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Abstract: Modern computational models in supervised machine learning are often highly parameter-
ized universal approximators. As such, the value of the parameters is unimportant, and only the out
of sample performance is considered. On the other hand much of the literature on model estimation
assumes that the parameters themselves have intrinsic value, and thus is concerned with bias and
variance of parameter estimates, which may not have any simple relationship to out of sample model
performance. Therefore, within supervised machine learning, heavy use is made of ridge regression
(i.e., L2 regularization), which requires the the estimation of hyperparameters and can be rendered
ineffective by certain model parameterizations. We introduce an objective function which we refer to
as Information-Corrected Estimation (ICE) that reduces KL divergence based generalization error for
supervised machine learning. ICE attempts to directly maximize a corrected likelihood function as
an estimator of the KL divergence. Such an approach is proven, theoretically, to be effective for a
wide class of models, with only mild regularity restrictions. Under finite sample sizes, this corrected
estimation procedure is shown experimentally to lead to significant reduction in generalization error
compared to maximum likelihood estimation and L2 regularization.

Keywords: generalization error; overfitting; information criteria; entropy

1. Introduction

Kullback and Leibler [1] showed that minimizing a divergence ρKL( f , gθ) between the
truth, f , and a parametric model density, gθ, is necessary and sufficient for making accurate
predictions about data using the model defined by θ. Recent work [2] on Berk–Nash
equilibria has shown the central role that KL divergence plays in game theoretic choice
models such as multi-armed bandits and stochastic multi-party games. KL divergence
thus plays a leading role in machine learning and neuroscience, with several inferential
approaches developed in the information theory literature. Such approaches for minimizing
KL divergence employ a range of methods, including data partitioning, Bayesian indirect
inference and M-estimation [3–5]. These approaches are quite distinct from the standard
penalized loss minimization framework and, as such, are non-trivial to combine with
supervised learning methods such as neural networks.

It is well known that maximum likelihood estimation (MLE) introduces an asymptotic
bias in the KL divergence minimizer which is problematic for both model estimation and
model selection. For many models, where the parameters θ are themselves important,
this may be investigated as parameter bias and parameter variance. However, for models
common in modern machine learning, the parameters themselves do not have any easily
interpreted meaning. For these models, the parameters themselves are irrelevant and
only the accuracy (in terms of KL divergence) of the model predictions matter. Within
the information theory literature, this has often been referred to simply as bias (e.g., b(G)
from [6]). To distinguish it from parameter bias, one might refer to it as “prediction bias”
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or “generalization error”. Generalization error is the more common terminology (see, for
example, Equation 1.1.6 [7]) and will be used here.

Before the widespread use of machine learning, most models had interpretable pa-
rameters, and thus there is a large literature focused on reducing parameter bias. For
instance, the jackknife [8] (leave-one-out cross-validation) estimator is an early example.
More relevant to this paper is the approach of Firth [9] and later Kosmidis [10,11]. More
recently, Pagui, Salvan, and Sartori [12] proposed a parameter bias reducing estimation
methodology. An extensive review of the literature around this point can be found in [13].
Unfortunately, these approaches do not consider the impact on KL divergence-based gen-
eralization error and thus are not applicable to the field of machine learning where the
parameters themselves are devoid of meaning. Heskes [14] shows that classifiers do have a
notion of bias-variance decomposition for generalization error, but it is not computable
from parameter bias and parameter variance. Therefore, parameter bias reducing formula-
tions are not useful within machine learning unless it can be shown that they also reduce
generalization error.

In fact, to seat the approach taken in this paper to generalization error, we recall much
earlier and seminal work at the intersection of statistics and information theory. Akaike [15],
and later Takeuchi [16], proposed information criteria (AIC and TIC, respectively) for model
selection designed explicitly to reduce generalization error. Konishi and Kitagawa [6]
extended the approach of Takeuchi to cases where MLE was not used to fit the underlying
model, but still restricted themselves to the question of model selection. Stone [17] proved
that Akaike’s Information Criterion (AIC) is asymptotically equivalent to jackknifing when
the estimator is finite. Takeuchi himself showed that TIC is an extension of AIC with fewer
restrictions, and thus it too is equivalent to jackknifing whenever AIC would be valid.

For highly parameterized models, as are common in machine learning, model selection
such as this is of limited utility. The parameter count may necessarily be very large, and
thus none of the models fit using MLE may be acceptable. Then, merely choosing among
them is unlikely to produce acceptable results. Within this field, typically L2 or similar
regularization is used to reduce generalization error. See Section 11.5.2 [18], for a typical
example. For a more recent innovation, refer to [19]. Note that regularization schemes
such as this often increase parameter bias while decreasing generalization error. Golub,
Heath, and Wahba [20] showed that L2 regularization is asymptotically equivalent to cross-
validation for linear models, subject to certain assumptions. For nonlinear models, it has
long been known that L2 regularization is not always valid, and it is trivial to construct
example models (See Section 4.1 for one such example) where this approach is always
harmful in expectation.

Therefore, it is important to develop a method to reduce generalization error in model
estimation analogous to the way that L2 regularization would commonly be used for
a highly parameterized model, but having applicability for a wider family of models,
especially those for which L2 regularization is not applicable. It is not the goal of this paper
to perform a wide survey of generalization error reducing approaches, but we will rather
propose an additional approach, investigate its properties, and show that it has superior
performance when compared against L2 regularization, which is currently the dominant
generalization error reducing estimation procedure within the field of machine learning.

To this end, this paper introduces a generalization error reducing estimation approach
referred to as Information Corrected Estimation (ICE). This estimator is proven to have a
generalization error of only O(n−

3
2 ) instead of O(n−1) as is the case for MLE, and is shown

to be valid within a neighborhood around the MLE parameter estimate. Optimizing over
this ICE objective function instead of the negative log likelihood thus produces parameters
with superior out of sample performance.

Takeuchi’s TIC and Firth’s approach have never seen widespread use due to the
computational and numerical issues that arise from the computation of this adjustment [21],
and the ICE estimator in its raw form would have similar problems. Therefore, this
paper also proposes an efficient approximation of this correction term, and shows through
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numerical experiments that the approximation is effective at improving model performance
across a range of models.

2. Preliminaries

Let us assume that we have data xn := {x1, . . . , xn} generated from an unknown
joint density function f (x) of Xn := {X1, . . . , Xn}. Where necessary, we define Zn to
denote a second sample drawn from f (x), independent of Xn, and x′n is the observed
realization of Zn. We consider a model Mp given by a parametric family of densities
Mp := {g(·|θ) | θ ∈ Θ ⊆ Rp}, for some compact Euclidean parameter space Θ, which is
misspecified and hence excludes the truth f . Henceforth, the distribution over x identified
by θ may be referred to as gθ(x) := g(x|θ) where it is notationally convenient to do so.

