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Abstract: The Lyapunov exponent is primarily used to quantify the chaos of a dynamical system.
However, it is difficult to compute the Lyapunov exponent of dynamical systems from a time
series. The entropic chaos degree is a criterion for quantifying chaos in dynamical systems through
information dynamics, which is directly computable for any time series. However, it requires
higher values than the Lyapunov exponent for any chaotic map. Therefore, the improved entropic
chaos degree for a one-dimensional chaotic map under typical chaotic conditions was introduced
to reduce the difference between the Lyapunov exponent and the entropic chaos degree. Moreover,
the improved entropic chaos degree was extended for a multidimensional chaotic map. Recently,
the author has shown that the extended entropic chaos degree takes the same value as the total sum
of the Lyapunov exponents under typical chaotic conditions. However, the author has assumed
a value of infinity for some numbers, especially the number of mapping points. Nevertheless,
in actual numerical computations, these numbers are treated as finite. This study proposes an
improved calculation formula of the extended entropic chaos degree to obtain appropriate numerical
computation results for two-dimensional chaotic maps.

Keywords: chaos; Lyapunov exponent; extended entropic chaos degree

1. Introduction

The Lyapunov exponent (LE) is a widely used measure for quantifying the chaos of a
dynamical system. However, it is generally incomputable for time series. Therefore, some
estimation methods for the Lyapunov exponent of a time series have been suggested in
previous studies [1–6]. However, it is well-known that estimating the Lyapunov exponent
for a time series is difficult.

The entropic chaos degree (ECD) was introduced to measure the chaos of a dynamical
system in the field of information dynamics [7]. The ECD is directly computable, even
for time series data obtained from dynamical systems. Some researchers have sought to
characterize certain chaotic behaviors using the ECD [8–10]. Recently, it was demonstrated
that the modified ECD coincides with the Lyapunov exponent for a one-dimensional chaotic
map under typical chaotic conditions [11,12]. Moreover, the extended entropic chaos degree
(EECD) was shown to be the sum of all the Lyapunov exponents of a multidimensional
chaotic map under typical chaotic conditions [13]. However, it was assumed that the
number of mapping points and the number of all components of equipartition of the
domain are infinity. In actual computations, these numbers are treated as finite numbers.
In this study, I aim to formulate a calculation such that the EECD is also equal to the
sum of all the Lyapunov exponents of two-dimensional typical chaotic maps in actual
numerical computations.

In this study, I propose an improved calculation formula of the EECD for multidimen-
sional chaotic maps. Moreover, I apply the improved calculation formula of the EECD to
two-dimensional typical chaotic maps.
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2. Entropic Chaos Degree

In this section, I briefly review the definition of the ECD for a difference equation
system,

xn+1 = f (xn), n = 0, 1, . . . ,

where f represents a map such that f : I → I (≡ [a, b]d ⊂ Rd, a, b ∈ R, d ∈ N).
Let x0 represent an initial value and {Ai} represent a finite partition of I such that

I =
N⋃

k=1

Ak, Ai ∩ Aj = ∅ (i 6= j).

Next, the probability distribution
(

p(n)i,A (M)
)

at time n and joint distribution
(

p(n,n+1)
i,j,A (M)

)
at

time n and n + 1 associated with the difference equation are expressed as follows:

p(n)i,A (M) =
1
M

n+M−1

∑
k=n

1Ai (xk)

=
|{xk ∈ Ai; n ≤ k ≤ n + M− 1}|

M
,

p(n,n+1)
i,j,A (M) =

1
M

n+M−1

∑
k=n

1Ai (xk)1Aj(xk+1)

=

∣∣{(xk, xk+1) ∈ Ai × Aj; n ≤ k ≤ n + M− 1
}∣∣

M
,

where 1A represents the characteristic function of a set A.
The ECD D of the orbit {xn} is then defined in [7] as follows:

D(M,n)(A, f ) =
N

∑
i=1

N

∑
j=1

p(n)i,j,A(M) log
p(n)i,A (M)

p(n,n+1)
i,j,A (M)

=
N

∑
i=1

p(n)i,A (M)

(
−

N

∑
j=1

p(n)A (j|i)(M) log p(n)A (j|i)(M)

)
, (1)

where

p(n)A (j|i) ≡
p(n,n+1)

i,j,A (M)

p(n)i,A (M)

represents the conditional probability from the component Ai of {Ai} to the component Aj
of {Ai}.

Further, the ECD is denoted as D(M)(A, f ) without n if the orbit {xn} does not depend
on time n. Moreover, the ECD is denoted as D(M,n)(A) without f if the map f does not
produce the orbit {xn}.

