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Abstract: The novel coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global event
that has been challenging governments, health systems, and communities worldwide. Available data
from the first months indicated varying patterns of the spread of COVID-19 within American cities,
when the spread was faster in high-density and walkable cities such as New York than in low-density
and car-oriented cities such as Los Angeles. Subsequent containment efforts, underlying population
characteristics, variants, and other factors likely affected the spread significantly. However, this work
investigates the hypothesis that urban configuration and associated spatial use patterns directly
impact how the disease spreads and infects a population. It follows work that has shown how the
spatial configuration of urban spaces impacts the social behavior of people moving through those
spaces. It addresses the first 60 days of contagion (before containment measures were widely adopted
and had time to affect spread) in 93 urban counties in the United States, considering population
size, population density, walkability, here evaluated through walkscore, an indicator that measures
the density of amenities, and, therefore, opportunities for population mixing, and the number of
confirmed cases and deaths. Our findings indicate correlations between walkability, population
density, and COVID-19 spreading patterns but no clear correlation between population size and the
number of cases or deaths per 100 k habitants. Although virus spread beyond these initial cases may
provide additional data for analysis, this study is an initial step in understanding the relationship
between COVID-19 and urban configuration.

Keywords: COVID-19; COVID-19 spread; walkability; population density; population size

1. Introduction

The novel coronavirus pandemic has significantly changed the way people interact
with each other and with urban space. As there are no fully immunized cities yet, there is
scientific consensus on the importance of adopting social distancing strategies to control
the spread of COVID-19, especially in areas of high transmission rates or low vaccination
rates [1–4]. Over time, many significant, increasing, and competing issues have arisen from
implementing aggressive social distancing measures versus preserving socioeconomic
activity. In this regard, there is a knowledge gap regarding how urban environments’
characteristics impact the spread of COVID-19 and infectious diseases in general. There
is also a lack of, and an urgent demand for, data-driven approaches that can support
decision-making related to these issues for different urban scenarios. The COVID-19
pandemic and all the complex data it generates point to the simple fact that contact leads
to infection, and more face-to-face interactions are likely to increase transmission [1,3,4].
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In this sense, cities are the stage where contact between people, and therefore infection, is
more likely to occur. Although individuals and community behaviors such as how different
groups choose to mask, stay home, get vaccinated and take other preventive measures also
influence contagion spread, the available data indicates varying patterns of the spread of
COVID-19 within American cities, especially in the first months when the contagion was
faster in high-density and more walkable counties such as New York than in low-density
and car-oriented counties such as Los Angeles (Figure 1). Thus, if an understanding is
developed as to how urban features are correlated to different modes of social interaction
and, consequently, to different patterns of COVID-19 spread, it will assist the identification
of appropriate strategies to contain and mitigate the infection.
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From a city-as-a-network (or as a network of networks) perspective, approached by
several researchers [5–9], several localities made decisions to interrupt the transmission of
COVID-19 through total lockdowns, which is akin to dismantling the entire network [9]. It
is thus imperative to understand how such networks function and the effect of their links,
hubs, clusters, gates, and so on. To obtain this understanding, it is crucial to investigate the
role of urban features in infection dynamics.

This paper is part of a larger study aimed at the study of the correlation between urban
form and Covid 19 propagation patterns. The larger study includes features related to
population, spatial configuration, use patterns, and climate on the one hand, and features
related to disease and control features on the other hand. The paper presents an exploratory
study based on a set of regression analyses. The primary goal is to address an initial set of
variables in a proof-of-concept experiment that seeks to preliminarily verify our hypothesis
that certain urban features and associated spatial use patterns correlate with the spread of
COVID-19. If an understanding is developed in this regard, it can partially explain and
predict the future spread while identifying appropriate strategies to contain and mitigate
the infection. The paper is focused on variables that are regulated in urban design tasks
and for which accurate data is readily available. Namely, this paper thus verifies possible
correlations between the COVID-19 spread in the United States and the following urban
features: (i) walkability; (ii) population density; (iii) population size, and; (iv) the number
of days in stay-at-home order for each location. To identify the influence of walkability,
population density, and population size on the dissemination of COVID-19 in the United
States, we have considered the 93 urban American counties (with population sizes from
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200 k to 10 M) for which walkability data (Walk Score) was available and a 60-day time-
lapse from the first case confirmation and death dates in each one of them according to
USAFacts Database. This paper is structured in the following sequence: (i) short review
on the COVID-19 pandemic and urban features (walkability, population density, and
population size); (ii) description of the performed regression analyses; (iii) presentation
and discussion of the results and; (vi) final remarks about the study and identification of
intended future developments.