Suppose that θ0 is the quasi-true parameter of modelM, and θ̂(Xn) is the random
variable representing the MLE of θ0 fit on a dataset, xn. The negative log-likelihood of Xn
under the distribution gθ is

− `(θ, Xn) := − 1
n

n

∑
i=1

log gθ(xi), (1)

where −`(θ, Xn) is written including a 1
n to make the expectation of this quantity O(1)

and asymptotically independent of n. Similarly, the minus sign is incorporated because
−`(θ, Xn) is a strictly non-negative quantity if gθ(xi) is a probability. The MLE, θ̂(Xn),
minimizes the negative log likelihood of the data set with respect to the model:

θ̂(xn) := argmin
θ

[−`(θ, xn)]. (2)

The expectation of −`(θ, Xn) is the cross entropy between f and gθ:

−L(θ) := EXn [−`(θ, Xn)]. (3)

Here, the expectation is a function only of θ and of the distribution f that generated
the data Xn. As a function of the distribution f , this value is O(1), but could be large for
poorly conditioned f . The quasi-true parameter θ0 is

θ0 := argmin
θ

[−L(θ)]. (4)

Generalization Error in KL Divergence Based Loss Functions

Kullback and Leibler [1] viewed “information” as discriminating the sample data
drawn from one distribution against another, and defined the KL-divergence ρKL be-
tween distributions in terms of the ability to make predictions about one by knowing the
other. Here,

ρKL( f , gθ) =
∫

log[
f (x)

gθ(x)
] f (x)dx. (5)

This value is in general unknowable, but given a sample Xn from f , −`(θ, Xn) will con-
verge asymptotically to ρKL( f , gθ) plus an additive constant that depends only on f . The
convergence relies on White’s regularity conditions [22].

A well known result by Stone [17] shows that the MLE is a biased estimator of the
minimum KL-divergence:

EXn [−`(θ̂(Xn), Xn)] < EXn [−`(θ0, Xn)], (6)

because it is evaluated on the data Xn which was used to fit θ̂. Cross-validation was
developed as a model selection technique to select a model from a group that actually
minimizes EXn [ρKL(gθ0 , gθ̂(Xn)

)] and not merely EXn [−`(θ̂(Xn), Xn)] in the limit of large
n. Takeuchi [16] and Akaike [15] explicitly modeled this bias (generalization error) of an
estimation procedure θ(Xn) as



Entropy 2021, 23, 1419 4 of 20

b := EXn

[
`(θ(Xn), Xn)−EX′n [`(θ(Xn), X′n)]

]
. (7)

Our goal is to obtain an estimate, b∗, of the generalization error b without using the
MLE. We will then add this term to the objective function to develop the estimator θ∗(Xn)
so as to cancel the lower order terms of the generalization error. This estimator will then
minimize EXn [ρKL(gθ0 , gθ∗(Xn))] more effectively than MLE, and potentially would in turn
produce improved predictions from the model fitted over finite training sets.

Remark 1. We note that under MLE, b = O( 1
n ) [16]. Equivalently, one could say that a particular

realization of the generalization error `(θ(Xn), Xn)− EX′n [`(θ(Xn), X′n)] is itself Op(
1
n ). Here,

Op(
1
n ) is used to indicate that the quantity is a random variable with finite variance, whose mean

is O( 1
n ).

3. Information Corrected Estimation (ICE)

We propose the following penalized likelihood function:

Definition 1 (ICE Objective).

− `∗(θ) = −`(θ) + 1
n

tr(Iθ J−1
θ ), (8)

where Jθ is the negative expected Hessian

Jθ := −EX [∂
2
θ log g(X|θ)] = −

∫
f (x)∂2

θ log g(x|θ)dx, (9)

and Iθ is the Fisher Information matrix

Iθ := EX [∂θ log g(X|θ)∂θT log g(X|θ)]. (10)

with Îθ, Ĵθ being their estimates over the data.
Let θ∗ denote the minimizer of (8).

The trace term in Equation (8) will be familiar from Takeuchi [16]. However, Takeuchi
showed only that this was the leading order of the bias for the MLE estimate θ̂, and
therefore the proof found there is not sufficient to justify a new estimator that will itself
be the target of optimization, and is required to be valid away from θ̂. As in Takeuchi,
because I and J are unknowable, we will substitute their approximations computed from
the training data, Îθ and Ĵθ during the actual computation of this objective. The numerical
impact of this approximation will be examined in Section 4.2.1.

Remark 2. Though AIC was developed before TIC, it is easily reproduced as a special case of
TIC. Subject to certain conditions (guaranteed by the requirements of [15]), at least in expectation,
Iθ̂ = Jθ̂. Thus, the quantity within the TIC trace term, Iθ̂ J−1

θ̂
, is the identity matrix. Therefore,

its trace is equal to p, the parameter count of the model, recovering AIC. TIC itself can be derived
using a proof that is similar to, though somewhat simpler than, the one we include in (A2), of which
Takeuchi’s proof is a special case that is valid only at the MLE estimate θ̂.

We also define Ĵ∗ to be the negative hessian of−`∗(θ) rather than−`(θ), and similarly
for Î∗, with expectations written as J∗ and I∗. Analogously, −L∗(θ) is the expectation of
−`∗(θ) and θ∗ is the minimizer of −`∗(θ), while θ∗0 is the minimizer of −L∗(θ).

We refer to the estimation of θ∗, by minimization of this corrected likelihood function
as Information-Corrected Estimation (ICE). As the terminology suggests, we depart from
the corrective approach used in Information Criterion, by directly minimizing the bias
corrected likelihood function. Note that unlike L2 regularization, the correction term is
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parameter-free and thus would not require cross validation to estimate a hyperparameter
such as the λ used by L2.

General properties of this estimator are proved, and a set of regularity conditions
are provided such that the estimator is asymptotically normal, and produces a bias that
is Op(n−3/2) instead of the usual Op(n−1). Though this adds only a half-order to the bias
correction, for most problems with reasonably large n, any increase in order is likely to
greatly reduce bias. Experimental results demonstrate superior properties of ICE for linear
models compared to MLE with and without L2 regularization.

Remark 3. For models satisfying White’s regularity conditions (See [22]), it is known that Jθ0 is
positive definite (thus non-singular) and continuous, and also that Iθ0 is continuous with respect
to θ. Therefore, 1

n tr(Iθ0 J−1
θ0

) would always be well defined in an open region around θ0. Similarly,
the solution θ∗ would be expected to have the same properties, and hence (for large enough n) the
estimate 1

n tr( Îθ∗ Ĵ−1
θ∗ ) would be well defined when computed using the estimates Îθ∗ and Ĵθ∗ .

Remark 4. N.B: Though −`∗(θ) is an estimator of L(θ) accurate to within O(n−
3
2 ), that does

not mean that L(θ∗) is reduced by any particular amount relative to L(θ̂). We expect that using
this corrected objective will always (if it can be calculated accurately) generate some improvement
by virtue of more accurately representing the true performance of the model out of sample, but there
is no proof that this level of improvement has any particular form or asymptotic behavior.

Our approach preserves the linear complexity of training with respect to n. However,
the computation of Ĵ−1

θ∗ at each iteration of the numerical solver requires the inversion of a
symmetric positive definite matrix with a complexity of O(p3). Hence the approach is not
suitable for high dimensional datasets without adjustment. See Section 5 for optimized
approximations that are viable for larger parameter counts. Further exploration of large
models based on this approach are beyond the scope of the present work.

Remark 5. It is clear from inspection that if −`(θ) is strictly convex, then so too is −`∗(θ) for
large enough n.

We first provide a proof of asymptotic convergence of θ∗ under certain regularity
conditions. With this convergence result in place, we then show that minimizing (8) leads
to an O(n−3/2) bias term, an improvement over the O( 1

n ) term produced by MLE.

Local Behavior of the ICE Objective

Suppose the following conditions hold:

1. M satisfies White’s regularity conditions A1–A6 (see Appendix A.1 or [22]).
2. θ0 is a global minimum of −L(θ) in the compact space Θ defined in A2.
3. There exists a ε > 0 such that −L(θ0) < −L(θ1)− ε for all other local minima θ1.
4. For k = 0, 1, 2, 3, 4, 5 the derivative ∂k

θL(θ) exists, is continuous, and bounded on an
open set around θ0.