The ECD is larger than the Lyapunov exponent for a one-dimensional chaotic map [12].
At the end of this section, I discuss the relation between the ECD and the metric en-

tropy. For sufficiently large M, there exists a probability measure µ on I without depending
on n. Let (X, A, µ) be a measure space with µ(X) = 1. For provided measurable partitions
ξ and ζ of X, the conditional entropy Hµ(ξ|ζ ) of ξ with respect to ζ is defined in [14] by

Hµ(ξ|ζ ) = − ∑
C∈ξ,D∈ζ

µ(C ∩ D) log
µ(C ∩ D)

µ(D)
. (2)
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If T : I → I is a measurable transformation preserving a probability measure µ on I then,
for sufficiently large M, I have

D(M)(ξ, T) ' − ∑
C∈ξ

µ(C ∩ T(C)) log
µ(C ∩ T(C))

µ(T(C))

= − ∑
C∈ξ

µ(C ∩ T(C)) log
µ(C ∩ T(C))

µ(C)

= − ∑
C∈ξ

µ
(

T−1(C ∩ T(C))
)

log
µ
(
T−1(C ∩ T(C))

)
µ(T−1(C))

= − ∑
C∈ξ

µ
(

T−1(C) ∩ C
)

log
µ
(
T−1(C) ∩ C

)
µ(T−1(C))

= Hµ

(
ξ
∣∣∣T−1ξ

)
≥ lim

n→∞
Hµ

(
ξ

∣∣∣∣∣ n∨
i=1

T−iξ

)
.

In the last inequality, I used the property such that if ζ is a refinement of η, then Hµ(ξ|ζ) ≤
Hµ(ξ|η) for every partition ξ, where η = T−1ξ and ζ =

∨n
i=1 T−iξ.

Then the metric entropy hµ(T, ξ) of T with respect to µ and a measurable partition ξ
has the following property [14].

hµ(T, ξ) = Hµ

(
ξ

∣∣∣∣∣ n∨
i=1

T−iξ

)
.

Therefore, I obtain
D(M)(ξ, T) ≥ hµ(T, ξ)

for sufficiently large M.

3. Extended Entropic Chaos Degree

In this section, it is assumed that

N = Ld, I =
d

∏
l=1

[al , bl ]. (3)

Let the Ld-equipartitions {Ai} of I be

I =
Ld−1⋃
k=0

Ak.

For any component Ai of {Ai}, I divide another component Aj into
(
Si,j
)d-equipartitions{

B(i,j)
l

}
0≤l≤(Si,j)d−1

of smaller components, such that

Aj =

(Si,j)
d−1⋃

l=0

B(i,j)
l . (4)

For each B(i,j)
l , the function gi,j is defined as follows:

gi,j

(
B(i,j)

l

)
=

{
1 (B(i,j)

l ∩ f (Ai) 6= ∅)

0 (B(i,j)
l ∩ f (Ai) = ∅)

(5)
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Using the function gi,j, for any two components Ai, Aj (i 6= j) of the initial partition {Ai},
the function R(Si,j) is defined as follows:

R(Si,j) =

(Si,j)
d−1

∑
l=0

gi,j

(
B(i,j)

l

)
(
Si,j
)d .

The EECD DS is provided in [13] as follows:

D(M,n)
S (A, f ) =

Ld−1

∑
i=0

p(n)i,A (M)
Ld−1

∑
j=0

p(n)A (j|i)(M) log
R(Si,j)

p(n)A (j|i)(M)
,

where S = (Si,j)0≤i,j≤Ld−1.
Note that the EECD DS becomes the CD, as shown in Equation (1), only if R(Si,j) = 1

for any two components Ai and Aj of the initial partition {Ai}.
First, the following theorem concerning the periodic orbit is presented [13].

Theorem 1. Let L, M represent sufficiently large natural numbers. If map f creates a stable
periodic orbit with period T, the following equality holds.

D(M,n)
S (A, f ) = − d

T

T

∑
k=1

log Sik ,jk . (6)

Second, I briefly review the relationship between the EECD and the Lyapunov expo-
nent in a chaotic dynamical system. Let a map f be a piecewise C1 function on Rd. For any
x = (x1, x2, . . . , xd)

t, y = (y1, y2, . . . , yd)
t ∈ Ai, I consider an approximate Jacobian matrix

Ĵ as follows:

Ĵ(x, y) =

(
fi(x)− fi(y)

xj − yj

)
1≤i,j≤d

.

Let rk(x, y) (k = 1, 2, . . . , d) represent the eigenvalues of
√

Ĵt(x, y) Ĵ(x, y).
Then, the following properties are assumed to be satisfied.

Assumption 1. For sufficiently large natural numbers, L and M, I assume that the following
conditions are satisfied.

(1) Points in Ai are uniformly distributed over Ai.

(2) Then, rk(x, y) = r(i)k , k = 1, 2, . . . , d is obtained for any x, y ∈ Ai.

Next, the following theorem is presented [13].

