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Abstract: The review deals with a novel approach (MNEQT) to nonequilibrium thermodynamics
(NEQT) that is based on the concept of internal equilibrium (IEQ) in an enlarged state space SZ

involving internal variables as additional state variables. The IEQ macrostates are unique in SZ and
have no memory just as EQ macrostates are in the EQ state space SX ⊂ SZ. The approach provides
a clear strategy to identify the internal variables for any model through several examples. The
MNEQT deals directly with system-intrinsic quantities, which are very useful as they fully describe
irreversibility. Because of this, MNEQT solves a long-standing problem in NEQT of identifying
a unique global temperature T of a system, thus fulfilling Planck’s dream of a global temperature for
any system, even if it is not uniform such as when it is driven between two heat baths; T has the
conventional interpretation of satisfying the Clausius statement that the exchange macroheat deQ flows
from hot to cold, and other sensible criteria expected of a temperature. The concept of the generalized
macroheat dQ = deQ + diQ converts the Clausius inequality dS ≥ deQ/T0 for a system in a medium
at temperature T0 into the Clausius equality dS ≡ dQ/T, which also covers macrostates with memory,
and follows from the extensivity property. The equality also holds for a NEQ isolated system. The
novel approach is extremely useful as it also works when no internal state variables are used to
study nonunique macrostates in the EQ state space SX at the expense of explicit time dependence
in the entropy that gives rise to memory effects. To show the usefulness of the novel approach,
we give several examples such as irreversible Carnot cycle, friction and Brownian motion, the free
expansion, etc.

Keywords: unique-nonunique macrostate; system-intrinsic and medium-intrinsic properties;
internal equilibrium; extended state space; entropy with and without memory; entropy generation;
global temperature; generalized macroheat and macrowork; steady state; microstate probabilities;
Brownian motion

1. Introduction

Thermodynamics of a system out of equilibrium (EQ) [1–8] is far from a complete
science in contrast to the EQ thermodynamics based on the original ideas of Carnot,
Clapeyron, Clausius, Thomson, Maxwell, and many others [9–16] that has by now been
firmly established in physics, thanks to Boltzmann [17,18] and Gibbs [19]. Therefore, it
should not be a surprise that there are currently many schools of nonequilibrium (NEQ)
thermodynamics (NEQT), among which are the most widely known schools of local-EQ
thermodynamics, rational thermodynamics, extended thermodynamics, and GENERIC
thermodynamics [20,21]. This pedagogical review and various applications in different
contexts deal with a recently developed NEQT, which we have termed MNEQT, with M
referring to a macroscopic treatment in terms of system-intrinsic (SI) quantities of the system
Σ at each instant. These quantities are normally taken to be extensive SI-quantities, and are
used as state variables to describe a macrostateM of Σ. The MNEQT has met with success
as we will describe in this review so it is desirable to introduce it to a wider class of readers
and supplement it with many nontrivial applications.
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We take Σ as a discrete system in that it is separated from its surrounding medium Σ̃
(if it exists) with which it interacts; see Figure 1. Such a system is also called a Schottky
system [21–23] Because of the use of SI-quantities, the MNEQT differs from all other exist-
ing approaches to the NEQT in that the latter invariably deal with exchange quantities with
Σ̃, which are medium-intensive (MI) quantities that differ from SI-quantities in important
ways in a NEQ process as we will see. We will use M̊NEQT to refer to the latter approaches,
with M̊ referring to the use of macroscopic exchange quantities. The corresponding NEQ
statistical mechanics of the MNEQT is termed µNEQT, in which µ refers to the treatment
of Σ in terms of microstates, which form a countable set {mk}, with k counting various
microstates. The existence of the µNEQT is possible only because of the use of SI-quantities
in the MNEQT. These quantities are easily associated with {mk} as will become clear here.
This ability in the MNEQT immediately distinguishes it from the M̊NEQT as the latter
cannot lead directly to a statistical mechanical treatment with {mk}. Therefore, we believe
that the MNEQT and µNEQT will prove very useful. All quantities pertaining toM are
called macroquantities, while those pertaining to microstates contain an index k and are
called microquantities for simplicity in this review.

Isolated Macroscopic System S0

T(t), P(t),……,A(t)

diZ

Macroscopic System S

T(t), P(t),……,A(t)

diZ

deZ

Surrounding Environment (Medium)

T0, P0,……,A0=0

(a)

(b)

Figure 1. (a) An isolated nonequilibrium system Σ0 with internally generated diZ driving it towards
equilibrium, during which its SI-fields T(t), P(t), · · · , A(t) continue to change to their equilibrium
values; diZk denote the microanalog of diZ. The sign of diZ is determined by the second law.
(b) A nonequilibrium systen Σ in a surrounding medium Σ̃, both forming an isolated system Σ0. The
macrostates of the medium and the system are characterized by their fields T0, P0, ..., A0 = 0 and
T(t), P(t), ..., A(t), respectively, which are different when the two are out of equilibrium. Exchange
quantities (deZ) carry a suffix “e” and irreversibly generated quantities (diZ) within the system by
a suffix "i" by extending the Prigogine notation. Their sum deZ + diZ is denoted by dZ, which is a
system-intrinsic quantity (see text).

While most of the review deals with an isolated system or an interacting system in a
medium, we will occasionally also consider a system interacting with two different media
such as in Figure 2, to study driven and steady macrostates [24–27] at τ ∼ τst for which
there is no EQ macrostate having unique values of the temperature, pressure, etc. as long
as we do not allow the media to come to EQ with each other, which takes much longer time
τEQ >> τst . A steady or an unsteady macrostate always gives rise to irreversible entropy
generation so it truly belongs to the realm of the NEQT. What makes the MNEQT a highly
desirable approach is that it can also deal with unsteady processes easily as we will do.
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Figure 2. A system driven between two sources that are different in their fields; see Figure 1. If they
are the same, the situation reduces to that in Figure 1a. Later in Section 10.3 we consider this situation
between two heat sources Σ̃h1 and Σ̃h2, where we treat Σ as a composite system as an application of
our approach.

