%, compared to baselines (a) and (b).

Figure 4 compares the identification performance in the tasks of identifying hand-
written digits. It shows USBA-MC is better than baselines (a) and (b) in most global
communication rounds, and the final accuracies of these algorithms are 96.52%, 96.45%,
and 96.39%, respectively. This is because USBA-MC introduces visible light communication

http://lib.stat.cmu.edu/datasets/boston
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and reduce the size of transmission model, which can increase the number of selected users,
and further improving the FL performance.
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Figure 2. The accuracy achieved by different sparsity rates of USBA-MC in the Boston housing
dataset and MNIST dataset. (a) Boston housing dataset. (b) MNIST dataset.
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Figure 3. Comparison of accuracy in the Boston housing dataset trained by a BP neural network.
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Figure 4. Comparison of accuracy in MNIST dataset trained by BP neural network.
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5.2. Number of Selected Users

This subsection evaluates the performance of USBA-MC in user selection. We first
compare the number of users selected under different bandwidth conditions and resource
constraints.

Figure 5 shows how the number of selected users changes as the total number of
users varies in different systems. It can be observed that with the increase of the total
users, the selected users in three algorithms will also increase. However, compared with
baselines (a) and (b), USBA-MC algorithm enables more users to participate in the training
process. This trend is more obvious with the increase of total number. For instance, when
the total number is 150, the USBA-MC can improve the number of selected users, by,
respectively, up to 37.8% and 68.7% compared to baseline (a) and (b). Table 2 shows the
ratio of selected users, we can find that USBA-MC always has the highest ratio in all cases.
Figure 5 also compares the user selection under different VLC and RF bandwidths. It can
be observed that the proposed USBA-MC algorithm is better than baselines (a) and (b)
under all bandwidth settings.
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Figure 5. Comparison of user selection under different bandwidth settings with different numbers
of users.

Table 2. Selection ratio of users with different total numbers.

Total Number of User USBA-MC Baseline (a) Baseline (b)

50 78% 66% 64%

100 74% 58% 51%

150 75.33% 54.67% 44.67%

Figure 6 compares number of selected users under different transmission data sizes.
We can observe that the selected users decrease when the data size increases. Table 3 shows
the selection ratio of different algorithms with different data sizes when the total user
number is 150. The result shows that USBA-MC can achieve better system performance
than the other algorithms. This advantage is important when the model size becomes
larger due to the complex neural network.
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Figure 6. Comparison of user selection under different transmission data sizes with different numbers
of users. (a) Data Size of 1M. (b) Data Size of 3M. (c) Data Size of 5M. (d) Data Size of 7M.

Table 3. Selection ratio of users with different data sizes.

Data Size USBA-MC Baseline (a) Baseline (b)

1M 73.8% 50.07% 41%

3M 59.6% 27.13% 23.6%

5M 51.47% 12.13% 11.07%

7M 44.07% 5.67% 3.6%

5.3. Non-IID Data

In this subsection, we explore the accuracy of USBA-MC algorithm with non-IID
data [31]. To obtain a non-IID dataset, we use the same method as in [31].

As shown in Figure 7, the model is trained on the dataset of non-IID nature. We
can clearly observe the advantages of USBA-MC compared with other algorithms. In
terms of stability and accuracy, the USBA-MC algorithm achieves the best performance. In
USBA-MC, a low sparsity rate will increase the stability of the system and improve the final
accuracy. However, when the sparsity rate is 0.2, USBA-MC has lower accuracy and higher
stability compared to 0.4. This is because decreasing sparsity rate will increase the loss of
model information. Moreover, the model will not converge when the sparsity rate is too
low. Therefore, there is a trade-off between the sparsity rate and the model performance.

Figure 8 shows the use of the proposed USBA-MC algorithm for image identification.
In this simulation, the BS uses broadcast techniques to transmit the global model and the
local models are trained by CIFAR-10. As shown in Figure 8, the proposed USBA-MC
algorithm can still achieve the best performance among the three algorithms in terms of
both accuracy and stability. In particular, the USBA-MC can improve the accuracy by up to
3.27% and 6.35%, compared to baselines (a) and (b).
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Figure 7. The accuracy of USBA-MC with different sparsity rates, baseline (a) and (b) on CIFAR-10
with non-IID nature.
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Figure 8. Comparison of accuracy in CIFAR-10 dataset with broadcast channel.

We analyze the gain of USBA-MC when the data set is non-IID. According to Section
3 in [31], the weight divergence will reduce the accuracy in non-IID dataset. The weight
divergence is caused by the distance between the data distribution on each user and the
population distribution. Such distance can be evaluated with the earth mover’s distance
(EMD). According to the central limit theorem (CLT) of normal distribution [32], as the
number of local models increases, the mean of EMD will be approximated by a normal dis-
tribution. Therefore, the weight divergence of the trained global model will be smaller and
the model performance will be better with the increase of the number of users. Compared
with the accuracy of the transmission model, the system is more sensitive to the number of
selected users. Therefore, the increase of users will improve the robustness and accuracy of
the global model.

Figure 9 selects the model accuracy of the last 10 global communications to obtain the
average and variance of the accuracy. It can be observed that the accuracy first increase
and then decrease with the sparsity rate. The USBA-MC can improve the accuracy by up
to 7% and 16.7%, compared to baselines (a) and (b) when the sparsity rate is 0.4. We can
also observe that as the number of users increases, the model will be more stable until it
cannot converge.
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Figure 9. The average and variance of accuracy of USBA-MC with different sparsity rates, baselines.
(a) Average of accuracy. (b) Variance of accuracy.

6. Conclusions

This paper has proposed the introduction of VLC into conventional RF systems
for supporting FL. We have formulated a joint user selection and bandwidth allocation
problem for FL in a hybrid VLC/RF system. To solve this problem, we first used a model
compression method to reduce the size of FL model parameters that are transmitted over
wireless links, and then we separated the optimization problem into two subproblems. The
first subproblem is a user selection problem with a given bandwidth allocation, which is
solved by a traversal algorithm. The second subproblem is a bandwidth allocation problem
with a given user selection, which is solved by a numerical method. The convergent solution
is obtained by iteratively compressing the model and solving these two subproblems.
Simulation results have demonstrated that the USBA-MC algorithm outperforms USBA
and FL in RF-only systems.
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