Theorem 2. For any Ai, i = 0, 1, . . . , Ld − 1, Assumption 1 is assumed to be satisfied. Then,
the following is obtained.

lim
S→∞

lim
L→∞

lim
M→∞

D(M,m)
S (A, f ) =

d

∑
k=1

λk,

where
S→ ∞⇔ Si,j → ∞ (i, j = 0, 1, . . . , Ld − 1)

and {λ1, . . . , λd} represent the Lyapunov spectrum of a map f .
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Theorem 2 implies that if the points on any Ai are uniformly distributed, then the
EECD becomes the sum of all the Lyapunov exponents of the map f in the limits at infinity
of M, L, and Si,j.

At the end of this section, I discuss the relationship between the EECD and the metric
entropy. For sufficiently large M, a probability measure µ exists on I without depending
on n. If T : I → I is a measurable transformation preserving a probability measure µ on I,
then for sufficiently large M and Si,j, I have

D(M,n)
S (ξ, T) ' ∑

C∈ξ

µ(C ∩ T(C)) log

m(C ∩ T(C))
m(C)

µ(C ∩ T(C))
µ(T(C))

= ∑
C∈ξ

µ(C ∩ T(C)) log

m(C ∩ T(C))
m(C)

m(C ∩ T(C))
m(C)

= ∑
C∈ξ

µ(C ∩ T(C)) log 1

= 0.

Here, m is the Lebesgue measure on Rd.
Because hµ(T, ξ) ≥ 0, I have

D(M)
S (ξ, T) ≤ hµ(T, ξ)

for sufficiently large M, Si,j.

4. Improvement of Calculation Formula of the Extended Entropic Chaos Degree

In Theorem 2, it is assumed that the values of L, M, and Si,j are equal to infinity.
However, in actual numerical computations, these numbers are treated as finite numbers. I
propose an improved calculation formula of the EECD to obtain appropriate numerical
computation results.

First, I consider improving a calculation formula of the EECD when the map f creates
a stable periodic orbit. If the map f creates a stable periodic orbit, then, for any component
Ai with Ai 6= ∅, there exists a component Aji such that

|Aji ∩ f (Ai)| = | f (Ai)| = |Aji |.

It follows that

p(n)A (j|i) =
{

1 (j = ji)
0 (j 6= ji)

. (7)

From Equation (7), I obtain

D(M,n)
S (A, f ) = ∑

|Ai |>0
p(n)i,A (M) log R(Si,ji ).

Now, for any component Ai, let us consider Aj such that Aj ∩ f (Ai) 6= ∅. Let Ci,j be the

number of B(i,j)
l such that B(i,j)

l ∩ f (Ai) 6= ∅, that is,

Ci,j ≡
∣∣∣{B(i,j)

l : (xk, f (xk)) ∈ Ai × B(i,j)
l , l = 0, 1, . . . , (Si,j)

d − 1
}∣∣∣,
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where

Aj =

(Si,j)
d−1⋃

l=0

B(i,j)
l .

When the map f creates a stable periodic orbit, I set

(Si,ji ) =

⌊
d
√
|Ai|

⌋
.

I then have

R(Si,ji ) =
Ci,j

(Si,ji )
d '

1
|Ai|

' |{Ai : |Ai| > 0}|
M

.

Thus, when the map f creates a stable periodic orbit, I use

D̃(M,n)
S,1 (A, f ) ≡ ∑

|Ai |>0
p(n)i,A (M) log

|{Ai : |Ai| > 0}|
M

= log
|{Ai : |Ai| > 0}|

M
(8)

to calculate the EECD.
Second, I consider improving a calculation formula of the EECD when the map f does

not create a periodic orbit. For any sufficiently large natural numbers, L and M, let us
assume the conditions (1) and (2) in Assumption 1. Let m be the Lebesgue measure on Rd

and µ be the invariant measure of f . Then, I obtain

D(M,n)
S (A, f ) =

Ld−1

∑
i=0

p(n)i,A (M)

(
Ld−1

∑
j=0

p(n)A (j|i)(M) log
R(Si,j)

p(n)A (j|i)(M)

)

'
Ld−1

∑
i=0

µ( f (Ai))

Ld−1

∑
j=0

µ(Aj ∩ f (Ai))

µ( f (Ai))
log

m(Aj ∩ f (Ai))

m(Aj)

µ(Aj ∩ f (Ai))

µ( f (Ai))


'

Ld−1

∑
i=0

Ld−1

∑
j=0

µ(Aj ∩ f (Ai)) log
m( f (Ai))

m(Aj)
. (9)

Here, the second approximation (Equation (9)) uses the following:

µ
(

Aj ∩ f (Ai)
)

µ( f (Ai))
'

m
(

Aj ∩ f (Ai)
)

m( f (Ai))
.