1.1. Unique Macrostates in Extended State Space

The firm foundation of EQ statistical mechanics is accomplished by using the concept
of microstates mk of Σ and their EQ probabilities pkeq. This is feasible as the EQ macrostate
Meq is unique in the EQ state space SX spanned by the set of observables (see Definition 1)
X = (E, V, · · · ), where E, V, · · · are the energy, volume, etc. using standard notation (we
do not show the number of particles N as we keep it fixed throughout this review; see
later, however). But the same cannot be said about its extension to describe NEQT, since
NEQ macrostatesM in SX are not unique [12] even if they appear in a process between
two EQ macrostates, which we will always denote by P and use P for any general process
including P . It is clear that unless we can specify the microstates for M uniquely, we
cannot speak of their probabilities pk in a sensible way, but this is precisely what we need
to establish a rigorous NEQ statistical mechanics of thermodynamic processes [28–38]. The
system is usually surrounded by an external medium Σ̃, which we always take to be in EQ;
see Figure 1b. The combination Σ0 as the union Σ ∪ Σ̃ forms an isolated system, which we
assume to be stationary.

The lack of uniqueness ofM is handled in the MNEQT by using a well-established
practice [3,16,39–45] by considering a properly extended state space SZ spanned by
Z .
= X ∪ ξ, by including a set ξ of internal variables, in which NEQ macrostates M and

microstates of interest can be uniquely specified during the entire process P . Here, ξ is
internally generated within Σ so it cannot be controlled by the observer. The use of internal
variables in glasses, prime examples of NEQ systems, is well known, where they give rise
to distinct relaxations of the glassy macrostate [42,43,46–49]. Their justification is based
on the ideas of chemical reactions [50], and has been formalized recently by us [45] to any
NEQ macrostateM. It is well known that internal variables contribute to irreversibility in
P , which justifies their important role in the NEQT. We give several examples for their need
later in the review and a clear strategy to identify them for computation under different
conditions. In SZ, the uniqueM’s are specified by the collection {mk, pk} of two indepen-
dent quantities, which form a probability space P. We can then pursue any P followed by
M(t) as the latter evolves in time t to another (EQ or NEQ) unique macrostate. A major
simplification occurs when this independence is maintained at each instant so that during
the evolution, each microstate mk follows a trajectory (such as a Brownian trajectory) γk
whose characteristics do not depend on pk(t) as a function of time t ([32] (for example));
the latter, of course, determines the trajectory probability pγk . Thus,

{
γk, pγk

}
uniquely

specifies P in P. For the same collection γ
.
= {γk}, different choices of

{
pγk

}
describe

different processes.
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1.2. Layout

The review is divided into two distinct parts. The first part consisting of Sections 3–9
deals with the up-to-date foundation of the MNEQT for Σ, regardless of whether it is
isolated or interacting (in the presence of one or more a external sources). We have tried to
make the new concepts and their physics as clear as possible so a reader can appreciate the
foundation of the MNEQT, which can be complex at times. The most important one is that
of the NEQ temperature T as anticipated by Planck that is required to be defined globally
over the system so that it can satisfy the Clausius statement about macroheat flow from
hot to cold. The concepts of the generalized macroheat dQ and the generalized macrowork dW
are directly and uniquely defined in terms of SI-quantities that pertain to the system alone.
Thus, they are capable of describing the irreversibilty in the system. A clear strategy to
identify internal variables is discussed for carrying out thermodynamic computation. The
other part consisting of Sections 10–14 deals with various applications of the MNEQT, many
of which cannot be studied within the M̊NEQT without imposing additional requirements.
This part provides an abundant evidence of successful implementation of the MNEQT.

The layout of the paper is as follows. In the next section, we introduce our notation
and give some useful definitions and new concepts without any explanation. This section
is only for bookkeeping so that readers can come back to it to refresh the concepts in the
manuscript later when they are not sure of their meanings. The next six sections deal with
various new concepts and theory behind the MNEQT. Section 3 introduces the central
concept of internal variables that are required for arbitrary NEQ macrostatesM. Many
examples are given to highlight their importance forM. They form the extended state space
SZ, which contains the state space SX as a proper subspace. The internal variables are
irrelevant for EQ macrostates in SX. Section 4 is also very important, where we introduce
the concept of NEQ entropies based on the original ideas of Boltzmann. In this sense, the
derivation of this entropy is thermodynamic in nature, and gives rise to an expression of
S that generalizes the Gibbs formulation of the entropy to NEQ macrostates. Using this
formulation, we reformulate a previously given proof of the second law. In Section 5, we
formulate the statistical mechanics of the MNEQT, and discuss the statistical significance
of dW and dQ that provide a reformulation of the first law in terms of SI-quantities for any
arbitrary process between any two arbitrary macrostates. The SI-quantities are determined
by Σ alone, even if it is interacting with its exterior, and its usage has neither been noted
nor has been appreciated by other workers in the field. These generalized macroquantities
are different from exchange macrowork and macroheat. In this reformulation, the first law
includes the second law in that it contains all the information of the irreversibility encoded
inM. This formulation applies equally well to the exchange energy change deE and the
internally generated energy change diE, which shows the usefulness of the formulation.
In Section 6, which is the most important section for the foundation of the MNEQT, we
discuss the conditions forM to be uniquely specified in SZ, and introduce the concept of
the internal equilibrium (IEQ) to specifyMieq in SZ. A parallel is drawn betweenMieq
andMeq so that many results valid forMeq also apply toMieq, except that the latter has
nonzero entropy generation (diS ≥ 0). The entropy ofMieq is a state function in SZ, while
that of a macrostateMnieq that lies outside of SZ is not a state function. see later. The
entropy ofM that lies outside SX is similarly not a state function of X. We show that the
NEQ entropy in Section 4 reduces to the thermodynamic EQ entropy forMeq and to the
thermodynamic IEQ entropy forMieq. We introduce the concept of a NEQ thermodynamic
temperature T as an inverse entropy derivative (∂S/∂E). We show that this concept satisfies
various sensible requirements (C1–C4) of a thermodynamic temperature, which is global
over the entire system even if it is inhomogeneous. This, we believe, solves a long-standing
problem of a NEQ temperature. In terms of T, we show that the Clausius inequality in the
M̊NEQT is turned into an equality in the MNEQT as shown in Section 7. In Section 9, which
is the last section of the first part, we use the idea of chemical equilibrium to show how
entropy is generated in an isolated system. We now turn to the second part of the review. In
Section 10, we consider various applications of the MNEQT ranging from a simple system
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to composite systems under various conditions. This section is very important in that we
establish here that we can treat a system either (i) as a "black box" ΣB of temperature T but
without knowing anything about its interior, or (ii) as a composite system ΣC for which
we have a detailed information about its interior inhomogeneity. Both realizations give
the same irreversible entropy generation. Thus, we can always treat a system as ΣB of
temperature T, whose study then becomes simpler. In Section 11, we apply our approach
to a glassy system and derive the famous Tool-Narayanaswamy equation for the glassy
temperature T. In Section 12, we apply the MNEQT to study an irreversible Carnot cycle
and determine its efficiency in terms of ∆iS. In Section 13, we apply the MNEQT to a
very important problem of friction and the Brownian motion. In Section 14, we consider a
classical and a quantum expansion. In the classical case, we study the expansion in SX,
whereM is a non-IEQ macrostate, with an explicit time-dependence, and in SZ, where
M is a an IEQ macrostate, with no explicit time-dependence, and show that we obtain the
same result. The quantum expansion is only studied in SZ. The last section provides an
extensive discussion of the MNEQT and draws some useful conclusions.

