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Abstract: In this work, first, we consider novel parameterized identities for the left and right part
of the (p, q)-analogue of Hermite-Hadamard inequality. Second, using these new parameterized
identities, we give new parameterized (p, g)-trapezoid and parameterized (p,q)-midpoint type
integral inequalities via -quasiconvex function. By changing values of parameter y € [0, 1], some
new special cases from the main results are obtained and some known results are recaptured as
well. Finally, at the end, an application to special means is given as well. This new research has the
potential to establish new boundaries in comparative literature and some well-known implications.
From an application perspective, the proposed research on the 77-quasiconvex function has interesting
results that illustrate the applicability and superiority of the results obtained.

Keywords: quantum calculus; post quantum calculus; parameterized (p, g)-estimates for midpoint
and trapezoidal type inequalities; 77-quasiconvexity

1. Introduction

Quantum calculus, usually referred as g-calculus, is a numerical technique that ex-
amines calculus without limits. The genius who created the analytical g-calculus in the
eighteenth century was the great mathematician L. Euler, who integrated the parameter g
into Newton’s work of infinite series. Jackson [1] is credited with being the first to define
and study the g-integral in a systematic manner, back in the early twentieth century. The
fundamental goal of g-calculus is to find the g-analogues of mathematical objects recovered
by taking 4 — 17. However, in order to keep up with the trends, it has experienced
remarkable expansion during the last few decades. The g-calculus has gained popularity in
recent years due to its versatility in subjects like mathematics and physics. In 2002, V. Kac
and P. Cheung [2] published a book in which they explained the main fundamental concept
of the g-calculus in a concise manner. In 2004, Gauchman [3] introduced the concept of
quantum-integral inequalities in the theory of quantum calculus as well as their appli-
cations and results in these fields of study. In 2012, Ernst [4] proposed a comprehensive
treatment of g-calculus which is great achievement in the field of mathematical inequalities.

In 2013, J. Tariboon and S. K. Ntouyas [5] published a study describing the essen-
tial features of innovative quantum-derivatives and quantum-integrals are proved over
[€1,€2] C R. First- and second-order impulsive g-differential equations were examined, as
well as initial value problems in these processes. Some of the inequalities to which these
definitions apply include Hermite-Hadamard inequalities, Fejér type inequalities, Simpson
type inequalities, Newton type inequalities, Ostrowski type inequalities, among others, for
more details see in [6-16] and the references cited therein.
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The post-quantum calculus, alternatively referred to as the (p, g)-calculus, is a gen-
eralization of the g-calculus on the interval (0,c0). The (p, g)-calculus is made up of
two-parameter quantum calculus (p and g numbers) that are completely independent of
one another. R. Chakrabarti and R. A. Jagannathan [17] were the first to propose the (p, q)-
calculus, which was published in 1991. Later, M. Tunc and E. Gov [18] refined the new
(p,q)-derivative and (p, q)-integral of a arbitrary function on a finite interval in 2016. There
have been numerous other (p, g)-analogs of classical inequalities uncovered throughout
the years. For the case of p = 1, we get the g-calculus formula, and for the case of g — 17,
we get the classical formula. Kalsoom et al. [19] and Kunt et al. [20] showed that the left
side of the (p, g)-midpoint inequality can be proved using (p, q)-differentiable convex and
quasi-convex functions, and then developed some novel (p, 4)-Hermite-Hadamard inequal-
ity. Utilizing an unique integral identity with (p, q)-differentiable functions, Latif et al. [21]
discovered some new forms of post-quantum trapezoid type inequalities that were previ-
ously unknown. Using (&, m)-convex mappings, Humaira et al. [22] established the idea
of (p, q)-estimates for distinct types of integral inequalities, for more details see in [23-28]
and the references cited therein.

As mathematical inequalities have several applications in both mathematics and
physics, they are crucial to the study of mathematics as well as other branches of mathematics.

Let H : Z C R — R be a convex function, if

H(mer 4+ (1—m)ey) < wH(er) + (1 — m)H(ez)

forall e,e, € Zand 7t € [0,1].

Convexity in relation to integral inequalities is an intriguing area of study. Many
inequalities arise as a direct result of the use of convex functions. One of the most impor-
tant results in convex analysis is the Hermite-Hadamard type inequality, which offers a
necessary and sufficient condition for a function to be convex. This classic Hermite and
Hadamard result is as follows.