5. For k = 0, 1, 2, 3, 4, 5, the variance V[∂k
θ`(θ, Xn)] → 0 as n → ∞ on an open set

around θ0.

Then for sufficiently large n there exists a compact subset U ⊂ Θ containing θ0, θ̂,
such that:

1. For k = 0, 1, 2, 3 the derivative ∂k
θ`
∗(θ, xn) exists, is continuous, and bounded on U,

almost surely.
2. For k = 0, 1, 2, 3, V[∂k

θ`
∗(θ, Xn)]→ 0 as n→ ∞ on U, almost surely.

3. θ∗ ∈ U as n→ ∞ almost surely.
4.

√
n(θ∗ − θ∗0)→ N(0, ( Ĵ∗θ∗0 )

−1 Î∗θ∗0 ( Ĵ∗θ∗0 )
−1) almost surely.

5. −L(θ̂∗) = −`∗(θ∗(Xn), Xn) + Op(n−3/2) almost surely.
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Items (1–3) follow from Lemma A1 (see Appendix A.2). These are additional regularity
conditions that are prerequisites for later theorems.

Item (4) follows from Theorem A1 in Appendix A.3. This states that the estimate θ∗ is
asymtotically normal in a way that is analogous to classical asymptotic normality results
for MLE. It is only true almost surely because results (1–3) upon which it relies are only
true almost surely.

Item (5) follows from Theorem A2 in Appendix A.4. This item establishes the superior
accuracy of the ICE objective compared to the MLE objective function in predicting out of
sample errors. Like item (4) this is only true almost surely because intermediate results on
which it relies are only true almost surely.

The reduction in generalization error seen arises from the optimization over the
superior ICE objective function, analogous to the way that L2 regularization is used for
this purpose.

Remark 6. The regularity conditions described here are only slightly more strict than the conditions
described by White [22]. In particular, models having three continuous derivatives as required by
White, but not 5 as needed here are thought to be very rare. Requirement (2) is just the definition
of θ0, which White labels differently, and requirement (3) excludes a pathological corner case, the
further study of which is beyond the scope of this paper.

Remark 7. Note that as −`(θ, xn) is convex in the neighborhood of θ0, so too is −`∗(θ) for large
enough n because −`∗(θ) → −`(θ). Thus it can be concluded that the local behavior of −`∗ in
the neighborhood of θ0 is not appreciably worse than the behavior of −` if the problem is not too ill
conditioned.

4. Direct Computation Results

The following experiments have been designed to compare MLE, MLE with L2 regu-
larization, and ICE for regression. Each experiment involves simulation of training and
test sets and is implemented in R. See the attached code to run each experiment.

Each of these experiments has been performed using the raw formula for ICE provided
in Equation (8) with minimal adjustments. All gradients are computed using R’s default
finite difference approach. This means that for a model with p parameters, the objective
function is dominated by the inversion of J, which costs O(p3) time and O(p2) space.
The use of finite difference gradients further increases the time complexity to O(p4),
compounding the problem. This approach is therefore viable for small models with few
parameters, but not realistic for larger models. Optimizations to overcome this limitation
will be considered in upcoming Section 5. The use of finite difference derivatives was
not found to produce appreciable numerical differences in the final output, so analytic
derivatives were not used for this analysis.

The code and results for this section is provided in [23]. Throughout this section, the
following estimators will be compared.

MLE θ̂(Zn) := argminθ[−`(θ)]
L2 regularization θ∗L2

(Zn) := argminθ,λ[−`(θ) + λ‖θ‖2
2]

ICE θ∗ICE(Zn) := argminθ[−`(θ) +
1
n tr( Îθ Ĵ−1

θ )]

4.1. Gaussian Error Model

We begin by considering the simplest case of univariate linear regression with Gaus-
sian residuals. The advantage of this simple model is that the exact form of the correction
term can be derived analytically and aids therefore in building intuition on its behavior.
For such a toy model, y ∼ N(µ, σ2) and, for simplicity, the following example will consider
µ to be a constant, but it is equally applicable if µ = µ(x). Consider the parameters of the
model to therefore be θ := (µ, σ) with their optimal values being θ0 := (µ0, σ0). The the
probability density function is
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g(y, θ) =
1√
2πσ

e−
(y−µ)2

2σ2 . (11)

It is known a priori that L2 regularization cannot improve this model, as if µ0 6= 0,
any decrease in the magnitude of µ is likely to be systematically harmful. Similarly, a
decrease in σ below σ̂ results in a decrease in model distribution entropy, and hence
would be generally making overfitting worse, and would generate a correspondingly
higher KL-divergence than the MLE estimate. Consequently, we would expect any λ
computed through cross-validation to be statistically indistinguishable from zero, and L2
regularization to be generally harmful whenever λ 6= 0.

Generalization Error Analysis

The Gaussian model described was generated with µ0 = 0.2, σ0 = 0.2, and dy = 0.001.
For each of n ∈ {16, 32, 64, 128, 256, 512, 1024}, 500 independent simulations of the data
y1, . . . , yn were performed, and then the parameters were fit from that data. In each simula-
tion, θ was computed using MLE, MLE with L2 regularization, and ICE. The λ parameter
for L2 regularization was computed using 2-way cross-validation on the available data,
and as expected, none of the computed values of λ were statistically different from zero.

For each estimate of θ, the KL-divergence ρKL( f , gθ) was computed (using the known
value of θ0), and the results were compared. The ICE parameter estimation method showed
statistically significant improvement over MLE at the 5-sigma level out to n = 64, and was
improved by just under 1-sigma at n = 1024.

The KL-divergence results graphed against n on a log-log scale are shown in Figure 1.
Every value of n is normalized by the average KL divergence of the MLE methodology to
improve legibility. The L2 series is statistically indifferent from the MLE series at 2 standard
deviations beyond n = 32, and the two are not materially different for any n. The ICE
series is at least 4.5 standard deviations below the MLE series until n = 1024.

0 200 400 600 800 1000

0.80

0.85

0.90

0.95

1.00

N

ρKL(f, gICE)
ρKL(f, gMLE)
ρKL(f, gL2)
ρKL(f, gMLE)

1.0

Figure 1. A comparison of the KL-divergence (y-axis) of various estimation methods against the
number of training samples n. Each KL divergence value was divided by the average KL divergence
of the MLE estimate for that value of n. The ICE and L2 series are shown with 2 standard deviation
error bars.
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Remark 8. In addition to the series shown in Figure 1, a series was computed using the true value
of J, estimated from a much larger sample n = 1024 from the underlying distribution, and this series
was indistinguishable from the series computed using Ĵ for every n, thus it was not graphed. This
validates Takeuchi’s approach of approximating J with Ĵ in this instance.

As expected, the difference in µ between ICE and MLE is not statistically significant (at
three standard deviations) for any n, but the ICE computed value of σ (shown in Figure 2)
is considerably larger than the MLE estimate, especially for small values of n. This explains
the greatly reduced KL-divergence noted in Figure 1.

20 50 100 200 500 1000

N

σ
IC

E
−
σ

M
LE

5 
x 

10
−4

10
−3

2 
x 

10
−3

5 
x 

10
−3

10
−2

0
10

0
20

0
30

0
40

0
50

0
60

0
Z−

Sc
or

e

σICE − σMLE

Z−Score

Figure 2. The error in the estimated σ̂ICE and the Z-score of the estimate against the number of
training samples n.