2. Background: Urban Features and Infectious Diseases Spread

According to [10], urban areas are the ground zero of the COVID-19 pandemic, re-
sponsible for 90 percent of reported cases before and during April 2020. The United States,
in turn, was the number one country in the world in terms of COVID-19 cases and deaths
as of 15 March 2021. From 21 January 2020 to 28 April 2020, 1,006,417 confirmed cases and
57,433 deaths were reported in the U.S.

There is a knowledge gap regarding how the configuration of urban environments
impacts the spread of infectious diseases. As mentioned above, this work is an initial step
in a broader research agenda that seeks to characterize and codify the relationship between
urban features, social interaction patterns, and COVID-19 transmission, particularly in the
context of American cities. This paper presents early results that, combined with others
to come, can offer directives for designing alternative containment strategies for different
urban contexts, from compact and walkable neighborhoods to sparse and car-oriented
districts, and from the scale of ZIP code areas to counties. We intend to provide guidelines
for interventions in existing cities to make them more resilient to infectious diseases and
the future design of resilient cities. While the datasets and corresponding knowledge are
specific to COVID-19 in the United States, our established methodology could be extended
to predict the spread of future epidemics in other urban areas.

2.1. Walkability

According to several authors [11–14], a walkable urban area or an urban area that
follows walkability’s principles considers pedestrians the highest priority, seeking greater
urban life and promoting more socioeconomic interactions. According to this idea, walka-
bility can be defined as a particular urban area’s capability to connect housing and amenities
from several categories (e.g., retail, food, education, entertainment, and recreation) through
distances that can be traveled within walking distance. This means more people walk-
ing, cycling, staying in public spaces, interacting, and exchanging information, as well
as social and cultural opportunities. Thus, higher walkabilities increase the likelihood of
people meeting and interacting due to the higher density of amenities. In this sense, we
hypothesize that walkability acts as a proxy for several social interaction-related features
and that places with greater walkability promote higher social interaction levels and, there-
fore, higher contagion rates of certain contagious diseases, such as COVID-19. In other
words, we advocate that when walkability (as understood as a metric for the density of
services) and population density increase, the likelihood of people meeting in places such
as transport stations, public facilities, common entries, and elevators also increases. This
effect might have been more apparent before other significant factors came into play. For
example, masks were not recommended in the U.S. until 3 April 2020, and vaccines were
not widely available until the following year. Accordingly, the work of [15] shows that, in
Italy, the highest spread rates occurred in areas with commercial hubs, close to the highest
populated cities, and the most industrial area. Their results indicate how human mobility
can affect the epidemic, identifying particular situations in which the health authorities
can promptly intervene to control the spread of the disease. Urban features in turn affect
human mobility, and their influence is worth studying as well.

Several studies addressed ways of measuring the walkability of a particular location.
For instance, the works of [16–19] consider the structure of street networks and their
number of intersections, among others. However, in this research, we adopted the walk
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score index [20,21] for the following reasons: it is one of the most accessible walkability
metrics (there are a lot of data available regarding the walk score of streets, neighborhoods,
and cities in the U.S.); it was considered a reliable and valid measure of estimating walkable
access to amenities; and walk score may be a convenient and inexpensive option for
researchers interested in exploring the relationship between access to walkable amenities
and health behaviors [22].