If H:7Z C R — R be a convex function on the interval Z with €; < €3, then

,H<€l +€z) < 62151 /H(n)dﬂ < M 1)

2 2

Equation (1) was first introduced by C. Hermite [29] in 1893, and it was further researched
by J. Hadamard [30] the following year. Both inequalities hold in the inverted direction if
‘H is concave, which implies that it is. A large number of mathematicians have given close
attention to the Hermite-Hadamard inequality because of its high quality and consistency
in the field of mathematical inequality. There have been important advancements, revisions,
and ramifications in the Hermite-Hadamard uniqueness property as well as broader convex
function definitions. Dragomir et al. [31] proposed two inequalities for differentiable
mappings and applications to special means of real numbers and to trapezoidal formula.
Sarikaya et al. [32] established Hermite-Hadamard type inequality for convex function, for
more details see in [33—40] and the references cited therein.

Gordji etal. [41,42] have presented a new class of functions known as an 77-quasiconvex
functions.

Definition 1. A function H : T C R — R is considered an n-quasiconvex functions with respect
ton :RxR —=R,if

H(mer + (1= m)ez) < max{H(e2), H(ez) +1(H(er), H(e2))}
holds for all €1,e; € T and 7t € [0,1].

Inspired by the ongoing studies, we give the generalizations of the results proved
in [20,21] and we prove parameterized (p, g)-estimates of midpoint and trapezoidal type
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inequalities for 77-quasiconvex functions using the concepts of ¢, Dy, 4-difference operator
and (p,g),,-integral.

This paper is organized as follows. In Section 2, we provide a brief introduction of the
principles of g-calculus and (p, g)-calculus, as well as other related studies in this area. In
Section 3, we give some novel parameterized (p, q) estimates of trapezoidal and midpoint
type inequalities for eta-quasiconvex functions, as well as a comparison of the results
presented here with analogous results in the literature. We also present several applications
to special means in Section 4 to demonstrate our new methodology. The conclusion is
offered in Section 5 at the end of this work.

2. Preliminaries of ¢, (p, q)-Calculus and Some Inequalities

This section of the paper will discuss in detail the principles of g and (p, q) calculus,
as well as several significant g and (p, q) midpoint and g and (p, q) trapezoidal integral
inequalities. Throughout this work, we shall refer to the constants 0 < g < p < 1.

The [n], is said to be g-integers and is expressed as
n—1 _ 1- qn

- @)

[n] :1+q+q2+~~~+q
q

forn € Nand [n], = nforn =1.
The g-factorial and for 0 < k < n, the g-binomial are defined as follows:

During a period in the early twentieth century, Jackson made substantial changes to the
classical notion of a derivative of a function, enabling a more straightforward study of
fundamental calculus and number theory in this examination. The development of g-
analogues of some of the most significant discoveries made in these fields is attributed to
Jackson, who is also credited with the publication of certain seminal papers in the field,
such as [1]

H(e) — H(ge)
DjH(e) = —FH——=——=, €#0. (3)
O =T
The classic Jackson integral of a real function # is defined by the following series expansion:
€2 s
[H(e)dge = (1= q)ex - 4" H(ex") @
0 n=0

provided the sum converge absolutely.
The g-Jackson integral in a generic interval [e1, €] is defined as follows:

7H(e)dqe = 77—[(e)dqe - 7H(e)dqe.
el 0 0

The g-analogues of these number theory, deduction, and ordinary integration conclusions
are polynomial expressions in a real variable g that are reduced to the classical ideas when
q approaches to 1.
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Definition 2. [5] Suppose that a function H : [€1, €2] — R is continuous. Then, the g, -derivative

of H at € is defined as follows:

H(e) —H(ge+ (1 —q)e1)
(1—g)e—e) 7

As H is a continuous function from [e1, €] to R, so for € = €1, we define ¢, DyH(e1) =
eli_}ng DyH(€), if ¢, DyH (€) exists for all € € [ey, €], then the function H is called qc, -differentiable
1

€ # €1. (5)

e DyH(e) =

on [€1, €2].

Remark 1. It is important to remember that, if e = 0 in (5), we get the equivalent q-derivative
defined in (3).

Lemma 1. [5] Let « € R, we have

1—g* _
equ(xfel)"‘ = ( 1 _qq >(x€1)“ 1.

Definition 3. [5] Suppose that a function H : [e1, €3] — R is continuous, then the qe,-definite
integral of H at [€1, €2] is defined as follows:

/H(e)eldqe =1-q)(x—e) i F"H(@"x+ (1—q")e1), x € [e1, €] (6)
él n=0

The following results hold about definite g, -integrals.