Note that the difference in estimated σ is always statistically significant when com-
pared to the MLE value. This is because both MLE and ICE are fit on the same data, so
ICE would always have a larger σ than MLE regardless of the actual data chosen from
the distribution f . This is the cause of the large z-scores shown, always exceeding 200.
We know from elementary statistics that correlation between the mean and std. deviation
causes the MLE estimate of σ̂ to be systematically low by a factor of n−1

n . Indeed, the

ICE estimate of σ∗ is closely tracking σ0 whereas σ̂ is closely tracking σ0(n−1)
n as expected.

This is one example where reducing generalization error also reduces parameter bias as a
side effect.

4.2. Friedman’s Test Case

We now extend the example from Section 4.1 to the case where µ is no longer constants.
For this example, we chose a standard regression test set, which is nonlinear in the features,
based on Section 4.3 of [24]:

yi = µθ(xi) + εi, ε ∼ N(0, σ2), (12)

where the Friedman model is

µθ(xi) = θ0sin(πx(i,0)x(i,1)) + θ1(x(i,2) − θ2)
2 + θ3x(i,3) + θ4x(i,4). (13)

The random features, Xj, are i.i.d. uniform random and the parameter values are fixed.
The true parameter set, θ0 = (10.0, 20.0, 0.5, 10.0, 5.0, 1.0), reserves the last parameter (1.0)
for the value of σ.
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Note that here σ must be treated as an unknown parameter. To do otherwise implies
that the modeler knows the amount of noise expected in the data. In the case of a known
noise term, overfitting is impossible since overfitting arises when a model reduces the
projected noise below its actual value, which can never arise when the noise level is known.

The model probability density g(x, y|θ) of y is given by

g(xi, yi|θ) =
1√

2πσ2
e−

(µi−yi)
2

2σ2 . (14)

Recall that in Section 4.1, the value of µ was considered to be a constant. This example
is a natural extension of Section 4.1, and was chosen due to the well-explored difficulty of
Friedman’s problem.

We simulate 500 batches of equally sized training sets of length n ∈ {16, 32, 64, 128, 256,
512, 1024}. The test set is always of length 1024 to ensure accuracy for the smaller values of
n. The starting point of the optimization is generated by adding a random perturbation,
δθ ∼ N(0, 0.1), to each parameter. As before, the KL-divergence is computed between the
distribution represented by the parameters and the true distribution, and these values are
compared between estimation methods.

For each test sample, the KL divergence is computed using numerical integration with
a dy increment of 0.01 over the interval containing µ± 10σ for both the true and model
distributions. The computed probabilities are verified to numerically sum to unity within
an error of ±10−3.

In each simulation, θ is computed using MLE, MLE with L2 regularization, and ICE.
The λ parameter for L2 regularization is computed using 4-way cross validation on each
batch of the training data.

As shown in Figure 3 and Table 1, L2 is not effective for any value of n, and is is
completely inactivated for n > 32. Where regularization is used (i.e., λ 6= 0), it generally
underperforms MLE. ICE is effective across the entire data range, outperforming MLE for
every n, and always by a statistically significant margin of at least 5 sigma.

20 50 100 200 500 1000

0.4

0.6

0.8

1.0

1.2

1.4

N

ρKL(f, gICE)
ρKL(f, gMLE)
ρKL(f, gL2)
ρKL(f, gMLE)

1.0

Figure 3. Comparison of the KL-divergence, averaged across 500 replications, of estimation methods
against the number of training samples n. Each KL divergence value was divided by the average KL
divergence of the MLE estimate for that value of n. The ICE and L2 series are shown with 2 standard
deviation error bars.



Entropy 2021, 23, 1419 10 of 20

Table 1. Comparison of the average KL divergence across 500 replications for several model estima-
tors given a fitting set size of n. For estimators other than θ̂, the values in parentheses denotes the
t-statistic of the difference between this estimator and θ̂, with negative values indicating that the
listed estimator has a lower KL divergence.

n ρKL( f , gθ̂) ρKL( f , gθL2) ρKL( f , gθ∗)

16 6.19× 10−1 8.442× 10−1 (8.40) 3.02× 10−1 (−13.54)
32 1.74× 10−1 1.74× 10−1 (0.16) 1.37× 10−1 (−11.11)
64 6.85× 10−2 6.85× 10−2 (0.0) 5.81× 10−2 (−12.65)

128 3.82× 10−2 3.82× 10−2 (0.0) 3.53× 10−2 (−11.13)
256 2.19× 10−2 2.19× 10−2 (0.0) 2.12× 10−2 (−7.84)
512 1.53× 10−2 1.53× 10−2 (0.0) 1.51× 10−2 (−5.66)

1024 1.25× 10−2 1.25× 10−2 (0.0) 1.24× 10−2 (−5.03)

4.2.1. Impact of Ĵ Approximation

It was noted previously that Takeuchi used Ĵ (and likewise, Î) in place of the true
value of J, and we do so here as well. Though there is no realistic way to avoid this
approximation in the real world, and the optimized approach discussed in Section 5 has an
entirely different set of approximations, the impact of this approximation will be briefly
characterized here.

In Table 2, we revisit Table 1, but now drop the L2 regualarization column, and add a
new column where the ICE objective is allowed to use a much better approximated value
of J, in this case approximated from 1024 independently drawn samples regardless of n.

Table 2. Comparison of the average KL divergence across 500 replications for ICE estimators with
and without approximation of J given a fitting set size of n. For estimators other than θ̂, the values
in parentheses denotes the t-statistic of the difference between this estimator and θ̂, with negative
values indicating that the listed estimator has a lower KL divergence.

n MLE ICE ( Ĵ ) ICE (J )

16 6.19× 10−1 3.02× 10−1 (−13.54) 6.21× 10−1 (0.05)
32 1.74× 10−1 1.37× 10−1 (−11.11) 1.51× 10−1 (−3.74)
64 6.85× 10−2 5.81× 10−2 (−12.65) 4.21× 10−2 (−17.29)

128 3.82× 10−2 3.53× 10−2 (−11.13) 2.99× 10−2 (−11.82)
256 2.19× 10−2 2.12× 10−2 (−7.84) 1.99× 10−2 (−4.19)
512 1.53× 10−2 1.51× 10−2 (−5.66) 1.48× 10−2 (−1.62)

1024 1.25× 10−2 1.24× 10−2 (−5.03) 1.24× 10−2 (−0.72)

As can be seen from Table 2, using the true value of J is at most marginally helpful.
In fact, for most values of n it displays slightly better average results, but slightly higher
std. deviation of those results, and thus reduced T-statistics. Thus, we conclude that
the Takeuchi’s approximation, replacing J with Ĵ is reasonable. The same conclusion
was reached in Section 4.1, see the remark there. We note also that the ICE estimator
using Ĵ exhibits substantially better performance for very low sample sizes, but further
investigation of this phenomenon is beyond the scope of the current paper.

In Table 3, we show the average matrix norms of J, Ĵ, and also of the diagonal of Ĵ,
referred to as the matrix D. The matrix D will be examined further in Section 5, and is
included here for completeness. We also show the norms of several matrix differences.

We note that the ICE objective values themselves exhibit much lower variation than the
matrix norms show in Table 3. In particular though the matrix D is not actually converging
to J as n increases, we see from the correction term it generates that this difference does not
appear to have a material impact for larger n. We thus conclude that the major eigenvectors
of ( Ĵ − J) and (D− J) are very nearly orthogonal to the gradient vectors used to construct
Î for large n.