Walk score is an algorithmically obtained index for measuring an urban area’s walka-
bility by assigning a score to a location based on its distance to various nearby services. The
amenities considered by walk score can be divided into five categories: educational (e.g.,
schools), retail (e.g., grocery, drug, convenience, and bookstores), food (e.g., restaurants),
recreational (e.g., parks and gyms), and entertainment (e.g., movie theaters). The algorithm
calculates the distance to the closest of each of the five amenities categories. The results are
normalized to a 0 to 100 scale, considering 0 as the lowest walkability (car dependent) and
100 as the highest (most walkable). For example, in relation to a particular locality, if one
of the five amenities is within a 0.4 km (5 min walk) radius from the input location, then
the maximum number of points, 100, is assigned to it. The number of points decreases as
the distance increases to 1.6 km (30 min walk), and no points are awarded for locations
amenities farther than 1.6 km. For instance, New York County and San Francisco County
have high Walk Score indexes (88.3 and 87.4, respectively), while Chesapeake (Virginia)
and Cumberland County (North Carolina) have extremely low walk score indexes (21 and
21.4, respectively).

2.2. Population Density

55% of the world’s population currently lives in urban areas, and this proportion is
expected to increase to 68% by 2050 [23]. With people living in denser conditions, more
interactions between individuals and disease transmission tend to occur more easily. As
population density is an important urban feature that increases contact and, consequently,
infection between people, several authors have studied the effect of population density
on epidemic outbreaks in different contexts [24–26]. Still, the idea of high density of both
population and buildings in urban areas is defended by several authors [12,27–29]. In the
United States, population density is very heterogeneously distributed. For instance, New
York County, Kings County, and Bronx County (all in New York) shelter, respectively, 71,876,
37,233, and 34,058 people per square mile. Washoe County (Nevada), Webb County (Texas),
and San Bernardino Country (California) shelter, respectively, 74, 82, and 108 people per
square mile.

2.3. Population Size

In addition to density and walkability, various socioeconomic interactions play an
essential role in the dynamics of urban areas. As the overall size of a city is a critical aspect
in defining social and economic life, it is also a relevant data point. Schläpfer et al. [30]
advocate that different socioeconomic quantities increase superlinearly with city size
and that this logic applies to almost all urban aspects, including the creation of new
inventions and the prevalence of certain contagious diseases, for instance. At the same
time, [31] state that the COVID-19 attack rate increases with city size and, in the absence of
adequate controls, larger cities (and counties, as we assume) are expected to have more
extensive epidemics than smaller ones. In the context of the United States and following
this idea, Los Angeles County, California (10,039,107 inhabitants), Cook County, Illinois
(5,150,233 inhabitants), and Harris County, Texas (4,713,325 inhabitants) would have the
highest COVID-19 prevalence. Considering various hypotheses regarding relationships
between different urban features, the population size should be compared to other factors.

2.4. Related Work

The recent COVID-19 pandemic stimulated the emergence of studies on the impact
of population, spatial, and climatic features on the propagation of COVID-19 [32–34].
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However, these studies are partial since they focus on just one or a few urban aspects.
In addition, they are mainly focused on Chinese cities. On the other hand, Carozzi [35]
states that density has affected the outbreak’s timing in American counties, with denser
locations more likely to have a stronger outbreak. In turn, Oishi, Cha, and Schimmack [36]
analyzed the role of walkability, wealth, and race in New York City, finding that walka-
bility was negatively related to the number of COVID-19 cases and deaths. However, at
the same time, the same authors identified that areas with a higher presence of certain
ethnicities, median age, and occupants per room were more likely also to have higher
COVID-19 cases and deaths. Dasgupta et al. [37] and Rocha et al. [38] address the role of
socioeconomic vulnerability in the U.S. counties and Brazil, respectively. However, there is
still a knowledge gap regarding how the characteristics of urban environments impact the
spread of COVID-19 and infectious diseases in general. This work aims to contribute to
bridging this gap by presenting an approach that seeks to find the relationship between
urban features, social interaction patterns, and COVID-19 transmission, particularly in the
context of American counties.