2. Notation, Definitions and New Concepts
2.1. Notation

Before proceeding further, it is useful to introduce in this section our notation to
describe various systems and their behavior and new concepts for their understanding
without much or any explanation (that will be offered later in the review where we discuss
them) so that a reader can always come back here to be reminded of their meaning in
case of confusion. In this sense, this section plays an important role in the review for the
purpose of bookkeeping.

Even though Σ is macroscopic in size, it is extremely small compared to the medium
Σ̃; see Figure 1b. The medium Σ̃ consists of two parts: A work source Σ̃w and a macro-
heat source Σ̃h, both of which can interact with the system Σ directly but not with each
other. This separation allows us to study macrowork and macroheat exchanges separately.
We will continue to use Σ̃ to refer to both of them together. The collection Σ0 = Σ ∪ Σ̃
forms an isolated system, which we assume to be stationary. The system in Figure 1a is an
isolated system, which we may not divide into a medium and a system. Each medium in
Figure 2, although not interacting with each other, has a similar relationship with Σ, except
that the collection Σ0 = Σ ∪ Σ̃1 ∪ Σ̃2 forms an isolated system. In case they were mutually
interacting, they can be treated as a single medium. In the following, we will mostly focus
on Figure 1 to introduce the notation, which can be easily extended to Figure 2.

We will use the term "body" to refer to any of Σ, Σ̃, and Σ0 in this review and use Σb
to denote it. However, to avoid notational complication, we will use the notation suitable
for Σ for Σb if no confusion would arise in the context. As the mechanical aspect of a body
is described by the HamiltonianH, whose value determines its macroenergy E, it plays an
important role in thermodynamics. Therefore, it is convenient to introduce

w .
= X\E = (V, · · · ), W .

= Z\E = (V, · · · , ξ), (1)

where \E means to delete E from the set, and · · · refers to the rest of the elements in X
besides V. We use x to denote the collection of coordinates and momenta of the N particles
in the phase space of Σ. The variable W appears as a parameter set in the Hamiltonian
H(x|W) of Σ that can be varied in a process with a concomitant change inH. As internal
variables play no role in EQ, W = w in Equation We will normally employ a discretization
of the phase space in which we divide it into cells δx, centered at x and of some small
size, commonly taken to be (2πh̄)3N . The cells cover the entire phase space. To account
for the identical nature of the particles, the number of cells and the volume of the phase
space is assumed to be divided by N! to give distinct arrangements of the particles in
the cells, which are indexed by k = 1, 2, · · · and write them as {δxk}; the center of δxk is
at xk. These cells represents the microstates {mk}. The energy and probability of these
cells are denoted by {Ek, pk} in which Ek(W) is a function of W. Different choices of {pk}
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for the same set {mk, Ek} describes different macrostates for a given W, one of which
corresponding to

{
peq

k

}
uniquely specifies an EQ macrostate Meq; all other states are

called NEQ macrostatesM. AmongM are some special macrostatesMieq that are said
to be in internal equilibrium (IEQ); the rest are nonIEQ macrostatesMnieq. An arbitrary
macrostateMarb refers to either an EQ or a NEQ macrostate.

We use a suffix 0 to denote all quantities pertaining to Σ0, a tilde (̃) for all quantities
pertaining to Σ̃, and no suffix for all quantities pertaining to Σ even if it is isolated. Thus,
the set of observables are denoted by X0, X̃ and X, respectively, and the set of state variables
by Z0, Z̃ and Z, respectively, in the state space SZ; the set of internal variables are ξ0, ξ̃ and
ξ, respectively. As Σ̃ is taken to be in EQ, weakly interacting with and is extremely large
compared to Σ, all its fields can be safely taken to be the fields associated with Σ0 so can be
denoted by using the suffix 0.

In the discrete approach, Σ and Σ̃ are spatially disjoint so

V0 = V + Ṽ.

They are weakly interacting so that their energies are quasi-additive

E0 = E + Ẽ + Eint ' E + Ẽ,

where Eint is the weak interaction energy between Σ and Σ̃ and can be neglected to a good
approximation. We also take them to be quasi-independent [41] so that their entropies also
become quasiadditive:

S0(X0,t) = S(X(t),t) + S̃(X̃(t)) + Scorr(t)

' S(X(t),t) + S̃(X̃(t)); (2)

here, Scorr(t) is a negligible contribution to the entropy due to quasi-independence between
Σ and Σ̃, and can also be neglected to a good approximation. The entropy S̃ has no explicit
time dependence as Σ̃ is always assumed to be in equilibrium, and X0 remains constant
for the isolated system Σ0. The discussion of quasi-independence and its distinction from
weak interaction has been carefully presented elsewhere ([41] (Scorr was called Sint there;
however, Scorr seems to be more appropriate)) for the first time, which we summarize as
follows. The concept of quasi-independence is determined by the thermodynamic concept
of correlation length λcorr, which is a property of macrostates, and can be much larger than
the interaction length between particles. A simple well-known example is of the correlation
length of a nearest neighbor Ising model, which can be extremely large near a critical
point than the nearest neighbor distance between the spins. This distinction is usually
not made explicit in the literature. For quasi-independence between Σ and Σ̃, we require
their sizes to be larger than λcorr. Throughout this review, we will think of the above
approximate equalities as equalities to make the energies to be additive by neglecting the
interaction energy between Σ and Σ̃, which is a standard practice in the field, but also
assuming quasi-independence between them to make the entropies to be additive, which
is not usually mentioned as a requirement in the literature.