Entropy 2021, 23, 1419 11 of 20

Table 3. Mean matrix norms of J, its approximations, and differences from these approximations across 500 replications.

n ‖J‖ ‖ Ĵ‖ ‖D‖ ‖ Ĵ− J‖ ‖D− J‖ 1
n tr(I J−1) 1

n tr( Î Ĵ−1) 1
n tr( ÎD−1)

16 1423.29 925,489.26 1738.30 926,165.93 2905.64 0.1452 0.0027 6.9484
32 875.03 89,414.11 96.49 89,786.19 793.43 0.0521 0.0256 0.0291
64 214.05 4820.55 89.55 4646.51 125.02 0.0202 0.0160 0.0162

128 200.86 200.68 85.00 27.65 115.86 0.0097 0.0086 0.0086
256 194.36 191.81 82.70 19.12 111.67 0.0048 0.0045 0.0045
512 191.20 190.10 82.76 14.18 108.44 0.0023 0.0023 0.0023
1024 188.91 187.39 81.89 11.58 107.02 0.0012 0.0012 0.0012

It is not clear from examining the trace terms in Table 3 that D is a worse approximation
of J than Ĵ is, even for small n where the impact of the ICE approach is most significant. A
more complete investigation of the spectrum of these matrices is beyond the scope of the
present work.

4.3. Multivariate Logistic Regression

The previous experiment is based on a well-known test case. In this second experiment,
we assess the general performance of ICE under (i) varying dimensionality of the true
data distribution, (ii) increasing misspecification, and (iii) increasing training set sizes. To
achieve this goal, we generate a more exhaustive set of data from a more complex data
generation process.

4.3.1. Data Generation Process

The synthetic data are designed to exhibit a number of characteristics needed to
broadly evaluate the efficacy of ICE. First, the regressors should be sufficiently correlated so
as to ensure that model selection is representative of typical datasets. However, we avoid
multi-collinearity by ensuring the smallest eigenvalue is above a certain threshold. We ad-
ditionally control the condition number of the covariance matrix Σ by randomly generating
a symmetric positive definite covariance matrix Σ ∈ Rp using the eigen-decomposition

Σ = UDUT , (15)

where U is an orthogonal random matrix with elements Uij ∼ N(0, 1) and D is diagonal
matrix of positive eigenvalues. The eigenvalues are uniformly distributed over the interval
[a, b] so that the condition number of Σ is b/a and the eigenvalues are kept distinct. Here, a
is chosen to be 1× 10−4 and b is chosen to be 0.1.

Using a Cholesky decomposition Σ = ΓΓT and the random mean vector µ ∼ N(0, 1),
we generate correlated gaussian vectors of dimension p with the properties

Xi = µ + ΓijZj, Zj ∼ N(0, 1), ∀j ∈ 1, . . . , p. (16)

The data (xn, yn) are generated under a logistic regression

p(y = 1|x, θ0) = f (x|θ0) =
1

1 + e−xθ0
. (17)

A key challenge in assessing the efficacy of bias reduction is to avoid generating excessively
low entropy distributions. In such cases, bias reduction will have marginal effect as the
parameters are all nearly zero. To avoid such scenarios, the intercept parameter of the true
model is adjusted a-posterior until the following conditions are met:

1. c < EZ[p(Y = 1|X, θ0)] < d
2. −L(θ0) > ε

where c = 0.35, d = 0.65, and ε = 0.2. If these conditions can not be met, then the
replication is discarded.
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4.3.2. Model Performance Comparison

As in prior sections, KL divergence is computed between the estimated model and
the true model for each of the estimation methods. The T-statistics of the difference with
the corresponding MLE KL divergence are computed, with negative T-statistics showing
that an approach is performing better than the MLE approach. For L2 regularization in this
section, the value of λ is computed via cross-validation, using two folds, on the provided
fitting set.

Table 4 compares the KL divergences ρKL from the true distribution to the model
distributions produced using various estimation approaches applied to misspecified data.
Here m denotes the number of regressors that are not predictive, i.e., θ0 contains m zeros.
The experiment is replicated 300 times using the data generation process described above
and the test set is fixed at 100,000 observations.

Table 4. Comparison of the KL divergence for the different estimation approaches applied to mis-
specified data. The values in parentheses denote the t-statistic relative to MLE. For p = {5, 10, 20}
there are m = {2, 4, 8} non-explanatory variables added.

p n ρKL( f , gθ̂) ρKL( f , gθL2
) ρKL( f , gθ∗)

5 500 4.79× 10−3 3.01× 10−3 (−13.43) 4.56× 10−3 (−13.53)
5 1000 2.64× 10−3 1.76× 10−3 (−10.94) 2.57× 10−3 (−12.80)
5 2000 1.29× 10−3 1.09× 10−3 (−6.15) 1.27× 10−3 (−7.69)
5 5000 5.09× 10−4 4.60× 10−4 (−4.69) 5.07× 10−4 (−6.19)

10 500 9.79× 10−3 9.85× 10−3 (0.16) 9.18× 10−3 (−6.27)
10 1000 5.05× 10−3 5.13× 10−3 (0.51) 4.83× 10−3 (−4.90)
10 2000 2.50× 10−3 3.05× 10−3 (5.99) 2.56× 10−3 (1.70)
10 5000 1.06× 10−3 1.49× 10−3 (7.72) 1.04× 10−3 (−0.86)

20 500 2.18× 10−2 2.16× 10−2(−0.29) 1.95× 10−2 (−8.71)
20 1000 1.13× 10−2 1.24× 10−2 (3.79) 1.10× 10−2 (−1.95)
20 2000 6.86× 10−3 7.52× 10−3 (4.47) 6.72× 10−3 (−1.67)
20 5000 3.57× 10−3 4.24× 10−3 (6.56) 3.59× 10−3 (0.45)

We observe that the t-statistic for θ∗ is most significant for relatively small sample
sizes, particularly n = 500. For these small sizes, the improvement over MLE is greater,
though noisier. There is uniform decay in improvement over θ̂ as n grows, until for p = 10
and p = 20 the largest sizes are no longer statistically significant. This is expected, as
both the MLE and ICE estimates are converging towards the true value of θ0, and for
large enough sample sizes the ICE correction would be dominated by numerical error,
particularly the ill conditioning of J.

The L2 estimate improves for small values of p, but then becomes progressively worse
for large values of p. We observe that for dimensionality above p = 5, the L2 regularization
described here is no longer effective in reducing the KL-divergence. For low values of p the
value of θx has comparatively low variance, and thus the logistic function is reasonably
locally approximated as linear. For higher p this approximation is less realistic and the
performance of L2 regularization degrades.

For the ICE estimates, larger values of p show fluctuations that are often not sta-
tistically significant. It is apparent that larger p is increasing the variance of the ICE
divergences, probably due to numerical errors and ill conditioning. Larger values of n
reduce the absolute size of the divergence improvement whereas larger values of p seem to
increase it.

Note that though the t-statistics are degrading for large n, the absolute magnitude of
the differences is asymptotically small. For these sizes, the results are insignificant, but
more importantly, immaterial.
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4.3.3. Convergence Analysis for Large n

For 10 randomly chosen example problems, under which the model coefficients are
now fixed, the convergence behavior for large n, the training set size, is explored. Note
that the test set remains fixed at 100,000 observations for each problem. Table 5 compares
the KL divergence (averaged over all 10 problems) under MLE (θ̂), L2 regularization, and
ICE for progressively larger sample sizes. The divergences ρKL( f , gθ̂) and ρKL( f , gθ∗ICE

)

converge to zero as n→ ∞, as does ρKL( f , gθ∗L2
).