3. Method
3.1. Data

To verify whether there are correlations between certain urban features (walkability,
population density, population size) and COVID-19 spreading patterns in urban areas, this
work focus on county-level data, instead of city-level data, for two reasons: county-level
data allow us to consider larger areas and more significant populations, but at a level of
granularity that distinguishes between various townships (from big cities to surrounding
small towns); and most of the available data on COVID-19 is organized at the county
level. Thus, in addition to its practicality, we believe that addressing county-level data
can provide more comprehensive information about the role of urban networks, enabling
broader conclusions and increased freedom of analysis.

Instead of addressing a single and national timeline, considering the day of the first
case in the United States as day one for all counties, we decided to study how the disease
spread in diverse locations to identify how different urban features and associated urban
patterns correlated. Our logic considers each county, regardless of their particularities, as
a preliminary token to understand the whole country. To overcome potential bias in the
timing of the disease’s onset across locations, we addressed the time-adjusted number of
known cases and deaths per 100 k inhabitants in the studied counties. To this end, we
considered two time-lapses for each county: 60 days after the first case (when addressing
cases per 100 k hab) and 60 days after the first death (when addressing deaths per 100 k hab).
The goal was to observe the longest time span possible and, at the same time, focus on
spread in initial stages (when we assume that containment measures had less time to exert
influence), allowing us to identify the effects of urban features more clearly. We used the
software Minitab to run the analysis and the Grasshopper plugin for Rhinoceros was used
for plotting some of the visualizations. Preliminary model fitting studies, carried out to
identify the most suitable time interval, indicated the first 60 days as the best choice. After
the first 60 days, both for cases and deaths per 100 k habitants, our R-squared adj values
started to decrease significantly, as depicted in Figure 2.

When considering how to assess spread, death tolls are a more accurate indicator of
COVID-19 prevalence since data on COVID-19 cases might be reported with error due to
variation in local testing strategy and capacity [35,39]. However, we decided to address
and compare both known cases and death tolls, as different aspects of health systems and
underlying populations can influence the latter [40]. The number of known cases and
death tolls were obtained from [41]. These data were combined with walk score [21], the
number of days under a state-issued stay-at-home order [42], the population size of the
counties [43] (total number of counties’ inhabitants), and the mean population density for
each county [43] (total population/land area in sq miles). As Walk Score data were available
on a city-level basis for 112 cities (from 200,000 to 10,000,000 inhabitants) and some cities
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were in the same county, and some counties were in the same city, it was necessary to
aggregate data from the previous 112 cities into a final sample of 93 counties. Our sampling
(Figure 3) allowed us to approach a total population of 115,791,837 people (35.27% of
the U.S. population), 645,764 COVID-19 known cases, and 52,946 deaths (considering
time adjustments).
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3.2. Best Subsets Regression

The best subsets regression (BSR) is, together with forward stepwise and the lasso,
the most popular methods for selecting and estimating parameters in a linear model.
While the first two are understood as classical methods in statistics, the lasso is rela-
tively more recent [43]. In a recent work, Hastie, Tibshirani, and Tibshirani (2020) [44]
extensively addressed the potentialities and drawbacks of each of these methods, con-
cluding that (1) neither BSR nor the lasso uniformly dominates the other; and (2) for a
large proportion of the settings they considered, best subset and forward stepwise perform
similarly, with BSR performing better in some specific situations. In turn, Bertsimas, King,
and Mazumder (2016) [45] presented empirical comparisons of BSR with other popular
variable selection procedures, including the lasso and forward stepwise selection. Their
simulations suggested that BSR consistently outperformed the other methods in terms of
prediction accuracy.