For a reversible process, the entropy of each macrostate Meq(t) ∈ SX of a body
along the process is a state function of X(t), but not for an irreversible process for which
M(t)/∈ SX. Their entropies are written as S(X(t),t) [51,52] with an explicit time depen-
dence. In general [14,51–53],

S(X(t),t) ≤ S(X(t)); fixed X(t). (3)

The equilibrium values of various entropies are always denoted with no explicit time
dependence such as by S0(X0) for Σ0. These entropies represent the maximum possible
values of the entropies of a body as it relaxes and comes to equilibrium for a given set of
observables. Once in equilibrium, the body will have no memory of its original macrostate.
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The set X0, which includes its energy E0 among others, remains constant for Σ0 as it relaxes.
This notion is also extended to a body in internal equilibrium.

Notation 1. We use modern notation [3,16] and its extension, see Figure 1, that will be extremely
useful to understand the usefulness of our novel approach. Any infinitesimal and extensive system-
intrinsic quantity dY(t) during an arbitrary process dP can be partitioned as

dY(t) ≡ deY(t) + diY(t), (4)

where deY(t) is the change caused by exchange (e) with the medium and diY(t) is its change due to
internal or irreversible (i) processes going on within the system.

Throughout the review, we assume that there is only one species of stable particles,
whose number N is an observable, and is held fixed to fix the size of Σ. We can list N in
X if we keep another observable such as V fixed to fix the size of the system. Here, we
will keep N fixed for the size. If there are several species k = 1, 2, · · · , r of particles that
undergo l distinct chemical reactions among themselves, then the individual numbers
Nk, k ∈ {1, 2, · · · , r} of the species are not constant, only their total N remains constant. In
this case, we need distinct l′ .

= l− 1 extents of reaction [3,16] as internal variables in Z as has
been discussed later. If the species do not undergo chemical reactions among themselves,
then Nk’s are individually observables. In this case, we can choose l′ independent numbers
that are contained in X. In this review, we only consider a single species for simplicity.

2.2. Some Definitions and New Concepts

Definition 1. Observables X = (E, V, N, · · · ) of a system are quantities that can be controlled
from outside the system, and internal variables ξ = (ξ1, ξ2, ξ3, · · · ) are quantities that cannot be
controlled. Their collection Z = X ∪ ξ is called the set of state variables in the state space S.

Definition 2. A system-intrinsic quantity is a quantity that pertains to the system alone and
can be used to characterize the system. A medium–intrinsic quantity is a quantity that is solely
determined by the medium alone and can be used to characterize the exchange between the system
and the medium.

Definition 3. A macrostate in SX or SZ is a collection {mk, pk} of microstates mk and their
probabilities pk, k = 1, 2, · · · . In general, pk are functions of X or Z, depending on the state space.
They are implicit function of time t through them; they may also depend explicitly on time t if
not unique in the state space.. For an EQ or an IEQ macrostate, pk have no explicit dependence
on t. For EQ states, pk have no time-dependence. It is through the microstate probabilities that
thermodynamics gets its stochastic nature.

Definition 4. The collection {mk, pk} provides a complete microscopic or statistical mechanical
description of thermodynamics forMarb in some state space S in which one deals with macroscopic
or ensemble averages, see Definition 12, over {mk} of microstate variables. The same collection
{mk, pk} also provides a microscopic description of a microstate and its probability in any arbi-
trary process.

Definition 5. The nonequilibrium macrostates can be classified into two classes:

(a) Internal-equilibrium macrostates (IEQ): The nonequilibrium entropy S(X,t) for such a
macrostate is a state function S(Z) in the larger nonequilibrium state space SZ spanned by
Z; SX is a proper subspace of SZ: SX ⊂ SZ. As there is no explicit time dependence, there
is no memory of the initial macrostate in IEQ macrostates.

(b) Non-internal-equilibrium macrostates (NIEQ): The nonequilibrium entropy for such a
macrostate is not a state function of the state variable Z. Accordingly, we denote it by
S(Z, t) with an explicit time dependence. The explicit time dependence gives rise to memory
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effects in these NEQ macrostates that lie outside the nonequilibrium state space SZ. A NIEQ
macrostate in SZ becomes an IEQ macrostate in a larger state space SZ′ , Z′ ⊃ Z, with a
proper choice of Z′.

Definition 6. An arbitrary macrostate (ARB) of a system refers to all possible thermodynamic
states, which include EQ macrostates, and NEQ macrostates with and without the memory of
the initial macrostate. We denote an arbitrary macrostate byMarb, NEQ macrostates byM, EQ
macrostates byMeq, and IEQ macrostates byMieq.

Definition 7. Thermodynamic entropy S is defined by the Gibbs fundamental relation for a macrostate.

Definition 8. Statistical entropy S forMarb is defined by its microstates by Gibbs formulation.

Definition 9. Changes in quantities such as S, E, V, · · · in an infinitesimal processes δP are
denoted by dS, dE, dV, · · · ; changes during a finite process P are denoted by ∆S, ∆E, ∆V, · · · .

Definition 10. The path γP of a macrostateM is the path it takes in S during a process P . The
trajectory γk is the trajectory a microstate mk takes in time in S during the process P .

As mk evolves due to Hamilton’s equations of motion for given W, the variation of xk
has no effect on Ek. Therefore, we will no longer exhibit x and simply use H(W) for the
Hamiltonian. The microenergy Ek changes isentropically as W changes without changing
pk [54]. Accordingly, the generalized macrowork dW does not generate any stochasticity.
The latter is brought about by the generalized macroheat dQ, which changes pk but without
changing Ek. In the MNEQT,

dQ ≡ TdS (5a)

in terms of the temperature
T = ∂E/∂S (5b)

and dS of Σ. The Equation (5a) is a general result in the MNEQT.
It is convenient to introduce ϕ = (S, Z) as the set of all thermodynamic macrovariables,

which takes the microvalue ϕk on mk.

Definition 11. Macropartition: As suggested in Figure 1 and Notation 1, the change

dϕ
.
=deϕ+diϕ (6)

in the SI-macrovariable ϕ of Σ consists of two parts: the MI-change deϕ is the change due to
exchange with Σ̃, and diϕ is the irreversible change occurring within Σ.

This is an extension of the standard partition for the entropy change [3,16]

dS .
=deS+diS. (7)

For E and V, the partitions are

dE .
=deE+diE, dV .

=deV+diV, (8)

except that
diE ≡ 0, diV ≡ 0, (9)

for the simple reason that internal processes cannot change E and V, respectively. For N,
the partition is

dN .
=deN+diN,



Entropy 2021, 23, 1584 9 of 63

with diN present when there is chemical reaction. We will find the shorthand notation

dα = (d, de, di) (10)

quite useful in the following for the various infinitesimal contributions. These linear
operators satisfy

d ≡ de + di. (11)

Definition 12. Ensemble Average: In NEQT, any thermodynamic macroquantity ϕ is obtained by
the instantaneous ensemble average

ϕ≡ 〈ϕ〉 = ∑k pkϕk, (12)

where ϕ takes microvalues ϕk on mk at that instant with probability pk.