Theorem 1. [5] Let H : Z — R be a continuous function. Then,
X

1. equ/ H(7r) edgm = H(x);
€1

X
2. /53 e DgH (1) e;dgrt = H(x) — H(es), €3 € (€1, x).

Theorem 2. [5] Suppose that H,G : T — R are continuous functions, & € R. Then, for x € Z,
X X X
1o [ + () qdgr = [ B dg+ [ G0 ey
€1 €1 €1
X X
2. / aH () eldqn:a/ H(7T) e, dgT;

€1 €1

. [ MO0 (DG (R) g = KGRI~ [ Glam+ (1= er) DyH() eidy,

€3
€3
€3 € (€1,x).

The g¢,-Hermite-Hadamard inequalities for convexity were discovered by Alp and
colleagues in [14], and they are defined as follows:

Theorem 3. Let H : [€1,€2] — R be a convex differentiable function on (e1,€3). Then, the
following are the q.,-Hermite—Hadamard integral inequalities:

qe1 + € 17 qH(e1) + H(e2)
’H( Ay ) e e él/H(e)eldqe < AP : )

Lemma 2. [5] For « € R\{—1}, the following formula holds:

X " 1—
/ (7‘[—61) eldqﬂ,' = (1_,10:/]“) (x — el)lx-’rl.

€1
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X

1

Remark 2. If we take €1 = 0 in (6), we obtain the classicalg-integral defined in (4).

3. (p, q)-Derivatives and Integrals

The post-quantum calculus, alternatively referred to as the (p, q)-calculus is the gener-
alization of g-calculus. In this section, we review some fundamental notions and notations
of (p, q)-calculus.

The [n],, . is said to be (p, 9)-integers and is expressed as

The (p, g)-factorial and for 0 < k < n, the (p, 4)-binomial are defined as follows:
n

(], 00 = T1lml,n>1 [0],,!=1,

m=1

|:1’1:| = [n]p,q! .
P e A

Definition 4. [24] Suppose that a function H : [€1,€2] — R, then (p, q)-derivative is defined as
H(pe) — H(ge)
DpyH(e) = ————=, €#0. 8)
patt(e) (p—q)e
Definition 5. [18]If H : [€1, 2] — R is a continuous function then the (p, q)-derivative of H at
€ € [e1, €] is defined as

H(pe + (1 —per) — H(ge + (1 —q)er)

o Ppatle) = (h— ) —e)

, €F € ©)

As M is a continuous function from [e1,€;] to R, so for € = €1, we define ¢, Dy H(e1) =
eli_>n€1 Dy H(€), if ¢, DpgH(€) exists for all € € [ey, €3], then the function H is called (p,q)e,-
1

differentiable on [e1, €3).
The following result is very important to evaluate (p, q)“2-derivative at € € [e1, €2].

Remark 3. It is important to remember that, if e = 0in (9), we get the equivalent (p, q)-derivative
defined in (8).

Definition 6. [18] Suppose that a function H : [€1, €3] — R is continuous, then the (p,q)e, -
definite integral of H at [€1, €3] is defined as follows:

[e0)

qn q”l qn
H(G) €1dp/q€ = (p - q)('x - 61) Z pn+1H<pn+1x + (1 - W>€1>/ xe [61/62]' (10)

n=0

The following (p, q)e, result was proven by Kunt and colleagues in [20]. Inequalities of
the kind Hermite-Hadamard for convex functions obtained by using the (p, 9)¢,-integral:

Theorem 4. For a convex mapping H : [e1, €2] — R which is differentiable on (€1, €), then the
essential inequalities are given below:

ge1 + per 1 pea+(1-pler qH(e1) + pH(e2)
H( mm ) = ple2 —e1) /€1 PO ety = [Z]M B
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Remark 4. If we take €1 = 0 and x = €y = 1 in (10), then we have

qn
n+lH< )

Lemma 3. [26] The following equality is very import to prove (p, q)e,-integral:

qn
PnJrl

[ e g = (00 1 -

a+1

€ « (€2 —€1)
— d - —_—
/61 (¥ —€1)" erdpgx [ + 1]M

7

where v € R\{—1}.

4. Auxiliary Results

In order to obtain parameterized (p, q)-trapezoid and parameterized (p, q)-midpoint
type integral inequalities through 7-quasiconvex functions, we need following lemmas
which we present in this section.