Table 5. Comparison of the KL divergence under the MLE θ̂, L2 regularization and ICE regularization
θ∗ICE against a large sample size for the case when p = 10 and m = 4.

n L(θ0) ρKL( f , gθ̂) ρKL( f , gθL2
) ρKL( f , gθ∗)

500 0.5439 9.28× 10−3 7.92× 10−3 7.74× 10−3

1000 0.5439 5.50× 10−3 5.86× 10−3 4.81× 10−3

2000 0.5439 2.65× 10−3 3.67× 10−3 2.65× 10−3

5000 0.5439 1.85× 10−3 2.72× 10−3 1.35× 10−3

10,000 0.5439 5.75× 10−4 1.57× 10−3 9.32× 10−4

20,000 0.5439 5.84× 10−4 8.10× 10−4 6.11× 10−4

50,000 0.5439 3.83× 10−4 4.09× 10−4 3.64× 10−4

100,000 0.5439 1.67× 10−4 1.15× 10−3 1.86× 10−4

Generally the θ∗ICE estimates are seen to converge slightly faster than the θ̂ estimates.
The regularization in θ∗L2

is observed to be beneficial for very small sample sizes, but then
becomes marginally detrimental for large n.

5. Optimized Computation Results

For any model satisfying White’s Regularity Criteria, it is known that the matrix J is
positive definite near the MLE optimum θ̂. This implies that J is diagonally dominated,
and indeed considering just its diagonal elements D, it is known that tr(ID−1) > 0.
Indeed tr(ID−1) differs strongly from tr(I J−1) most strongly for models with strong
regressor interactions. Therefore, using finite difference gradients, consider the following
approximations for the ICE objective function:

1. θ∗: J is computed directly, ICE is implemented as written.
2. θ∗2 : J is taken to be constant w.r.t. θ: (Jθ = Jθ̂).
3. θ∗3 : J is taken to be diagonal: (J = D).
4. θ∗4 : J is taken to be the identity: (J = I).

Clearly, we expect that θ∗4 above is the least accurate approximation, and items θ∗2 and
θ∗3 have varying levels of accuracy depending on the problem at hand. The cost comparison
of these approaches is shown in Table 6.

Table 6. The asymptotic computational cost (per iteration) of various proposed approximations as a function of parameter
count p. Cost is amortized when Jθ = Jθ̂ assuming that n ≈ p. Note that a typical model will cost O(p) in time and space
for both the objective function and its gradients.

Approximation Objective Cost (Space) Objective Cost (Time) Gradient Cost (Space) Gradient Cost (Time)

Direct Computation O(p2) O(p3) O(p2) O(p4)
Jθ = Jθ̂ O(p2) O(p2) O(p2) O(p3)
J = D O(p) O(p) O(p) O(p2)
J = I O(p) O(p) O(p) O(p2)
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Remark 9. When computing gradients for use in a solver, often approximation error will have
only a marginal impact on the final result, though it may increase the number of iterations needed
for convergence. Broyden’s method [25] is a typical example of this approach in action. Efficient
approximations of [∂θ Ĵ] might similarly have only a minor effect on accuracy and iteration count.
The construction of approximate analytical derivatives is beyond the scope of the present work.

These approximations were computed and compared for the Friedman (see Section 4.2)
problem, and the results are shown in Table 7 below.

Table 7. Comparison of the average KL divergence across 200 replications for MLE and several variants of ICE given a
fitting set size of n. For estimators other than θ̂, the values in parentheses denotes the t-statistic of the difference between
this estimator and θ̂, with negative values indicating that the listed estimator has a lower KL divergence.

n ρKL( f , gθ̂) ρKL( f , gθ∗) ρKL( f , gθ∗2
) ρKL( f , gθ∗3

) ρKL( f , gθ∗4
)

8 1.22× 10+1 4.55× 10+0 (−4.89) 5.70× 10+0 (−5.26) 3.83× 10+0 (−5.22) 1.28× 10+0 (−4.67)
16 6.68× 10−1 2.99× 10−1 (−8.13) 3.53× 10−1 (−10.56) 3.36× 10−1 (−8.30) 5.47× 10−1 (−2.11)
32 1.45× 10−1 1.14× 10−1 (−6.90) 1.04× 10−1 (−8.18) 1.08× 10−1 (−10.16) 3.63× 10−1 (19.60)
64 5.93× 10−2 4.80× 10−2 (−10.42) 4.70× 10−2 (−6.95) 4.81× 10−2 (−9.81) 2.38× 10−1 (39.08)

128 2.48× 10−2 2.24× 10−2 (−6.38) 2.33× 10−2 (−2.26) 2.26× 10−2 (−6.00) 1.62× 10−1 (61.85)
256 1.21× 10−2 1.16× 10−2 (−4.28) 1.20× 10−2 (−0.68) 1.16× 10−2 (−4.11) 1.01× 10−1 (68.82)
512 6.26× 10−3 6.10× 10−3 (−2.41) 6.16× 10−3 (−0.84) 6.10× 10−3 (−2.39) 5.42× 10−2 (63.84)
1024 3.05× 10−3 3.00× 10−3 (−2.66) 3.04× 10−3 (−0.37) 2.99× 10−3 (−2.73) 2.61× 10−2 (59.78)

From Table 7, it is apparent that approach θ∗4 , taking J = I is not effective. This is
not surprising as the actual J matrix has dramatic differences in scale between regressors.
Approximation θ∗3 , taking J = D is accurate enough that it cannot be statistically distin-
guished from the direct computation of ICE by the test above. Approximation θ∗2 tends to
underperform approximation (3).

Therefore, we propose taking J = D as a more numerically stable approximation of
the ICE objective.

6. Conclusions

Takeuchi [16] is believed to be the first to have proposed using an objective function
similar to ICE in order to reduce generalization error, though it was applied via model
selection. Firth [9] introduced a similar term to reduce parameter bias in model fitting,
as opposed to model selection, though he derived it only for exponential model families
and did not consider its effect on generalization error. It is not known why this approach
did not find widespread use, but one may infer that the O(p4) computational cost and
instability was enough to keep it from wider adoption.

In this paper, we reintroduce the objective function of [16] and provide a more general
proof of its widespread applicability. We then show that efficient implementations costing
only O(p) are possible. Under finite sample sizes, this bias correction term is shown
experimentally in several models to lead to significant reduction in bias compared to
maximum likelihood estimation with and without L2 regularization. ICE offers many
advantages over L2 penalized maximum likelihood estimation: (i) it’s suitable for most
nonlinear models, (ii) it’s provably asymptotically convergent; and (iii) does not rely on
any parameters which would need to be provided by the operator or deduced through
cross-validation.
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Appendix A. Proofs

Appendix A.1. White’s Regularity Conditions

Definition A1 (White’s regularity conditions). White [22] provides the following regularity
conditions:

A1: The independent random vectors, Xi, i = 1, . . . , n, have common joint distribution function F
on Ω, a measurable Euclidean space, with measurable Radon–Nikodym density f = dF/dx.

A2: The family of distribution functions G(x|θ) has Radon–Nikodym densities g(x|θ) = dG(x|θ)/dx
which are measurable in x for every θ ∈ Θ, a compact subset of p-dimensional Euclidean space,
and continuous in θ for every x ∈ Ω.

A3: (a) E[log f (X)] exists and |log g(x|θ)| ≤ m(x), ∀θ ∈ Θ, where m is integrable with respect
to F; (b) ρKL( f , gθ) has a unique minimum at θ0 ∈ Θ.

A4: ∂θ(log g(x|θ)) are measurable functions of x for each θ ∈ Θ and continuously differentiable
functions of θ for each x ∈ Ω.