We have used the standard convention to write ϕ for 〈ϕ〉. For example, the internal
energy E is given by

E ≡ 〈E〉 = ∑k pkEk, (13)

while the statistical entropy, often called the Gibbs entropy, is given by

S ≡ 〈S〉 = ∑k pkSk = −∑k pk ln pk (14)

where the microentropy Sk is
Sk ≡ −ηk

.
= − ln pk; (15)

in terms of Gibbs’ index of probability ηk
.
= ln pk ([19] (p. 16)).

Definition 13. Micropartition:The macropartition in Equation (6) is extended to microvariable ’k:

d’k
.
=de’k+di’k. (16a)

Thus,
dEk

.
=deEk+diEk, dSk

.
=deSk+diSk. (16b)

The micropartition also applies to dpk:

dpk
.
=de pk+di pk, (17a)

We define

dαηk
.
=

dα pk
pk

. (17b)

In a process, ϕ undergoes infinitesimal changes dαϕk at fixed pk, or infinitesimal
changes dα pk at fixed φk. The changes result in two distinct ensemble averages or pro-
cess quantities.

Definition 14. Infinitesimal macroquantities 〈dαϕ〉 are ensemble averages

dαϕm ≡ 〈dαϕ〉 = ∑k pkdαϕk (18a)

at fixed {pk} so they are isentropic. We identify them as mechanical macroquantity and write it as
dαϕm. Infinitesimal macroquantities

dα ϕs
.
= 〈ϕkdαη〉 (18b)
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that are ensemble averages involving {dα pk} are identified as stochastic macroquantities and written
as dαϕs. Together, they determine the change dαϕ:

dαϕ≡ dα〈ϕ〉
.
= dαϕm + dαϕs. (19)

We must carefully distinguish dα〈ϕ〉 and 〈dαϕ〉. For E, we will use instead the follow-
ing notation:

dαQ = dαEs, dαW = −dαEm, (20)

from which follows
dαE = dαQ− dαW. (21)

Using Equation (9) for diE, we have the following thermodynamic identity:

diQ ≡ diW. (22)

For dα = d, de, we have the following SI- and MI- formulation of the first law:

dE = dQ− dW (23a)

dE = deQ− deW, (23b)

where we have used the identity dE = deE. The top equation is also known as the Gibbs
fundamental relation.

We can use the operator identity in Equation (11) to introduce the following important
identities following Notation 1

dW = deW + diW, dQ = deQ + diQ, (24)

dWk = deWk + diWk, dQk = deQk + diQk, (25)

that will be very useful in the MNEQT. For an isolated system, deW ≡ 0, deQ ≡ 0. Note
that dW, dQ, etc. do not represent changes in any SI-macrovariable.

Definition 15. We simply call dQ and dW macroheat and macrowork, respectively, unless clarity
is needed and use exchange macroheat for deQ and exchange macrowork for deW, irreversible
macroheat for diQ and irreversible macrowork for diW, respectively.

Manipulating w such as the “volume” V from the outside through Σ̃w requires some
external “force” Fw0, such as the external pressure P0 to do some “exchange macrowork”
dW̃ on Σ. We have dw̃ = dew̃ = −dew, and

dW̃ .
= Fw0 · dw̃ = −deW .

= −Fw0 · dew, (26)

where Fw0 = (P0, ..., A0 = 0); see Figure 1. We use Fw0 = (fw0, A0 = 0).
In a NEQ system, the generalized force Fw in Σ differs from Fw0. The resulting

macrowork done by Σ is
dW .

= Fw · dW. (27)

This is the SI-macrowork and differs from the MI-macrowork dW̃ = −deW. Here,

Fw
.
= −∂E/∂W =(P(t), ..., A(t)) = (f(t), A(t)); (28)

see Figure 1. The SI-affinity A corresponding to ξ [16,50] is nonzero, except in EQ, when it
vanishes: Aeq ≡ A0 = 0 = 0 [3,16]. The " SI-macrowork" dWξ done by Σ as ξ varies is

dWξ
.
= A·dξ. (29)
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Even for an isolated NEQ system, dWξ will not vanish; it vanishes only in EQ, since
ξ does no work when A0 = 0; however, Fw0, dW̃ and deW are unaffected by the presence
of ξ.

The macroforce imbalance is the difference

∆Fw .
= (Fw − Fw0) = (fw − fw0, A). (30a)

In general, A controls the behavior of ξ in M [16,50] and vanishes when EQ is
reached [3,16]. Here, we will take a more general view of A, and extend its definition to X
also. In particular, ∆Fh .

= T0 − T also plays the role of an affinity [55] so we can include it
with ∆Fw to form set of thermodynamic macroforces or of macroforce imbalance:

∆F .
= (T0 − T, fw − fw0, A). (30b)

The same reasoning also shows that ∆F plays the role of an activity.

The irreversible macrowork diW
.
= dW − deW ≡ dW + dW̃ is given by

diW
.
= (fw − fw0) · dew + fw · diw + A·dξ ≥ 0. (31)

For the sake of clarity, we will take V as a symbolic representation of X, and a single ξ
as an internal variable in many examples. Then W = (V, ξ) is the macrowork parameter.
In this case, we have

dW = PdV + Adξ, deW = P0dV, (32a)

diW = (P− P0)dV + Adξ, (32b)

provided diV = 0.
The microanalogue of ∆Fw is the internal microforce imbalance

∆Fw
k

.
= (fwk − fw0, Ak), (33)

which determines the internal microwork

diWk
.
= (fwk − fw0) · dew + fwk · diw + Ak·dξ, (34)

as the exchange microwork is

deWk
.
= fw0 · dew = deW, ∀k. (35)

Remark 1. It should be warned that dQ in Equations (15) and (16) in [55] and Sec. IVB in [41]
refers only to the exchange macroheat; recall Definition 15. Thus, the usage there is different from
the generalized macroheat in the review.

3. Internal Variables

We should emphasize that the concept of internal variables and their usefulness in
NEQT has a long history. We refer the reader to an excellent exposition of this topic in the
monograph by Maugin ([40] (see Ch. 4)). We consider a few simple examples to justify
why internal variables are needed to uniquely specify aM, and how to identify them for
various systems.