Then, I directly obtain the following:

Ld−1

∑
i=0

Ld−1

∑
j=0

µ(Aj ∩ f (Ai)) log
m( f (Ai))

m(Aj)

=
Ld−1

∑
i=0

µ( f (Ai)) log m( f (Ai))−
Ld−1

∑
j=0

µ(Aj) log m(Aj)

'
Ld−1

∑
i=0

p(n)i,A (M) log m( f (Ai))−
Ld−1

∑
i=0

p(n)i,A (M) log m(Ai)

=
Ld−1

∑
i=0

p(n)i,A (M) log
m( f (Ai))

m(Ai)
. (10)
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Now, for any set X ( 6= ∅) ⊂ I =
d

∏
k=1

[ak, bk],

X = {(x1, x2, . . . , xd) : xk ∈ [ak, bk], k = 1, 2, . . . , d}
=

{(
(x1)j, (x2)j, . . . , (xd)j

)
: (xk)j ∈ [ak, bk], k = 1, 2, . . . , d, j = 0, 1, . . . , |X| − 1

}
.

The variance–covariance matrix ∑X to all points x on X is given by

∑X =


(σ2

1 )X (σ1,2)X . . . (σ1,d)X
(σ2,1)X (σ2

2 )X . . . (σ2,d)X
...

...
. . .

...
(σd,1)X (σd,2)X . . . (σ2

d )X

,

where

(σl,m)X =
1
|X|

|X|−1

∑
j=0

((xl)j − xl)((xm)j − xm),

(σ2
l )X =

1
|X|

|X|−1

∑
j=0

((xl)j − xl)
2,

(xl)X =
1
|X|

|X|−1

∑
j=0

(xl)j.

Let (λk)X (k = 1, 2, . . . , d) be eigenvalues of ∑X such that (λi)X ≥ (λj)X (i ≥ j). For any
sufficiently large natural numbers, L and M, I have

m( f (Ai))

m(Ai)
'

2d
d

∏
k=1

√
(λk) f (Ai)

2d
d

∏
k=1

√
(λk)Ai

=

d

∏
k=1

√
(λk) f (Ai)

d

∏
k=1

√
(λk)Ai

. (11)

From Equations (10) and (11), when the map f does not create a periodic orbit, I use

D̃(M,n)
S,2 (A, f ) ≡ ∑

|Ai |>0
p(n)i,A (M) log

d

∏
k=1

√
(λk) f (Ai)

d

∏
k=1

√
(λk)Ai

(12)

as the calculation formula of the EECD.
Let (uk)X be the eigenvector corresponding to the eigenvalue (λk)X , and

〈x〉X ≡ (x1, x2, . . . , xd)X .

In actual numerical computations, let us consider subsets Ci, Di of Ai, f (Ai) such that

Ci =

{
〈x〉Ai

+
d

∑
k=1

αk

√
(λk)Ai

(uk)Ai∥∥(uk)Ai

∥∥ : −1 ≤ αk ≤ 1

}
, (13)

Di =

〈x〉 f (Ai)
+

d

∑
k=1

βk

√
(λk) f (Ai)

(uk) f (Ai)∥∥∥(uk) f (Ai)

∥∥∥ : −1 ≤ βk ≤ 1

. (14)
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Now, I assume that all points x on Ai, f (Ai) are almost uniformly distributed over Ci, Di,
such that

|Ei|
|Ci|
' m(Ei)

m(Ci)
,
|Fi|
|Di|

' m(Fi)

m(Di)

for any subsets Ei, Fi of Ci, Di. Then, I obtain

m( f (Ci))

m(Ci)
=

m(Di)

m(Ci)
'

2d
d

∏
k=1

√
(λk) f (Ai)

2d
d

∏
k=1

√
(λk)Ai

=

d

∏
k=1

√
(λk) f (Ai)

d

∏
k=1

√
(λk)Ai

. (15)

Moreover, I denote the eigenvalues of
√

D f t(x)D f (x) such that ri(x) ≥ rj(x) (i ≥ j) by
rk(x) (k = 1, 2, . . . , d). Then, I have

D̃(M,n)
S,2 (A, f ) ' ∑

|Ci |>0
p(n)i,A (M) log

m( f (Ci))

m(Ci)

= ∑
|Ci |>0

∫
Ci

log

(
d

∏
k=1

rk(x)

)
p(x)

d

∏
l=1

dxl

=

b1∫
a1

b2∫
a2

· · ·
bd∫

ad

log

(
d

∏
k=1

rk(x)

)
p(x)

d

∏
l=1

dxl

=
d

∑
k=1

b1∫
a1

b2∫
a2

· · ·
bd∫

ad

log(rk(x))p(x)
d

∏
l=1

dxl

=
d

∑
k=1

λk. (16)

Here, p(x) is the density function of x and {λ1, λ2, . . . , λd} is the Lyapunov spectrum of f .
In the sequel, I use

D̃(M,n)
S (A, f ) ≡

{
D̃(M,n)

S,1 (A, f ) (when the map f creates a stable periodic orbit)

D̃(M,n)
S,2 (A, f ) (otherwise)

(17)

as the calculation formulas of the EECD.