A5: |∂2
θ(log g(x|θ))| and |∂θ(log g(x|θ)) · ∂θ(log g(x|θ)|) are dominated by functions integrable

in x with respect to F for all x ∈ Ω and θ ∈ Θ.
A6: (a) θ0 is an interior point of the parameter space; (b) E[∂θ(log g(x|θ)) · ∂θ(log g(x|θ))] is

non-singular; (c) θ0 is a regular point of E[∂2
θ(log g(x|θ))].

Appendix A.2. Proof of Finite Variance

Lemma A1 (Finite variance). Suppose the following conditions hold:

1. M satisfies White’s regularity conditions A1–A6 (see Appendix A.1 or [22]).
2. θ0 is a global minimum of −L(θ) in the compact space Θ defined in A2.
3. There exists a ε > 0 such that −L(θ0) < −L(θ1)− ε for all other local minima θ1.
4. For k = 0, 1, 2, 3, 4, 5 the derivative ∂k

θL(θ) exists, is continuous, and bounded on an open
set around θ0.

5. For k = 0, 1, 2, 3, 4, 5, the variance V[∂k
θ`(θ, Xn)]→ 0 as n→ ∞ on an open set around θ0.

Then, for sufficiently large n there exists a compact subset U ⊂ Θ containing θ0, θ̂, such that

1. For k = 0, 1, 2, 3 the derivative ∂k
θ`
∗(θ, xn) exists, is continuous, and bounded on U, al-

most surely.
2. For k = 0, 1, 2, 3, V[∂k

θ`
∗(θ, Xn)]→ 0 as n→ ∞ on U, almost surely.

3. θ∗ ∈ U as n→ ∞ almost surely.

Proof. Assumptions (4) and (5) establish existence of some set, S, containing θ0 such that
L(θ) is bounded on S, and its estimate, `(θ, Xn) has finite variance. Therefore, −`(θ, xn) is
also bounded on S almost surely. Similarly for the first 5 derivatives. White’s criteria imply
that Jθ0 is positive definite on an open set around θ0, and thus one can form a compact
set U ⊂ S containing an open set around θ0 on which the minimum eigenvalue of Jθ is
bounded away from 0.

Note that Jθ is three times differentiable on U by Assumption 4, as is Ĵθ, as established
above. Then Ĵ−1

θ is also positive definite and bounded on U. It can be shown to also have
three derivatives by using the well-known matrix relation

∂θA−1 = −A−1(∂θA)A−1. (A1)

https://doi.org/10.6084/m9.figshare.14312852.v1
https://doi.org/10.6084/m9.figshare.14312852.v1
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It follows that Ĵ−1
θ is also positive definite, nonsingular, and bounded on U. Similarly

for Îθ, and thus tr( Îθ Ĵ−1
θ ) is bounded with finite variance on U. It also has three bounded

derivatives with finite variance.
Therefore, −`∗(θ, Xn) → −`(θ, Xn), and θ∗ → θ0 as n → ∞, with the convergence

being in probability. This means that U contains θ0, θ̂, and θ∗ almost surely for large
enough n. Similarly, on U we have three continuous, bounded derivatives of ∂k

θ`
∗(θ, xn)

almost surely.

Appendix A.3. Proof of Asymptotic Normality

Theorem A1 (Asymptotic Normality). Provided the conditions hold in Lemma A1, namely, that

1. For k = 0, 1, 2, 3 the derivative ∂k
θ`
∗(θ, xn) exists, is continuous, and bounded on U.

2. For k = 0, 1, 2, 3, V[∂k
θ`
∗(θ, xn)]→ 0 as n→ ∞ on U.

Then

√
n(θ∗ − θ∗0)→ N(0, ( Ĵ∗θ∗0 )

−1 Î∗θ∗0 ( Ĵ∗θ∗0 )
−1).

Proof. As the first derivatives of ` are continuous, the mean value theorem may be applied:

∂θ`
∗(θ∗0) = ∂θ`

∗(θ∗) + (θ∗ − θ∗0) Ĵ∗θ̄ = (θ∗ − θ∗0) Ĵ∗θ̄ . (A2)

θ̄ is between θ∗ and θ∗0 . Under the assumptions of Lemma A1, and given its finite
variance, Ĵθ̄ is almost surely (in the large n limit) positive definite, and thus invertible as
both θ∗ and θ∗0 are in U, and θ̄ is between them. Therefore,

(θ∗ − θ∗0) = ( Ĵ∗θ̄)
−1∂θ`

∗(θ∗0). (A3)

Applying the mean value theorem a second time gives

Ĵθ̄ = Ĵ∗θ∗0 + (θ̄− θ∗0) Ĵ∗θ1
, (A4)

with θ1 between θ̄ and θ∗0 . If the order of (θ∗ − θ∗0) = Op(δ), where δ := n−1/2, then

Ĵ∗θ̄ = Ĵ∗θ∗0 + Op(δ). (A5)

As all of the Ĵ∗ are bounded away from zero in probability, we have

( Ĵ∗θ̄)
−1 = ( Ĵ∗θ∗0 )

−1 + Op(δ), (A6)

with the equality holding in probability. In the large n limit, δ→ 0, and thus

(θ∗ − θ∗0) = ( Ĵ∗θ∗0 )
−1∂θ`

∗(θ∗0). (A7)

As ∂θ`
∗(θ∗0) is the sum of n independent vectors, it is asymptotically normally dis-

tributed by the central limit theorem, and its mean is 0 by the definition of θ∗0 . Its variance
is therefore V[∂θ∗`

∗(θ∗0)] = E[∂θ`
∗(θ∗0)(∂θ`

∗(θ∗0))
T ] = 1

n Îθ∗0
Substituting this into Equation (A7) yields

√
n(θ∗ − θ∗0) = N(0, ( Ĵ∗θ∗0 )

−1 Î∗θ∗0 ( Ĵ∗θ∗0 )
−1), (A8)

establishing the result.
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Appendix A.4. Proof of Prediction Bias Order under ICE

Theorem A2 (Prediction Bias Estimation under ICE). By minimizing −`∗ instead of −`, the
first order terms of the prediction bias are cancelled leaving a Op(n−3/2) residual term

−L(θ̂∗) = −`(θ∗(Xn), Xn) + Op(n−3/2). (A9)

Proof. Note that in Takeuchi’s proof [16], the use of θ̂ was prescribed. Therefore, this
approach could be used only for model selection, and not for model fitting. Now consider
the bias under the ICE estimator θ∗.

b(θ∗(Xn), Xn) = EXn [log g(Xn|θ∗(Xn))− log g(Xn|θ0)]

+ EXn [log g(Xn|θ0)− nEZn [log g(Zn|θ0)]]

+ nEXn [EZn [log g(Zn|θ0)]−EZn [log g(Zn|θ∗(Xn))]].

As the second term is zero, this can be simplified to

b(θ∗(Xn), Xn) = −nEXn [`(θ
∗(Xn), Xn)− `(θ0, Xn)]

− nEXn [L(θ0)−L(θ∗(Xn))].

Define δ = 1√
n , and then recall from White [22] that (θ̂− θ0) is Op(δ). Similarly, recall

from Theorem A1 that (θ∗− θ∗0) is also Op(δ). As constructed, the error term b(θ∗(Xn), Xn)
is Op(1) (actually O(1) as it is an expectation), and terms of order Op(δ) and higher will be
dropped. Therefore, as in Takeuchi’s derivation [16], the Taylor expansions below will be
truncated at second order in δ, dropping terms of order Op(δ3) or higher. Additionally, we
will occasionally drop indications of Xn where the meaning is clear and it greatly simplifies
the notation.