It should be stated that in order to capture a NEQ process, internal variables are
usually necessary. Another way to appreciate this fact is to realize that

Remark 2. For an isolated system, all the observables in X0 are fixed so if the entropy is a function
of X0 only, it cannot change [41,51,52,55] even if the system is out of Equation
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Thus, we need additional independent variables to ensure the law of increase of en-
tropy for a NEQ isolated system. A point in SX representsMeq, but a point SZ represents
M. In EQ, internal variables are no longer independent of the observables. Consequently,
their affinities (see later) vanish in Equation It is common to define the internal variables
so their EQ values vanish. We now discuss various scenarios where they are needed for a
proper consideration.

3.1. A Two-Level System

Consider a NEQ system of N particles such as Ising spins, each of which can be in two
levels, forming an isolated system Σ0 of volume V. Let ρl and el(V), l = 1, 2 denote the
probabilities and energies of the two levels of a particle in a NEQ macrostate so that ρ1, ρ2
keep changing. We have assumed that el(V) depends on the observable V only, which
happens to be constant for Σ0. We have e = ρ1e1(V) + ρ2e2(V) for the average energy per
particle, which is also a constant for Σ0, and

dρ1 + dρ2 = 0

as a consequence of ρ1 + ρ2 = 1. Using de = 0, we get

dρ1 + dρ2e2/e1 = 0,

which, for e1 6= e2, is inconsistent with the first equation (unless dρ1 = 0 = dρ2, which
corresponds to EQ). Thus, el(V) cannot be treated as constant in evaluating de. In other
words, there must be an extra dependence in el so that

e1dρ1 + dρ2e2 + ρ1de1 + ρ2de2 = 0,

and the inconsistency is removed. This extra dependence must be due to independent
internal variables that are not controlled from the outside (isolated system) so they continue
to relax in Σ0 as it approaches Equation Let us imagine that there is a single internal variable
ξ so that we can express el as el(V, ξ) in which ξ continues to change as the system comes to
equilibrium. The above equation then relates dρ1 and dξ; they both vanish simultaneously
as EQ is reached. We also see that without any ξ, the isolated system cannot equilibrate;
see Remark 2.

3.2. A Many-Level System

The above discussion is easily extended to a Σ with many energy levels of a particle with
the same conclusion that at least a single internal variable is required to express el = el(V, ξ)
for each level l. We can also visualize the above system in terms of microstates. A microstate mk
refers to a particular distribution of the N particles in any of the levels with energy Ek = ∑l Nlel,
where Nl is the number of particles in the lth level, and is obviously a function of N, V, ξ so we
will express it as Ek(V, ξ); we suppress the dependence on N. This makes the average energy
of the system also a function of V, ξ, which we express as E(V, ξ).

3.3. Disparate Degrees of Freedom

In classical statistical mechanics, the kinetic and potential energies K and U, respec-
tively, are functions of independent variables. Only their sum K + U = E can be controlled
from the outside, but not individually. Thus, one of them can be treated as an internal
variable. In a NEQ macrostates, each term can have its own temperature. Only in EQ, do
they have the same temperature.

This has an important consequence for glasses, where the vibrational degrees of
freedom (dofv) come to EQ with the heat bath at T0 faster than the configurational degrees
of freedom (dofc), which have a different temperature than T0. The disparity in dofv
and dofc cannot be controlled by the observer so it plays the role of an internal variable.
A well-known equation, the Tool-Narayanaswamy equation is concerned with this disparity
and is discussed in Section 11.
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Consider a collection of semiflexible polymers in a solution on a lattice. The interaction
energy E consists of several additive terms as discussed in ([41], Equation (40)): the
interaction energy Eps between the polymer and the solvent, the interaction energy Ess
between the solvent, the interaction energy Epp between polymers. Only the total E can be
controlled from the outside so the remaining terms determine several internal variables.

In the examples above, the internal variables are not due to spatial inhomogeneity.
An EQ system is uniform. Thus, the presence of ξ suggests some sort of nonuniformity in
the system. To appreciate its physics, we consider a slightly different situation below as a
possible example of nonuniformity.

3.4. Nonuniformity

(a) We consider as a simple NEQ example a composite isolated system Σ, see Figure 3,
consisting of two subsystems Σ1 and Σ2 of identical volumes and numbers of particles
but at different temperatures T1 and T2 at any time t < τeq before EQ is reached at t = τeq
so the subsystems have different time-dependent energies E1 and E2, respectively. We
assume a diathermal wall separating Σ1 and Σ2. Treating each subsystem in EQ at each
t, we write their entropies as S1(E1, V/2, N/2) and S2(E2, V/2, N/2), which we simply
show as S1(E1) and S2(E2) as we will not let their volumes and particles numbers change.
The entropy S .

= S1(E1) + S2(E2) of Σ is a function of E1 and E2. Obviously, Σ is in a NEQ
macrostate at each t < τeq. As E1 and E2 do not refer to Σ, we form two independent
combinations from E1 and E2

E = E1 + E2, ξ = E1 − E2, (36)

that refer to Σ so that we can express the entropy as S(E, ξ) for Σ treated as a blackbox
ΣB; we do not need to know about its interior (its inhomogeneity) anymore. Here, ξ plays
the role of an internal variable, which continues to relax towards zero as Σ approaches
Equation For given E and ξ, S(E, ξ) has the maximum possible values since both S1 and
S2 have their maximum value. As we will see below, this is the idea behind the concept of
internal equilibrium in which S(E, ξ) is a state function of state variables and continues to
increase as ξ decreases and vanishes in Equation In this macrostate, S(E, ξ = 0) has the
maximum possible value for fixed E so it becomes a state function; see Definition 16. This
case and its various extensions are investigated in MNEQT in Section 10.3.

(b) We can easily extend the model to include four identical subsystems of fixed and
identical volumes and numbers of particles, but of different energies E1, E2, E3, and E4.
Instead of using these 4 independent variables, we can use the following four independent
combinations

E = E1 + E2 + E3 + E4 = constant,

ξ = E1 + E2 − E3 − E4,

ξ ′ = E1 − E2 + E3 − E4,

ξ ′′ = E1 − E2 − E3 + E4, (37)

to express the entropy of Σ as S(E, ξ, ξ ′, ξ ′′). The pattern of extension for this simple case
of energy inhomogeneity. is evident.