Lemma 4. Let H : [e1, €3] — R bea (p, q)-differentiable function on (€1, €3) such that ¢, Dy H
is (p, q)-integrable on [€1, €3], then

1 pert(1-ple;
puH(e2) + (1 - pu)Her) - / H(x) e1dyqx

plez —e1) Je

1
— (&2 —€1) /O (GA+pr—1) ,DpH(Aer + (1 — M) dpgh
forall A, u € [0,1].

Proof. Consider

1
(€2 — €1) /0 @A+ pr—1) o, DpH(Aer + (1= Mey) dygA (12)
Applying Definitions 5 and 6, we have
1
/O A e DpgH(Aer + (1= A)ey) dygh
_/1 H(p)\ez—l—(l—p/\)el)—H(q/\ez—i—(l—q)\)el)d Y
N — — 2z
o (p—a)(e2—e1)
B 1 ) qn qn qn 0 qn qn+1 qn+1
T e -6 ,E)P"H/H(Pne +< —pn>€1)—’;0pn+l7‘f pn+1€2+ 1_pn+1 €1
D e (- 5)e) S (e (- 5)e)
= - —H| e+ |l-—=e|——=) =H| -e+|1-=]e
e —er _pn;op" P p)) g b pt)
1 1 1 1\ &g (q" q">>
= -H(e —(—) —H| —e€ +(1—e
Sl P i Loy e P
1 1 pert(1—pler
= H(e 77/ H(x) e,dpax 13
e —e) "D e —ar? o ) epq -
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and

1
/0 e DpaH(Aes + (1= Ney) dygh

_ /1 H(prez + (1 — pA)er) — Higrea + (1 — gA)e)
0 Mp—q)(e2 —e1)

B 1 00 ﬂ _ﬁ B 00 qn+1 B qn+1
_62—€1L§H<P"€2+<1 p">€1> n_0H<P"+1€2+ 1 —an €

dpgA

(14)
Substituting (13) and (14) into (12), we obtain the desired result. O

Lemma 5. Let 1 : [e1, €2] — R be a (p, q)-differentiable function on (€1, €2) such that ¢, Dy, H
isa (p, q)-integrable on €1, €3], then

1 /P€2+(1*P)€1
plex—eq) .

PH 1
= (e3—€1) {/0 qA e, DpgH(Aex + (1 = Aer) dpgA + /W(q/\ —1)e,DpgH(Ae2 + (1 —A)er) dp,q)\] (15)

H(pper + (1 — pu)er) — H(x) e dp,gx

€1
forall A, u € [0,1].
Proof. We are taking right part of equality (15),

Py 1
(62— €1) [ /O g\ &, Dy H(Aes + (1= Mey) dygh + /p #(q)\ —1) ¢, DpgH(Aer + (1 — A)er) d,,,q)\} .

In this case, we are simplifying our integral by applying the identical transformation and
get our required integral

1 140
— (e2—e1) UO (GA = 1) o, DpoH(Aes + (1 — Mer) dy A+ /O Dy H(Aey + (1= A)ey) dmA} : (16)

Applying Definitions 5 and 6, we have

/1 Ao Dy H(Aes 4+ (L — A)er) dy o 1 Hie) 1 /pez+(lp)61 H(x) e d (17)
€ € —A)E = N €)= V3 Xe *
0 1P 2 1 %paq q(ez — 61) 2 Pq(€2 - 51)2 €] e

Hle) = Hler)

p— (18)

1
/0 e DypaH(Aer + (1= A)ey) dpoh =

and
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pi P H(pAer + (1 — pA)er) — H(gAer + (1 — gA)er)
Jy e Dpatrer+ (1= Ner) dygh = / G- E ) 1

p— LZ: 7-[( puer + (1—2}1;7;4)61)
0 n+1 qn+l
Z ( Thre+ (1 i P#) 61)

(P#ez + (1 —pp)er) — H(er)
€ —€ ’

dpqA

(19)

Substituting (17)-(19) into (16), we obtain the desired result. [

5. Main Results

Theorem 5. Let H : [eq,€2] — R be a (p, q)-differentiable function on (€1, €) and ¢, Dy H be a
(p, q)-integrable on [e1, €3] and 0 < €1 < €, < 00. If |e, Dy H|” is an y-quasiconvex function on
[€1, €2] for ¢ > 1. Then, the following inequality holds for all u € [0,1]

1 per+(1—p)er
puH(€e2) + (1 — pu)H(er) — m/ H(x) edpqx
1
< (e2 — en)L(;p,9) (P& (le, Ppa M) © (20)

where

for 0<pu<1-g;

L(p;p.q) = 2(1_py)2p( 2pg — 1)+ P4 — pa(1— pu)[2]
2 T PA for 1—q < pu<1.