With that truncation, recalling that θ0 is a minimum of L(θ) and thus has zero gradient:

nEXn [L(θ0)−L(θ∗(Xn))] =
n
2
EXn [(θ

∗ − θ0)
T Jθ0(θ

∗ − θ0)] + O(δ). (A10)

Recall Theorem A1, and recall the that for the quadratic form:

E[εT Aε] = tr(AΣ) + µT Aµ, E[ε] = µ,V[ε] = Σ. (A11)

Therefore,

n
2
EXn [(θ

∗ − θ0)
T Jθ0(θ

∗ − θ0)] =
1
2

tr(Jθ0 [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)])

+
n
2
(θ∗0 − θ0)

T Jθ0(θ
∗
0 − θ0)

+ O(δ).

Now note that the second term on the right is a constant, and therefore would take no
part in any optimization. Therefore, it can be safely ignored and

nEXn [L(θ0)−L(θ∗(Xn))] =
1
2

tr(Jθ0 [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)]) + O(δ). (A12)

Addressing the first term, again taking a Taylor expansion, we find that

`(θ0) = `(θ∗) + (θ0 − θ∗)T∂θ`(θ
∗) +

1
2
(θ0 − θ∗)T∂2

θ`(θ
∗)(θ0 − θ∗) + Op(δ

3). (A13)

Therefore, recalling that nOp(δ3) = Op(δ) gives
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nEXn [`(θ
∗(Xn), Xn)− `(θ0, Xn)] =

1
2

tr(Jθ∗ [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)])

+
n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

+ nEXn [(θ
∗ − θ0)

T∂θ`(θ
∗)]

+ Op(δ).

Now examine the last term:

nEXn [(θ
∗ − θ0)

T∂θ`(θ
∗)] = nEXn [(θ

∗ − θ∗0)
T∂θ`(θ

∗)]

+ nEXn [(θ
∗
0 − θ0)

T∂θ`(θ
∗)].

However, (θ∗0 − θ0) does not depend on Xn, so it can be pulled out of the expectation,
then substitute in a first order Taylor expansion

EXn [(θ
∗
0 − θ0)

T∂θ`(θ
∗)] = (θ∗0 − θ0)

TEXn [∂θ`(θ
∗)]

= (θ∗0 − θ0)
TEXn [∂θ`(θ

∗
0) + (θ∗ − θ∗0)∂

2
θ`(θ

∗
0) + Op(δ

2)]

= (θ∗0 − θ0)
T∂θL(θ∗0)

+ (θ∗0 − θ0)
TEXn [(θ

∗ − θ∗0)]∂
2
θL(θ∗0) + O(δ3)

= (θ∗0 − θ0)
T∂θL(θ∗0) + O(δ3),

with the last equality following from the fact that EXn [(θ
∗ − θ∗0)] = 0 and the substitution

of (θ∗0 − θ0)
TO(δ2) = O(δ3). This term is therefore a constant, up to O(δ3), and takes no

part in optimization of θ, thus it can be dropped from further consideration. Therefore
nEXn [(θ

∗
0 − θ0)

T∂θ`(θ
∗)] = O(δ), and

nEXn [(θ
∗ − θ0)

T∂θ`(θ
∗)] = nEXn [(θ

∗ − θ∗0)
T∂θ`(θ

∗)]

+ O(δ).

Recombining these terms yields

nEXn [`(θ
∗(Xn), Xn)− `(θ0, Xn)] =

1
2

tr(Jθ∗ [(J∗θ∗)
−1 I∗θ∗(J∗θ∗)

−1)])

+
n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

+ nEXn [(θ
∗ − θ∗0)

T∂θ`(θ
∗)]

+ O(δ).

Thus the bias (neglecting the constant terms) is then

b(θ∗(Xn), Xn) = −1
2

tr(Jθ∗ [(J∗θ∗)
−1 I∗θ∗(J∗θ∗)

−1)])

− 1
2

tr(Jθ0 [(J∗θ∗0 )
−1 I∗θ∗0 (J∗θ∗0 )

−1)])

− n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

− nEXn [(θ
∗ − θ∗0)

T∂θ`(θ
∗)]

+ O(δ).

Because `∗(θ) = `(θ) +Op(δ2), it follows that J∗θ = Jθ +Op(δ2) and thus Jθ∗(J∗θ∗)
−1 =

I + O(δ2). Similarly for Jθ0 . In addition Iθ∗ = Iθ∗0
+ O(δ), thus the two trace terms can be

simplified and combined:
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b(θ∗(Xn), Xn) = −tr(Iθ∗ J−1
θ∗ )

− n
2
(θ∗0 − θ0)

T Jθ∗(θ
∗
0 − θ0)

− nEXn [(θ
∗ − θ∗0)

T∂θ`(θ
∗)]

+ O(δ).

As θ∗0 is a minimum of L∗, begin by Taylor expanding the derivatives

∂θL(θ∗0) = ∂θL(θ0)− (θ∗0 − θ0)Jθ0 = −(θ∗0 − θ0)Jθ0 . (A14)

Moreover, show from the definition of L∗ that

∂θL∗(θ∗0) = 0 = ∂θL(θ∗0) +
1
n

∂θtr(I J−1) (A15)

Then, after Taylor expanding L(θ∗0) around θ0, it is seen that

(θ∗0 − θ0) =
1
n

J−1
θ0

∂θtr(I J−1). (A16)

Noting that J−1
θ = O(1) and tr(I J−1) = O(1), it holds that (θ∗0 − θ0) = O(δ2).

Therefore, n
2 (θ
∗
0 − θ0)

T Jθ∗(θ
∗
0 − θ0) = O(δ2), and can be neglected.

Then, the bias becomes

b(θ∗(Xn), Xn) = −tr(Iθ∗ J−1
θ∗ )

− nEXn [(θ
∗ − θ∗0)

T∂θ`(θ
∗)]

+ O(δ).

However, for the same reason, ∂θ`(θ
∗) = O(δ2), so the last term nEXn [(θ

∗ − θ∗0)
T

∂θ`(θ
∗)] = O(δ), and it too can be absorbed into the residual.

Therefore,

b(θ∗(Xn), Xn) = −tr(Iθ∗ J−1
θ∗ )

+ O(δ),

and
−L(θ̂) = −`(θ∗(Zn), Zn) +

1
n

tr(Iθ̂ J−1
θ̂

) + Op(δ
3) + C, (A17)

where the constant C is composed of the neglected constant terms from earlier stages

C = −1
2
(θ∗0 − θ0)

T Jθ0(θ
∗
0 − θ0)

+ −(θ∗0 − θ0)
T∂θL(θ∗0).

However, the last term is O(δ3), and the first is O(δ2), so this may be approximated as

C = −1
2
(θ∗0 − θ0)

T Jθ0(θ
∗
0 − θ0). (A18)

Recalling again that (θ∗0 − θ0) = O(δ2), it is clear that C = O(δ4), and may thus be
absorbed into the O(δ3) residual term. Therefore,

−L(θ̂) = −`(θ∗(Zn), Zn) +
1
n

tr(Iθ̂ J−1
θ̂

) + O(δ3). (A19)

Comparing this to the form of `∗(θ):
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−L(θ̂) = −`∗(θ∗(Zn), Zn) + Op(δ
3). (A20)

Thus, by minimizing −`∗ instead of −`, the first order terms of the prediction bias are
canceled and, in expectation, a more accurate model is produced.
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