(c) We make the model a bit more interesting by allowing the volumes V1 and V2 to
also vary as Σ equilibrates. Apart from the internal variable ξ, we require another internal
variable ξ ′ to form two independent combinations

V = V1 + V2 = constant, ξ ′ = V1 −V2 (38)

so that we can use S(E, V, ξ, ξ ′)
.
= S1eq(E1, V1) + S2eq(E2, V2) for the entropy of Σ in terms

of the entropies of Σ1 and Σ2.
(d) In the above examples, we have assumed the subsystems to be in Equation We

now consider when the subsystems are in IEquation We consider the simple case of two
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subsystems Σ1 and Σ2 of identical volumes and numbers of particles. Each subsystem
is in different IEQ macrostates described by E1, ξ1 and E2, ξ2. We now construct four
independent combinations

E = E1 + E2 = constant, ξ = E1 − E2,

ξ ′ = ξ1 + ξ2, ξ ′′ = ξ1 − ξ2, (39)

which can be used to express the entropy of Σ as S(E, ξ, ξ ′, ξ ′′).
(e) The example in (a) can be easily extended to the case of expansion and contraction

by replacing E, E1, and E2 by N, NL, and NR, see Figure 6, to describe the diffusion of
particles [56]. The role of β and E, etc. are played by βµ and N, etc.

Figure 3. A composite system Σ consisting of two identical subsystems Σ1 at temperature T1 and Σ2

at temperature T2. It will be seen later in Section 10.3 that the thermodynamic temperature of Σ can
be defined as T given by Equation (120a). The irreversibility in Σ requires one internal variable ξ

given in Equation (36).

3.5. Relative Motion in Piston-Gas System

We now consider the motion of the piston in Figure 4a because of the pressure differ-
ence across it. The discussion also shows how the Hamiltonian becomes dependent on
internal variables, and how the system is maintained stationary despite motion of its parts.

Let Pp denote the momentum of the piston. The gas, the cylinder and the piston
constitute the system Σ. We have a gas of mass Mg in the cylindrical volume Vg, the piston
of mass Mp, and the rigid cylinder (with its end opposite to the piston closed) of mass
Mc. However, we will consider the composite subsystem Σgc = Σg ∪ Σc so that with Σp it
makes up Σ. The HamiltonianH of the system is the sum ofHgc of the gas and cylinder,Hp
of the piston, the interaction HamiltonianHint between the two subsystems Σgc and Σp,
and the interaction HamiltonianHsm between Σ and Σ̃. As is customary, see the discussion
in Section 2, we will neglectHsm here. We assume that the centers-of-mass of Σgc and Σp
are moving with respect to the medium with linear momentum Pgc and Pp, respectively.
We do not allow any rotation for simplicity. We assume that

Pgc + Pp = 0, (40)

so that Σ is at rest with respect to the medium. Thus,

H(x|V, Pgc, Pp) = ∑λHλ(xλ|Vλ, Pλ) +Hint, (41)

where λ = gc, p, xλ= (rλ, pλ) denotes a point in the phase space Γλ of Σλ; Vλ is the
volume of Σ˘, and V = Vgc + Vp is the volume of Σ. We do not exhibit the number of
particles Ng, Nc, Np as we keep them fixed. We let x denotes the collection (xgc, xp). Thus,
H(x|V, Pgc, Pp) and the average energy E depend on the parameters V, Pgc, Pp. As the
relative motion cannot be controlled from the outside, one of the momenta plays the role of
an internal variable.

We discuss the example of the spring in Figure 4b will be discussed in Section 13.
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pulling force F0

cylinder

(b)

(a)

fluid
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Figure 4. We schematically show a system of (a) gas in a cylinder with a movable piston under an
external pressure P0 controlling the volume V of the gas, and (b) a particle attached to a spring in a
fluid being pulled by an external force F0, which causes the spring to stretch or compress depending
on its direction. In an irreversible process, the internal pressure P (the spring force Fs) is different in
magnitude from the external pressure P0 (external force F0).

3.6. Extended State Space

It should be clear from above that we can identify the entropy
If we divide Σ into many subsystems {Σi} so that they are all quasi-independent, then

the entropy additivity gives

S(X(t),t) = ∑iSi(Xi(t),t).

As we will be dealing with the Hamiltonian of the system, it is useful to introduce the
notation in Equation (1) with W = (w,ξ). Then, E and Ek become a function of W as we
will show in Section 5. Here, W appears as a parameter in the Hamiltonian, which we will
write asH(x|W), where x is a point (collection of coordinates and momenta of the particles)
in the phase space Γ(W) specified by W. As an example, V, Pgc, Pp are the parameters in
Section 13. When the system moves about in the phase space Γ(W), x changes but W as a
parameter remains fixed in a state subspace SW ⊂ SZ; see the discussion of Equation (55a).

It is important to draw attention to the following important distinction between the
HamiltonianH and the ensemble average energy E; see Equation (44). While E accounts
for the stochasticity through microstate probabilities, the use of the Hamiltonian is going
to be restricted to a particular microstate. In other words, the Hamiltonian depends on x
and W but the energy depends on the entropy S and W. The energy Ek of mk, on the other
hand, depends only on W and denotes the value of H for mk. In the following, we will
always treat Hamiltonians and microstate energies as equivalent description, which does
not depend on knowing {pk}; the average energies depend on {pk} for their definition; see
Equation (13).

4. NEQ Entropy
4.1. Determination of S

The uniqueness issue about the NEQ macrostate says nothing about the entropy of
an arbitrary (so it may be nonunique) macrostateM : {mk, pk}, which is always given by
the Gibbs entropy in Equation (14); see also [57]. The ensemble averaging implies that the
entropy is a statistical concept, as is the energy E = 〈E〉, Equation (13).

We now justify the Gibbs’ statistical formulation of S for any arbitraryM in thermo-
dynamics. The demonstration follows a very simple combinatorial argument [52] using
Boltzmann concept of thermodynamic entropy. In the demonstration,M is not required
to be uniquely identified. This entropy satisfies the law of increase of entropy as is easily
seen by the discussion by Landau and Lifshitz for a NEQ ideal gas in SX to derive the
equilibrium distribution [14] (Equation (7.9) here shows how this entropy formulation
emerges in statistical physics. It is applicable to both EQ and NEQ macrostates as is clear
from Section 40 (see Equation (40.7) in particular) dealing with NEQ ideal gas). Thus, the
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form in Equation (14) is not restricted to only uniquely identifiedM’s. Hopefully, this will
become clear below.