Thus, in this work, we adopt the (BSR) to test all possible combinations of the indepen-
dent variables and select the best model according to goodness-of-fit criteria [46–48]. Since
we are approaching a social and behavioral data analysis using multivariate regression, we
are also interested in understanding the role of our potential predictors (independent vari-
ables) in the dynamics of disease spread. Thus, we adopted a correlation analysis, followed
by a best subsets regression to determine which of our candidate independent variables
(walk score, population density, population size, and the number of days in stay-at-home
order) should be considered in our final regression model. This procedure was performed
to build two regression models for comparison: one considering the number of cases per
100 k habitants 60 days after the first case in each county and the other considering the
number of deaths per 100 k habitants 60 days after the first death in each county. We also
performed an analysis considering population size data in its log-transformed state, but the
model presented in this paper had a greater r. The goal was to use best subset regressions
in the number of known cases per 100 k hab and deaths per 100 k hab against our set
of independent variables to determine the most significant dependent and independent
variables. Figure 4 illustrates our workflow for selecting the best regression model using
the best subsets regression. Thus, we are approaching two conflicting considerations:
minimizing the number of predictors to achieve a less expensive model and maximizing
the model’s explanatory power. In addition to the regressions, we made a multivariable
comparison between the counties with the higher and lower number of confirmed cases
and deaths per 100 k habitants. These analyses generated preliminary findings that address
the following questions: Which urban features matter most? Which can we ignore? How
do urban features interact with each other?
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independent variables to determine the most significant dependent and independent variables.

4. Results
4.1. Correlation Analysis

In order to quantify the degree to which our independent variables are related and
avoid biasing the models, we performed a correlation analysis considering all the addressed
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independent variables before running the best subsets regressions (Figure 5). Although
walk score and population density present a correlation coefficient (r) of 0.582, indicating a
moderate positive relationship (when 0.3 < r < 0.7), there is no strong relationship (when
r ≥ 0.7) between any of the predictors. These correlation thresholds that supported our
interpretation were applied together with graphical analysis and are broadly accepted
guidelines for interpreting the correlation coefficient [49,50].
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4.2. Best Subsets Regression

Following the check for correlation, our best subset regression analyses results
(Tables 1 and 2) show that all models that address the number of deaths per 100 k habitants
presented higher values of adjusted R-sq, meaning that they fit the observed data better
than the models that address the number of known cases per 100 k habitants. This analy-
sis shows the two best models considering one independent variable, two independent
variables, three independent variables, and the model containing all four independent
variables. These models were compared to define which independent variables would be
addressed in our final model.

When considering the first BSR alone (known cases per 100 k hab), the model ad-
dressing all four independent variables provided the highest R-Sq values and the lowest
standard errors (S). On the other hand, when considering the second BSR alone (deaths
per 100 k hab), the model addressing population density (PD), walk score (W.S.), and the
number of days in stay-at-home order (D.O.) as independent variables provided the same
R-Sq (adj) as the all-variables model, but with a lower value of standard error (S). Thus,
when considering all subsets’ possibilities, we chose to build our final regression model
considering the number of deaths per 100 k hab (60 days after the first day in each county)
versus population density, walk score, and the number of days in stay-at-home order,
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since it provided us with the best R-Sq, S, and Mallows’ Cp values while addressing a
smaller number of independent variables. R-sq informs the fitness of a model, S informs the
standard error, and small Mallows’ Cp values indicate that the model has slight variance in
estimating the accurate regression coefficients and predicting future responses.

Table 1. Best subset regression results considering the number of known cases per 100 k hab as the response. The model
with all four independent variables (highlighted) provided the highest R-Sq (adj) and the lowest standard error (S).

Best Subset Regression Results 1—Response Is Know Cases per 100 k hab (after 60 Days from the First Case)

Vars R-Sq R-Sq (adj) R-Sq (pred) Mallows Cp S

1 39.2 38.5 33.7 29.1 462.24

1 34.8 34.1 0.0 37.4 478.43

2 46.9 45.7 41.0 16.1 434.22

2 46.9 45.7 10.9 16.2 434.36

3 53.0 51.4 20.1 6.5 411.03

3 51.7 50.0 16.9 9.0 416.65

4 54.8 52.7 21.8 5.0 405.32

Vars PD WS DO PS

1 X

1 X

2 X X

2 X X

3 X X X

3 X X X

4 X X X X

Table 2. Best subset regression results considering the number of deaths per 100 k hab as the response. The model addressing
population density (P.D.), walk score (W.S.), and the number of days in a stay-at-home order (D.O.) as independent variables
(highlighted) provided the overall highest R-Sq (adj) and the lowest standard error (S).