Proof. The 7-quasiconvexity of |¢, Dy H|” on [e1, €] such that for all A € [0, 1], then

(P& (e, PpaH|71)) =2 |y DpgH(Aea + (1= A)er)|”
< max{\elp,,,qﬂ(el) 7 | DpaHen)|” + n(|€lpp,q7{(e2) v

4

& Dpgtlen)]|) }.

From Lemma 4, utilizing the property of the modulus with Holder’s inequality and using
definition of 77-quasiconvexity of |¢, D 4H|”, we have

2z , 2 1 pe2+(1-p)er 2 y
’Pﬂ (€2) + (1 —pu)H(er) — pler—en) /el (%) eydpgx

1
< (62—61)/0 GA + pit = 1|, DpyH(Aes + (1 — A)er) | dpgh

1 -1 1
= (62—61)/0 [gA+pu—1] @ |gA 4+ pp — 1|7 |, DpgH(Aer + (1 — A)er) | dpgA

Si=

1 A
< (€3 —€1) </0 |gA + pp — 1 dp,q)\) </0 IgA + pp — 1| |e,DpgH(Aer + (1 — A)er)|” dp,q/\)

Qb=

1 ot ;
< (e2—€1) (/ [gA + pp — 1] d,,,q)\) (/ lgA + pu — 1 dp,qA> (P§§(|€1Dp,q’}{|”;17))

(62—61/|‘Vl+PV 1] dpgA(PE (e, Dy MI751)) 7

R



Entropy 2021, 23, 1523 90f17

Now,

1
L(w;p,q) = | |gr+pp—1]dpgr
0

(P_PV)[Z]Prq_qu for 0<pu<1l-—gy;

- 2],.q / A

21— ) (2l — 1) + PP~ paCl — i) 2l for 1—q<pu<1.
Q[Z]p,q ’ a

This complete the proof. [

Corollary 1. Under the conditions of Theorem 5, the following inequality holds:

puH(e2) + (1 — pu)H(er) —

1 per+(1-p)er
/ H(x) eypgx

p(ex —e1)
< (e2—e1)L(p;p,9) [max{ ley DpqaH(€1)]”, |e1Dp,qH(€2)|UH %, (21)

1

where

for 0<pu<1l—g;

LG8 = 4 21— p) (210 — 1) + P20 — pa(1 — p) 2

q[2p,q

, for 1—g<pu<Ll

Remark 5. If p = 1, then (20) is reduced to the following:

pH(e) + (1= pyH(er) - —— [ H() oy

1
o

< (e2—e1)L(1;1,9) (P& (le, Dy M| 7)) 7,

€ — €1 Jeg
where
(1=w2)y—q for 0<pu<1-g
2] 7 f— f— 7
L) =4y 0 20
2 +pg—-3)+1 for 1—g<n<i,
2l
which appeared in [15].

Remark 6. If y = ﬁ and n(ey, €1) = € — €1 in (20), then Theorem 5 reduces to Theorem 5

proved in [21].

Remark 7. If n(ey, €1) = € — ey and p = § for p = Land q — 17 in (20), then Theorem 5
reduces to Theorem 6 proved in [35].

Theorem 6. Let H : [€1,€2] — R bea (p, q)-differentiable function on (e1,€2) and ¢, Dy, H bea
(p, q)-integrable on [e1, 5] and 0 < €1 < €3 < 0. If |, Dy, H|™ is an y-quasiconvex function
on [€1, €2] for o > 1 with a% + Uil = 1, then the following inequality holds for all u € [0, 1]:

1 /pez+(1—p)el
ples —eq)

1 . 1
< (e2 =€) [F7 (pu, N)] 7 (PG (le DpagHIZim)) =, (22)

puH(e2) + (1 — pu)H(er) — H(x) edpqgx

€1
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where
0 qn qn+1 71
(p_q)zpn+1<1_p‘u_pn+l) / for 0<pu<l—g;
n=0
(o] —1 n o1
_ _ o1+1 qi’l o q
B oy = 4 00007 L T (1)
00 qn qn+1 01
+p—q) Zo prl (pn+1 -1 +W)
n=
01
~(p—q)(1—pp "1“;02,%1( = 1) , for l—g<pu<l