5. Numerical Computation Results of the EECD for Two-Dimensional Chaotic Maps

In this section, I apply the improved calculation formulas (Equation (12)) of the
EECD to two-dimensional typical chaotic maps. In the sequel, I set M = 1,000,000 and
L =

√
M = 1000. (In principle, the double type in C language is used in numerical

computations. However, the floating-point type with its 1024-bit mantissa is used in
numerical calculations of eigenvalues of the variance–covariance matrix by GMP (GNU
Multi-Precision Library).)

Let us consider the generalized baker’s map fa as a simple two-dimensional dissipative
chaotic map such that the Jacobian matrix D fa(x) does not depend on x.

The generalized baker’s map fa is defined by

fa(x) =


(

2ax1,
1
2

ax2

) (
0 ≤ x1 ≤

1
2

)
(

a(2x1 − 1),
1
2

a(x2 + 1)
) (

1
2
< x1 ≤ 1

)
,

(18)
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where x = (x1, x2)
t ∈ [0, 1]× [0, 1] and 0 ≤ a ≤ 1.

The generalized baker’s map fa for 0.5 ≤ a ≤ 1.0 corresponds to the following
operations: first, the unit square is stretched 2a times in the x1 direction and compressed
a/2 times in the x2 direction; second, the right part protruding from the unit square is cut
vertically and stacked on the top of the left part. The first operation is called “stretching”
and the second operation is called “folding”. These two operations are essential basic
elements for producing chaotic behaviors.

5.1. Numerical Computation Results of the EECD for Generalized Baker’s Map

The Jacobian matrix of the baker’s map fa is expressed as follows:

D fa(x) =

(
2a 0

0
1
2

a

)
. (19)

Thus, D fa(x) depends only on the parameter a. The dynamics produced by the baker’s
map fa is dissipative for 0 ≤ a < 1 because |detD fa(x)| = a2.

For e1 = (1, 0)t, e2 = (0, 1)t, I obtain

ê1 ≡ D fa(e1)e1 = 2ae1, ê2 ≡ D fa(e2)e2 =
1
2

ae2. (20)

Thus, the expansion rate in the stretching of the baker’s map fa is 2a and the contraction
rate in the folding of the baker’s map fa is a/2. I then consider the orbit {xn} produced by
the generalized baker’s map fa, as follows:

xn+1 = fa(xn), n = 0, 1, 2, . . . , x0 = (0.3333, 0.3333)t.

First, I present typical orbits of the baker’s map fa in Figure 1. As the parameter a
increases, the spread of points is mapped from a linear distribution to the entire unit square.
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Figure 1. (x2)n versus (x1)n for the generalized baker’s map fa.

Second, I present the numerical computation results of the LEs λ1, λ2 (λ1 > λ2),
the total sum λ1 + λ2 of the LEs, the ECD D, and the EECD D̃S of the baker’s map fa in



Entropy 2021, 23, 1511 10 of 19

Figure 2. Figure 2 shows that the EECD D̃S takes approximately the exact value of the total
sum λ1 + λ2 of the LEs for the generalized baker’s map fa.
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Figure 2. λ1, λ2, λ1 + λ2, D, D̃S versus a for the generalized baker’s map fa.

In general, the orthogonal basis of Rd can be changed by f . In the sequel, for a two-
dimensional chaotic map f , I consider the average expansion rate in the stretching of f as
exp(λ1) and the average contraction rate in the folding of f as exp(λ2), where λ1, λ2 are
the LEs of f such that λ1 > 0 > λ2.

5.2. Numerical Computation Results of the EECD for Tinkerbell Map

Let us consider the Tinkerbell map fa as a two-dimensional dissipative chaotic map
such that the Jacobian matrices D fa(x) and detD fa(x) depend on x and the parameter a.

The Tinkerbell map fa is defined by

fa(x) =
(

x2
1 − x2

2 + ax1 − 0.6013x2, 2x1x2 + 2x1 + 0.5x2

)t
, (21)

where x = (x1, x2)
t ∈ [a1, b1]× [a2, b2].

For 0.7 ≤ a ≤ 0.9, I obtain the following:

a1 = −1.3, a2 = −1.6, b1 = 0.5, b2 = 0.6.

The Jacobian matrix of the Tinkerbell map fa is expressed as follows:

D fa(x) =
(

2x1 + a −2x2 − 0.6013
2x2 + 2 2x1 + 0.5

)
. (22)

Thus, D fa(x) depends on x and the parameter a.
I then consider the orbit {xn} produced by the Tinkerbell map fa as follows:

xn+1 = fa(xn), n = 0, 1, 2, . . . , x0 = (0.1, 0.1)t.

First, I present typical orbits of the Tinkerbell map fa in Figure 3. The orbit of the
Tinkerbell map fa constructs a strange attractor at a = 0.9. The map fa is named the
Tinkerbell map because the shape of the attractor produced by the Tinkerbell map looks
like the movement of a fairy named Tinker Bell, who appears in a Disney film.