Best Subset Regression Results 2—Response Is Deaths per 100 k hab (after 60 Days from the First Death)

Vars R-Sq R-Sq (adj) R-Sq (pred) Mallows Cp S

1 50.2 49.6 0.0 39.6 42.007

1 49.4 48.9 45.0 41.5 42.309

2 62.9 62.1 24.8 8.9 36.421

2 53.8 52.7 48.9 32.4 40.690

3 65.7 64.5 29.6 3.9 35.261

3 64.4 63.2 26.9 7.3 35.919

4 66.0 64.5 29.8 5.0 35.272

Vars PD WS DO PS

1 X

1 X

2 X X

2 X X

3 X X X

3 X X X

4 X X X X
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4.3. Final Regression Model

Our analysis shows noteworthy correlations between walkability, population density,
and the number of days at stay-at-home order with the number of deaths per 100 k hab,
60 days after the first case in each county (Tables 3 and 4, and Figure 6). We came to the
following findings after a normality test and a Box-Cox transformation of λ = 0.5 to our data.
Our regression model provided an R-sq (adj) of 64.85% and a standard error (S) of 2.13467,
which can be seen as very significant, especially if we consider that a set of non-measurable
social behavior-related features such as how different groups choose to mask, stay home,
and take other preventive measures also influence COVID-19 spread. The population
density and walk score predictors presented p-values < 0.01, indicating solid evidence
of statistical significance, while the number of stay-at-home days predictor presented a
p-value < 0.05, indicating moderate evidence of statistical significance [51,52]. Overall, our
Pareto chart of the standardized effects shows that walk score’s effect, population density’s
effect, and days in order’s effect are more significant than the reference value for this model
(1.987), meaning that these factors are statistically significant at the 0.05 level with the
current model terms. Following these findings, our residual plot analyses (probability, fits,
histogram, and order) validated the model.

Thus, our regression analyses positively correlated deaths per 100 k habitants and all
independent variables. It means that as walk score, population density, and the number of
days in stay-at-home order increases, these COVID-19 related numbers tend to be higher.
Figure 7 depicts the evolution of cases and deaths per 100 k habitants through time, relating
these numbers to each predictor and comparing the models for the number of cases and
the number of deaths. Although it might seem controversial that the number of deaths
increased with the number of days at home, our time-lapse sample, which intentionally
addressed the initial stages of the spread, makes it reasonable to assume that places with
higher disease spread adopted more robust measures as a reaction. Containment measures
have a timing aspect that influences their performance. According to [53], the benefits
of a lockdown are seen around 15–20 days before the peak of the epidemic, providing a
limited window for public health decision-makers to mobilize and take full advantage of
lockdown as an NPI.

Table 3. Final model summary for transformed response (Box-Cox transformation λ = 0.5).

Regression Equation

Deaths per 100 k habˆ0.5= −2.672 + 0.000130 Population density + 0.1098 Walkscore + 0.0401 Days in order KC

S R-sq R-sq(adj) PRESS R-sq(pred) AICc BIC

2.13467 66.01% 64.85% 631.932 46.44% 407.22 419.13

Table 4. Coefficients for the transformed response.

Term Coef S.E. Coef 95% CI T-Value p-Value

Constant −2.672 0.918 (−4.496, −0.848) −2.91 0.005
Population density 0.000130 0.000030 (0.000071, 0.000190) 4.33 0.000

Walkscore 0.1098 0.0155 (0.0791, 0.1406) 7.10 0.000
Days in order KC 0.0401 0.0160 (0.0084, 0.0718) 2.51 0.014
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4.4. Discussion

The COVID-19 pandemic and all of the complex data that it generates rely on a simple
relationship: contact leads to infection. In this sense, cities are the stage on which contact
between people and, therefore, the infection takes place. This preliminary study’s findings
confirm our hypothesis that certain urban features (population density and walkability)
correlate more with COVID-19 spread in the first days of the pandemic than other variables
such as overall population size. Despite addressing an initial and limited set of predictor
variables, we have found some important correlations (not a causal relationship, but an
association to be further explored nonetheless). Considering our research scope, goals, and
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hypothesis (the impact of urban features on the disease spread), it is essential to highlight
the importance of addressing the early stages of contagion to observe the trends before
containment measures had a more significant influence.