Proof. From Lemma 4, utilizing the property of the modulus with Holder’s inequality and
using definition of 77-quasiconvexity of |¢, Dp,,H |2 and A € [0,1], we have

2 1 2 1 pex+(1-pler 2 p
‘PH (€2) + (1 —pu)H(er) — p(er—e) /61 (%) e,dp,gx

[ rl
< (e2—e1) /0 94 + pp = 1] |e,DpgH(Ae2 + (1= A)er)| dp»ﬂ]

[/ =/ oy
<(e2—e1) (A|¢«+pu—u“dwﬂ)1(A\qbnﬂﬂAq+41—Aan?@wA)2]
1
<(e2—e1) (/ [gA + pp — 1|7 dpM) (P&} (les Dp.g M) ]
Now,

1
Fot (pu, M) = / lgA 4+ pp — 1|7 dp,qA

s qn-i-l

o+ S " \"
(P—g)Q—p) Yy Lo ~

- n=0 P
o n n+1 0
Hr=0 ¥ o (Zm —1+P#>
n
¢7+1 ! q" o
—(p—q) 1 —pp)” Z‘bp”"‘l(pn'*‘l_l) , for T—g<pu<1.
n

The proof is completed. [

Corollary 2. Under the conditions of Theorem 6, the following inequalities are true:
(i)
Hien) + (1 ptte) - ——— [ )
puri(e pu)itier pler —e1) Jer *) erlpgX

1 1
< (e2— &) [Fg! (pu, M)] 1 [max{|e, DpgH(e1)|™ e, DpgH(e2)|2}] 2, (23)



Entropy 2021, 23, 1523 11 of 17

where

© qn qi’l+1
—Q)anﬂ(l_ml—an) ’ fOT’OSp‘ugl—q;

1 n 01
1 q
B (p, ) = { PP » ”“< _p”“>

n= EJHP .
&% qn qu
+p—q) 20 i (pnﬂ +W)
- ] (%1
~(p—q)(1—pu "1“1;):,%1( e} 1) , for 1—g<pu<1.
(ii)
pH(e2) + qH(er) 1 pe2+(1-p)ey
’ 2 ~ plea—er) / (%) erpqx

o 1
< (e2—en)[Fg (5,4)] " [max{|e, Dyt (en) ™ |, Dpat(e)|2}] 2. (24)
Remark 8. If(ez, €1) = €2 — €1 in (22), then Theorem 6 reduces to Theorem 6 proved in [21].
Remark 9. If p = 1in (22), then Theorem 6 reduces to Theorem 18 proved in [15].

Theorem 7. Let H : [e1,€2] — R bea (p, q)-differentiable function on (e1,€;) and ¢, Dy, H bea

(p,q)-integrable on [e1,€,) and 0 < €1 < €3 < o0. If ¢, DW’H| is an n-quasiconvex function on
[€1,€2] for o > 1. Then, the following inequality holds for all u € [0,1]:

1 /‘P€2+(1P)€1
plex —e€1) Jg

_ (e2—er)2qp?p? — g+ (1 -
- 2]p,0

Proof. From Lemma 5, utilizing the property of the modulus with Holder’s inequality and
using definition of #7-quasiconvexity of |¢, Dy ;H|” and A € [0, 1], we have

'H(PWZ +(1—pu)er) — H(x) eydp,qgx

Sl

P Clal per (D) 20i7)]

(25)

1 per+(1-ples
"H(pyez + (1 —puler) — m/ H(x) eydpqx

pu
< (e2—€1) [/0 gA| &, DpgH(Aer + (1 — A)er)| dpgA

1
+/ |gA — 1|| e DpgH(Aez + (1 — A)el)f dp,q)\}

et i - 7
(€2 — €1) (/ Ad,,qA) (/0 Mo DpoH(Aer + (1 A)er)| dMA)

1 S 1
+ (/ \q/\ld,,,qA) (/ ‘q)\—lHele,q’H(Aeer(1—A)61)]Udp,q/\> ]
PH JPH
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o—1

pr e 7
<(e2—¢€1)|g A AdpgA A AdpgA

1 o :
([eton) (Lo 10)
pi pi

pu 1 1
= (e3—€1) [q/o AdpgA+ /WW\ —1] dp,q)\] [IP% (|€1Dp,qH‘o/.,7)} 7. (26)

Q=

[Pif (|ele,qH|U} ’7)]

Now, using Definition 6, we get that

pH 2,2
Adpgh = %. 27)

0

Also, using fact that gA < 1, we obtain that

1 1
J A= Udpar = [ 10y

_ / —gA) dygh — / — A) dygA
:/ 1d,,,q)\—q/ Npgh = [ 1dpar+q [ Ay
0 0 0 0
2.2
q qp - —q+ (1 —pu)2]p,
1T (28)
2]p,q PH 2] .9

We get the intended result by combining (26)—(28). O
Remark 10. If we take p = 1 in Theorem 7, then we recovered Theorem 20, which is proved in [15].