Second, I present the numerical computation results of the LEs λ1, λ2 (λ1 > λ2),
the total sum λ1 + λ2 of the LEs, the ECD D, and the EECD D̃S of the Tinkerbell map fa
in Figure 4. Figure 4 shows that the EECD D̃S takes almost the same value as the total
sum λ1 + λ2 of the LEs for the Tinkerbell map fa at most a for 0.7 ≤ a ≤ 0.9. However,
the Tinkerbell map fa creates a stable periodic orbit at several a’s. Then the EECD takes a
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different value from the total sum λ1 + λ2 of LEs for the Tinkerbell map fa because I use
D̃(M,n)

S,1 (Equation (8)) as the calculation formula of the EECD D̃S.
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Figure 3. (x2)n versus (x1)n for the Tinkerbell map fa.
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Figure 4. λ1, λ2, λ1 + λ2, D, D̃S versus a for the Tinkerbell map fa.

5.3. Numerical Computation Results of the EECD for Ikeda Map

Let us consider the Ikeda map fa as a two-dimensional dissipative chaotic map such
that the Jacobian matrix D fa(x) depends on x and the parameter a but that detD fa(x) does
not depend on x.

The modified Ikeda map is given as the complex map in [15,16]

f (z) = A + BzeiK/(|z|2+1)+C, z ∈ C, A, B, K, C ∈ R. (23)

The Ikeda map fa is defined as a real two-dimensional example of Equation (23) by

fa(x) = (1 + a(x1 cos t− x2 sin t), a(x1 sin t + x2 cos t))t, (24)

where
t = 0.4− 6

1 + x2
1 + x2

2
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and x = (x1, x2)
t ∈ [a1, b1]× [a2, b2].

For 0.7 ≤ a ≤ 0.9, I obtain the following:

a1 = −0.4, a2 = −2.3, b1 = 1.8 , b2 = 0.9.

The Jacobian matrix of the Ikeda map fa is expressed as follows:

D fa(x) = a
(

u1 cos t− u2 sin t −u3 sin t− u4 cos t
u1 sin t + u2 cos t u3 cos t− u4 sin t

)
, (25)

where

u1 = 1− 12x1x2(
1 + x2

1 + x2
2
)2 , u2 =

12x2
1(

1 + x2
1 + x2

2
)2

u3 = 1 +
12x1x2(

1 + x2
1 + x2

2
)2 , u4 =

12x2
2(

1 + x2
1 + x2

2
)2 .

Thus, D fa(x) depends on x and the parameter a. The dynamics produced by the Ikeda
map fa are dissipative for 0 ≤ a < 1 because |detD fa(x)| = a2.

I then consider the orbit {xn} produced by the Ikeda map fa as follows:

xn+1 = fa(xn), n = 0, 1, 2, . . . , x0 = (0.1, 0.0)t.

First, I present typical orbits of the Ikeda map fa in Figure 5. As the parameter a
increases, the attractor constructed by the Ikeda map fa becomes larger. Regarding fa plots,
the Ikeda map might be conjugated to a Hénon map [17].
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Figure 5. (x2)n versus (x1)n for the Ikeda map fa.

Second, let us assume that dv0 is transformed to dvm by f m
a on R2. For the Ikeda map

fa, using the chain rule and detD fa(x) = a2 at any x, I have

dvm = detD f m
a (v0)dv0 = a2mdv0. (26)
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Therefore, I obtain

λ1 + λ2 = lim
m→∞

1
m

log
∣∣∣∣dvm

dv0

∣∣∣∣ = lim
m→∞

log a2m

m
= 2 log a, (27)

where λk (k = 1, 2) are the LEs of the Ikeda map fa such that λ1 > λ2.
I present the numerical computation results of the LEs λ1, λ2, the total sum λ1 + λ2 of

the LEs, the ECD D, and the EECD D̃S of the Ikeda map fa in Figure 6. Figure 6 shows that
the EECD D̃S takes almost the same value as the total sum λ1 + λ2 of the LEs for the Ikeda
map fa at almost a for 0.7 ≤ a ≤ 0.9. However, the Ikeda map fa creates a stable periodic
orbit at several a’s. Then the EECD takes a different value from the total sum λ1 + λ2 of
LEs for the Ikeda map fa because I use D̃(M,n)

S,1 (Equation (8)) as the calculation formula of
the EECD D̃S.
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Figure 6. λ1, λ2, λ1 + λ2, D, D̃S versus a for the Ikeda map fa.

5.4. Numerical Computation Results of the EECD for Hénon Map

Let us consider the Hénon map fa,b as a two-dimensional dissipative chaotic map such
that the Jacobian matrix D fa,b(x) depends on x and the parameter b but that the Jacobian
detD fa,b(x) does not depend on x.