Our results suggest a clear positive correlation between Walk Score and the number
of deaths/100 k habitants, but it does not mean that the act of walking itself promotes
higher contagion rates. Instead, it reinforces that places most likely to congregate ameni-
ties and promote encounters are potentially more contagious and require more effective
containment actions.

5. Final Remarks: Limitations and Further Developments
5.1. Limitations of This Work

Despite achieving meaningful findings, the authors recognize that this study has
some limitations. Disease spread during pandemics can be influenced by a host of social,
economic, and behavioral factors in complex ways. In order to achieve more extensive
results and increase our model’s fitness, it would be essential to address a broader sample
of predictor variables, urban features, and urban scales, in addition to a more extensive
time-lapse, weighted by other containment measures. Analyses at varying scales could, for
example, address disparities within a single city across neighborhoods that are often starkly
different despite their geographic proximity. Moreover, variables that capture heterogeneity
across and within urban counties are both important. We also acknowledge that variables
related to issues such as socioeconomic vulnerability, disproportionate spread in rural
areas, where population sizes, population densities, and walkability indicators are small,
population density expressed as the proportional population within a set of population
density bands, and timing since the first case in the U.S. seem to be important and will be
addressed in further developments.

On the other hand, this experiment provided an important basis for future work
regarding the impact of urban features on COVID-19 (and similar contagious infections)
spreading. Although some works have approached possible correlations of COVID-19
spread, population size, and population density in an American context [30,35], our re-
search is, to the best of our knowledge, among the first to consider walkability as an
important urban feature in this regard, since it is correlated with the interaction of people
in urban environments as demonstrated in previous studies [20–22]. Our method assumes
that the initial spread of the disease is less impacted by containment measures.

5.2. Future Work

In future stages of this research, we plan to address: (i) more urban features (e.g.,
mixed-use and floor area indexes, network density, volumetric compactness, containment
measures, and so on); (ii) more urban scales (cities, zip codes, neighborhoods, and rural
areas); (iii) a larger sample of time and cases (the timeline for the first 365 days in United
States, for instance), (iv) socioeconomic, ethnic and racial indicators, (v) health-related
indicators such as BMI, to identify physical activity levels in different places; (vi) urban
mobility indicators; (vii) national and international connection measures and; (viii) data
mining and machine learning techniques to retrieve, analyze, and model urban and infec-
tion data in different contexts. The expectation is that understanding how these features
lead to different modes of social interaction and, consequently, to different dissemination
patterns of COVID-19 will help identify appropriate strategies to contain and mitigate the
infection and alternative healthcare policies.

More complex sets of features may also require the use of additional tools, such as
data mining and machine learning techniques to retrieve, analyze, and model urban and
infection data in different contexts. For example, the creation and analysis of an artificial
neural network (ANN) might better capture the relationship between urban predictors and
quantitative descriptors of COVID-19 spread. ANN is particularly useful when utilizing
conventional engineering, or statistical approaches is not possible due to insufficient
domain knowledge or the time and resource required makes it impractical.
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Several researchers consider walkability and density key aspects of sustainable urban-
ism since they increase the potential of socioeconomic interactions and optimize energy
performance, reducing pollution and resource consumption. However, our findings indi-
cate that these urban features may directly correlate with a greater spread of COVID-19 in
urban areas (at least in the United States scenario). In this context, urban planning may face
some challenges in post-pandemic times to find answers to the following questions. How
to balance the social, environmental, and economic need for such urban features with the
need to provide more resilient and healthier cities? If a city can be conceived as a network,
how can we ensure that it is flexible, efficient, and yet responsive to health? Which urban
features have the greater impact on the spread of infectious diseases, and how can we
manage them in this context? We believe that this work is one step in this direction.
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