Corollary 3. Under the conditions of Theorem 7, the following inequalities are true:

(i)
1 €2+ (1-p)ey - 2|y — . - 1
’7—[(61) e [T M) ] < (€ el[égij”/q VB2 (0 Dyl 29)
(ii)
1 pe2+(1—p)er
‘H(€2+(1—P)€1)—p(€2_€1)/ H(x) eydpqx
< (62—el)(quz_Q+(1—P)[2]p,q) [ (|€ qu| )]% (30)
n 2lpq !
(iii)
pe2+ (2—pler\ 1 per+(1-p)ey
|H( ) e . A adpax
< (52 - 61)(11}72 29+ (2 - P)[Z]p,q) [sz (|€ D ,H|¢7;;7)] % (31)
= Z[Z]p,q 1\le1=pq
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(iv)

pé2 +qe1) 1 /pez+(1—r7)el
’H ( [2]P1ﬂ ) p(€2 - 61) € H(X) eldp’qx

Remark 11. If(ey, €1) = €3 — €1, then (32) reduces to

er+(1—p)e
H<p€2 +Q€1> B 1 /p 2+(1-p IH(x) ot
p( ) Je ’

Si=

€1)2ap?
< CONP per D, 317 ))7.

(32)
(2154

[2]]9,!] €2 — 61
€ — €1)2gp? N
S (2[2];)%? [max(|€1 DP/H/H(Gl) |U2/ ‘E] Dp/qH(ez) |0'2)} 2, (33)
P4
which appeared in [20].

Theorem 8. Let H : [e1,€2] — R be a (p, q)-differentiable function on (€1, €) and ¢, Dy 4 H be a
(p, q)-integrable on [e1, €] and 0 < €1 < €5 < 0. If |, Dp,oH|™ is a y-quasiconvex function on
[€1, €2] for o > 1 with (%2 + Ull = 1. Then the following inequality holds for all u € [0,1]:

1 pe2+(1-pler
Hipea + (1= prjer) ~ St [ M) e

€ —€

1
o

o+1 1 1 1 1
< (e2—e1) [q<W) ()72 + (Qpq(pp; 1)) 1 (1 - W)”Z] (P& (les Dp.a | ™21)) 2, (34)

where

1
Qpq(pp,o1) = /W\q/\ — 17 dpgA.

Proof. From Lemma 5, utilizing the property of the modulus with Holder’s inequality and
using definition of 17-quasiconvexity of |¢, Dp,H |2 and A € [0,1], we have

2 1 1 pea+(1—-p)e ” p
’ (ppex + (1 —puler) — per—e) -/61 (%) edpgx

P 1
< (e2—€1) {/0 gA| & DpgH(Aer + (1 — A)eq)| dpgh + /ml|q)\ — 1| e,PpyH(Aer + (1 — A)er)| dp g

1
2

1
pu o pu
§(ez—el)[q( 0 A% dy g A ( s DpgH(Aex + (1 — A)eq)|™ dpq)\)

)

(/ |q)\1|‘71d,,q/\) (/Pl | DpH(Aes + (1 A)€1)}02dp,q)\)‘712}
)
(

1
2

=

o o pu
P& (|, DpgH| ,11) LdpgA

1 1
( |qA—1|"1dp,,A) PE (1o, Dy M| 1 /Wld,,,qA)vz} (35)
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From Definition 6, we deduce that

pu
/0 ldpqA = pu

1
PH

/W A% dyon = PP =)
- p0'1+1 _ q0'1+1

Qlpp;n) = / |gA = 17 dpgA.
pu
Therefore, the proof is completed. [
Corollary 4. Under the conditions of Theorem 8, the following inequalities are true:
(i)

1 pea+(1—per
'H(el) - m/ H(x) edpqx

(ii)

1 pert+(1-per
‘H(Pez-l-(l—l?)éil)— (ez_el)/ H(x) ey dpgx
i

+1 1 1 1
sl F(M )" rE @y -p ] (B (1o Dy 1% 1))