The Hénon map fa,b is expressed as follows:

fa,b(x) =
(

a− x2
1 + bx2, x1

)t
, (28)

where x = (x1, x2)
t ∈ [a1, b1]× [a2, b2].

For a = 1.4, 0 < b ≤ 0.3, I obtain the following:

ak = −1.8, bk = 1.8, (k = 1, 2).

In the sequel, we rewrite f1.4,b = fb.
The Jacobian matrix of the Hénon map fa,b is expressed as follows:

D fa,b(x) =
(

2x1 b
1 0

)
. (29)

Thus, D fa,b(x) depends on x1 and the parameter b. The dynamics produced by the Hénon
map fa,b are dissipative for 0 ≤ b < 1 because |detD fa,b(x)| = b.

I then consider the orbit {xn} produced by the Hénon map fb as follows:

xn+1 = fb(xn), n = 0, 1, 2, . . . , x0 = (0.1, 0.1)t.
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First, I present typical orbits of the Hénon map fb in Figure 7. The orbit of the Hénon
attractor has a fractal structure. Expanding a strip region, I find that innumerable parallel
curves reappear in the strip.
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Figure 7. (x2)n versus (x1)n for the Hėnon map fb.

Second, let us assume that dv0 is transformed to dvm by f m
b on R2. For the Hénon map

fb, using the chain rule and detD fb(x) = −b at any x, I have

dvm = detD f m
b (v0)dv0 = (−b)mdv0. (30)

Therefore, I obtain

λ1 + λ2 = lim
m→∞

1
m

log
∣∣∣∣dvm

dv0

∣∣∣∣ = lim
m→∞

log bm

m
= log b, (31)

where λk (k = 1, 2) are the LEs of the Hénon map fb such that λ1 > λ2.
I present the numerical computation results of the LEs λ1, λ2 (λ1 > λ2), the total

sum λ1 + λ2 of the LEs, the ECD D, and the EECD D̃S for the Hénon map fb in Figure 8.
Figure 8 shows that the EECD D̃S takes a value almost equal to the total sum λ1 + λ2 of the
LEs for the Hénon map fb at most b for 0.1 < b ≤ 0.3. However, the EECD takes a different
value from the total sum λ1 + λ2 of LEs for the Hénon map fa, even though the Hénon
map fa does not create a periodic orbit at many bs for 0 < b ≤ 0.1. Here, the absolute value
of the negative LE λ2 is much larger than the absolute value of the positive LE λ1.

Now, let ρAi be the autocorrelation function to all points x on a component Ai. I
consider the average of |ρAi | such that

E(|ρ|) = ∑
|Ai |>3

|Ai|
∑
|Ai |>3

|Ai|
∣∣ρAi

∣∣. (32)

I present the numerical computation results of the total sum λ1 + λ2 of the LEs, the EECD
D̃S, and the average of |ρAi | for the Hénon map fb in Figure 9.
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Figure 8. λ1, λ2, λ1 + λ2, D, D̃S versus a for the Hėnon map fb.
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Figure 9. λ1 + λ2, D̃, E(|ρ|) versus a for the Hėnon map fa.

Here, at d = 2, the denominator of the right side of Equation (11) is given by√
(λ1)Ai

(λ2)Ai
, (33)

where (λk)Ai
(k = 1, 2) is the eigenvalue of the variance–covariance matrix ∑Ai

to all points
x on Ai.

Let (σ2
k )Ai (k = 1, 2) and (σ1,2)Ai be the variances and covariance of all points on Ai,

respectively. Then, I have

(λ1)Ai
=

(σ2
1 )Ai + (σ2

2 )Ai +
√{

(σ2
1 )Ai + (σ2

2 )Ai

}2 − 4(σ2
1 )Ai (σ

2
2 )Ai

{
1− (ρAi )

2
}

2
,

(λ2)Ai
=

(σ2
1 )Ai + (σ2

2 )Ai −
√{

(σ2
1 )Ai + (σ2

2 )Ai

}2 − 4(σ2
1 )Ai (σ

2
2 )Ai

{
1− (ρAi )

2
}

2
.

Therefore, if the absolute value of ρAi is equal to 1, then I have

(λ1)Ai
= (σ2

1 )Ai + (σ2
2 )Ai , (λ2)Ai

= 0. (34)

Thus, it becomes difficult to estimate m( f (Ai))/m(Ai) by Equation (11) when the absolute
value of ρAi is approximately 1. Therefore, the EECD takes a different value from the total
sum of the LEs when E(|ρ|) is near 1.
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5.5. Numerical Computation Results of the EECD for Standard Map

Let us consider the standard map fK as a two-dimensional conservative chaotic map
such that the Jacobian matrix D fK(y) depends on y and the parameter K.