(iii)
pea+(1—pler\ 1 pe2+(1-per
’H< 2 p(ex —e€1) /61 H(x) erdpgx
1
(e2—e1) P (p—q) a1 p . 1
: 27 T 2 (ot —gonT) p2+((@(§’01)) (2= p)% | (BE (le, Dpg %5 17))
L]
(iv)
€2 + g€ 1 pe2+(1—pler 1
‘H(p [zz]pqq 1) ~ plea—er) /e H(x) e dpgx| < (P (le DpgtI™i1)) 2
L 1
(e2—€1) P (p—q) i ( < p )>1 1
X 2 + | Q =—;0 2lpg—p)2|.
o | \BE e g 2l ) B

Remark 12. If(ez, €1) = €3 — €1, then (39) reduces to

pex + qeq 1 pe2+(1-ple;
( )~ iean ) et

[Z]M € — €1
(e2—e1) g\ s p\\A .
g [q<[21‘;1q‘”<pm+l—qm+l)> (g m) ) @)% .
p.q ’

which appeared in [20].

< (&2 — €1)(Q0;01))7 (PE (|, Dy % 7)) 2

1
< [max(|€1Dplq’H(€1)|‘TZ, lei Dp,gH(€2) \‘72)} 7

(36)

(37)

(38)

(39)

(40)
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6. Application to Special Means
The special means for positive real numbers would be used as follows:

1. Arithmetic mean
€1+ €

A(€1,€2) = 2

2. Generalized logarithmic mean

k+1 k+1

ﬁk(€1/€2) = <(k€—i2-1)(_€2€1—61)> , ke R\{*l,()}.

Proposition 1. Suppose that €1, €3 are two positive real numbers such that €1 < ez and 0 < g <
p <1, then

get +pes  pei{p2pa+ Blpall2lpg — 2]} +2peie2[Blpg — p2pal + PP3(2p4

2lpq 21p.4[Blpq
<k2§?MﬁmM&%Q—mmkrﬂ%ﬁﬂ. (41)
P4

Proof. Let H(x) = x2. Then, we have

1—
per+(1-pe; , pert(1—p)es ,
/ K e dpgk = / (k — €1 +€1) e dpgK

€1
€1

pex+(1—p)er ) pex+(1—p)er , [reat(1=ple
:/ (k—€1) eldp,qx+2€1/ (K—el)eldp,qx+el/ 1edpqx
€ € €

1 1 1

P o P Gy
_ plea—e1) [pei{pl2lpq + Blpall2lpg — 2]} +2perea[[Blpg — p2lpg] + P7€5[2]p4) _

[2]pa[3]pa

Furthermore, for k¥ # €1,

_ 2_ _ 2
e Dy H(K) = o Dy =P ?;)Je—l)q)(;c(zKej) (1—qe1)
_ [lpge® +2e0e{1 — 2]} +€F{[2]pg — 2}
(k —€1)
_ K[2]pq(k —€1) —€1[2]pq(x —€1) +2€1(x — €1)
N (k —e€1)
= [2]pq(x —€1) + 2€1. (42)

Therefore, using the Corollary 3 (iv) with ¢ = 1 and 7 (e, €1) = €2 — €1, we have

qei +pes  peiip2pq + Blpgl2lpg — 2]} +2perea([3]pq — P2lpag] + P (24
2]pq 2],4(3]pq

€ — €1)2g9p?
= (Zp];)lwmaxﬂelppﬂ(el)' [ PpaH(e2)l),
P

we get the desired inequality (41).
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If weletq — 1~ and p = 1, we obtain

A(e%,e%) - E%(el,ez) < w

O

Remark 13. Applying the same idea as in Proposition 1 using Theorems 5-8 and their cor-
responding corollaries, and taking suitable functions, for example, H(x) = x¥, k > 1 and
x> 0H(x) = %, x > 0;H(x) = e, x € R, etc., we can obtain several new interesting
inequalities using special means. We omit their proofs and the details are left to the interested reader.

7. Conclusions

This research demonstrates some parameterized post quantum trapezoidal and mid-
point integral inequalities in terms of the #-quasiconvex based on a post quantum integral
identities with a parameter y € [0, 1]. By choosing different values of parameter y, we can
extract several sub-results from our main results. Further research will focus on parameter-
ized modifications of the left and right parts of Hermite-Hadamard inequality and other
well-known mathematical inequalities via (p, g)-integrals.
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