The standard map fK is defined as follows:

fK(y) = (θ + p + K sin θ, p + K sin θ)t, (35)

where y = (θ, p)t ∈ [−π, π]2.
The Jacobian matrix of the standard map fK is expressed as follows:

D fK(y) =
(

1 + K cos θ 1
K cos θ 1

)
. (36)

Thus, D fK(x) depends on θ and the parameter K. The dynamics produced by the standard
map fK become conservative because |detD fK(x)| = 1.

I then consider the orbit {yn} produced by the standard map fK as follows:

yn+1 = fK(yn), n = 0, 1, 2, . . . , y0 = (1.5, 2.0)t.

First, I present typical orbits of the standard map fK with initial point (θ0, p0) =
(1.5, 2.0) in Figure 10.
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Figure 10. (x2)n versus (x1)n for the standard map fK .

The standard map consists of the Poincaré’s surface of the section of the kicked rotator.
The map has a linear structure around K = 0. However, as K increases, the map produces
a nonlinear structure and chaos for an appropriate initial condition.

Second, let us assume that dv0 is transformed to dvm by f m
K on R2. For the standard

map fK, using the chain rule and detD fK(x) = 1, I have

dvm = detD f m
K (v0)dv0 = dv0. (37)

Therefore, I obtain

λ1 + λ2 = lim
m→∞

1
m

log
∣∣∣∣dvm

dvo

∣∣∣∣ = 0, (38)

where λk (k = 1, 2) are the LEs of the standard map fK such that λ1 > λ2.
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I present the numerical computation results of the LEs λ1, λ2 (λ1 > λ2), the total sum
λ1 + λ2 of the LEs, the ECD D, and the EECD D̃S for the standard map fK in Figure 11.
Figure 11 shows that as K increases, the difference between the EECD D̃S and the total
sum λ1 + λ2 of LEs for the standard map fb increases. In other words, as the positive LE
increases, the difference between the EECD and the total sum of the LE increases.
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Figure 11. λ1, λ2, λ1 + λ2, D, D̃S versus K for the standard map fK .

Now, I consider symmetric difference equations such that

xn+1 + xn−1 = 2xn + K sin xn. (39)

Here, Equation (39) can arise as a discretization of d2

dt2 x = g(x) − 2x with g(x) = 2x +
K sin x [18].

Introducing new variables θn ≡ xn, pn ≡ xn − xn−1, Equation (39) can be written as

θn+1 = θn + pn + K sin θn,
pn+1 = pn + K sin θn.

(40)

This mapping is equivalent to the standard map Equation (35).
Moreover, let R be an involution such that R(xn, xn−1) = (xn−1, xn). Then, I have

R(θn, pn) = (θn − pn,−pn). (41)

Using (R ◦ f )2 = id and R2 = id, I obtain

R ◦ f = f−1 ◦ R, (42)

which signifies that the standard map fK is reversible with respect to the involution R.
Equation (40) is area preserving as well as reversible, as is common with area-

preserving maps [19]. Since the standard map fk is reversible, two Lyapunov exponents of
fK become λ1 and λ2 such that λ1 = −λ2 > 0 by Theorem 3.2 in [20].

Let us consider increasing and decreasing L of the EECD. I represent the numerical
computation results of the EECD at L = 500, 1000, 2000 for the standard map fa in Figure 12.
Figure 12 shows that as L increases, the EECD D̃S goes to the total sum λ1 + λ2 of the LEs
for the standard map fK.
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Figure 12. λ1, λ1 + λ2, D̃S at several Ls versus K for the standard map fK .

6. Conclusions

In this study, I have focused on improving the calculation formula of the EECD and
applied the improved calculation formula of the EECD to two-dimensional typical chaotic
maps. I have shown that the EECD is almost equal to the total sum of the LEs for their
chaotic maps in many cases. However, for the two cases, the EECD was different from the
total sum of the LEs even though the map did not create a periodic orbit.

The first case occurs when the absolute value of the negative LE is much larger than the
absolute value of the positive LE. Evidently, for the Hénon map fa, the EECD takes a much
larger value than the total sum of the LE at many a’s for 0 < a ≤ 0.1. Then, the average
E(|ρ|) of the absolute value of the autocorrelation function ρAi to all points on component
Ai was approximately one. Here, it becomes difficult to estimate m( f (Ai))/m(Ai) by
Equation (11). Therefore, the EECD takes a different value from the total sum of the LEs
when E(|ρ|) is approximately one.

The second case occurs notably when the positive LE takes a large value. Evidently,
for the standard map fK, as the parameter K increases, the difference between the EECD and
the total sum of the LE increases. In other words, as the positive LE increases, the difference
between the EECD and the total sum of the LEs also increases. Here, I have shown the
possibility of reducing the above difference by increasing L, where L2 is the number of
equipartitions {Ai} of I = [−π, π]2.

I have applied the improved calculation formulas of the EECD to two-dimensional
chaotic maps. However, in future works, I will discuss applying the improved calculation
formulas of the EECD to higher-dimensional chaotic dynamics.
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