Proposition 1. The Second Law: The NEQ Gibbs entropy S0(X0,t) of an isolated system Σ0 is
bounded above by its equilibrium entropy S0(X0) and continuously increases towards it so that [14]

dS0(X0,t)/dt ≥ 0. (42)

4.2. General Formulation of the Statistical Entropy

We focus on a macrostate M(t) of some body Σ at a given instant t, which refers
to the set m = {mk} of microstates and their probabilities p = {pk}. The microstates
are specified by (Ek(t), W(t)), and may not uniquely specify the macrostateM(t). Thus,
even the set m need not be uniquely specified. In the following, we will use the set
Z(t) = (E(t), W(t)) for the set m for simplicity. We will also denote Z(t) by Z so that
we can separate out the explicit variation due to t. For simplicity, we suppress t inM
in the following. For the computation of combinatorics, the probabilities are handled
in the following abstract way. We consider a large number N = CW(Z) of independent
replicas or samples of Σ, with C some large integer constant and W(Z) the number of distinct
microstates mk. We will see that W(Z) is determined by mk’s having nonzero probabilities.
We will call them available microstates. The samples should be thought of as identically
prepared experimental samples [53].

Let Γ(Z) denote the sample space spanned by {mk}, and let Nk(t) denote the number
of kth samples (samples specified by mk) so that

0 ≤ pk(t) = Nk(t)/N ≤ 1;
W(Z)

∑
k=1
Nk(t) = N . (43)

The above sample space is a generalization of the ensemble introduced by Gibbs, except
that the latter is restricted to an equilibrium body, whereas Γ(Z) refers to the body in any
arbitrary macrostate so that pk may be time-dependent, and need not be unique. The
ensemble average of some quantity Z over these samples is given by Equation (12). Thus,

〈Z〉 ≡
W(Z)

∑
k=1

pk(t)Zk,
W(Z)

∑
k=1

pk(t) ≡ 1, (44)

where Zk is the value of Z in mk.
The samples are, by definition, independent of each other so that there are no correla-

tions among them. Because of this, we can treat the samples {mk} to be the outcomes of
some random variable, the macrostateM(t). This independence property of the outcomes
is crucial in the following. They may be equiprobable but not necessarily. The number of
waysW to arrange the N samples into W(Z) distinct microstates is

W ≡ N !/∏
k
Nk(t)!. (45)

Taking its natural log, as proposed by Boltzmann, to obtain an additive quantity per
sample as

S ≡ lnW/N , (46)

and using Stirling’s approximation, we see easily that it can be written as the average of
the negative of Gibbs’ index of probability:

S(Z, t) ≡ −〈η(t)〉 ≡ −
W(Z)

∑
k=1

pk(t) ln pk(t), (47)
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where we have also shown an explicit time-dependence, which merely reflects the fact that
it is not a state function in SZ, a reflection of the fact thatM is not uniquely specified in
SZ. We have put t back above for clarity. Thus, Equation (47) is nothing but Equation (14)
in form, and thus justifies it for an arbitraryM.

The above derivation is based on fundamental principles and does not require the body
to be in equilibrium; therefore, it is always applicable for any arbitrary macrostateM(t).
To the best of our knowledge, even though such an expression has been extensively used
in the literature for NEQ entropy, it has been used by simply appealing to the information
entropy [57].

The distinction between the Gibbs’ statistical entropy S and the thermodynamic
entropy S should be emphasized. The latter appears in the Gibbs fundamental relation
that relates the energy change dE with the entropy change dS as is well known in classical
thermodynamics, and as we will also demonstrate below; see also Equation (23a). The
concept of microstates is irrelevant for this, which is a purely thermodynamic relation. On
the other hand, S is solely determined by {mk} so its a statistical quantity. It then becomes
imperative to show their equivalence, mainly because S is based on the Boltzmann idea.
This equivalence has been justified elsewhere [51,52], and will be briefly summarized below.

Remark 3. Because of this equivalence, we will no longer make any distinction between the
statistical Gibbs entropy and the thermodynamic entropy and will use the standard notation S for
both of them.

Remark 4. The Gibbs entropy S appears as an instantaneous ensemble average, see Definition 12.
This average should be contrasted with a temporal average in which a macroquantity ϕ is considered
as the average over a long period τ0 of time

ϕ =
1
τ0

∫ τ0
0 ϕ(t)dt,

where ϕ(t) is the value of ϕ at time t [14]. For an EQ macrostateMeq, both definitions give the
same result provided ergodicity holds. The physics of this average is that ’(t) at t represents a
microstate ofMeq. AsMeq is invariant in time, these microstates belong toMeq, and the time
average is the same as the ensemble average if ergodicity holds. However, for a NEQ macrostate
M(t), which continuously changes with time, the temporal average is not physically meaningful as
the microstate at time t corresponds toM(t) and not toM(t = 0) in that the probabilities and Z
are different in the two macrostates. Only the ensemble average makes any sense at any time t as
was first pointed out in [58]. Because of this, we only consider ensemble averages in this review.

The maximum possible value of S(t) for given Z ∈ SZ occurs when mk are uniquely
specified in SZ. This makes S(t) a state function of Z(t) with no explicit time dependence,
which we write as S(Z). Thus,

Smax(Z, t)
∣∣
Z fixed = S(Z). (48)

The simplest way to understand the physical meaning is as follows: Consider Z ∈ SZ
at some time t. As S(t) may not be a unique function of Z, we look at all possible entropy
functions for this Z. These entropies correspond to all possible sets of {pk(t)} for a fixed
Z, and define different possible macrostates {M}. We pick that particular M ∈ {M}
among these that has the maximum possible value of the entropy, which we denote by S(Z)
or S(Z(t)) without any explicit t-dependence. This entropy is a state function S(Z). For
a macroscopic system, this occurs when the corresponding microstate probabilities for
M are

pk(t) = 1/W(Z) > 0, ∀mk ∈ Γ(Z), (49a)

so that
S(Z) = ln W(Z). (49b)
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We wish to point out the presence of nonzero probabilities in Equation (49a) that
explains the comment above of available microstates. Including microstates with zero
probabilities will not correcting account for the number of microstates with given Z.

There is an alternative to the above picture in which we can imagine the Σ for which
Z has been fixed, which essentially "isolates" Σ and converts it into a Σ0. Then, as t
varies, its entropy increases until it reaches its maximum value S(Z) in accordance with
Proposition 1.

Remark 5. We emphasize that Z = (E, W) so pk above in Equation (49a) is determined by the
average energy E and not by the microstate energy Ek as derived later in Section (8.2). The pk
in Equation (49a) basically replaces the actual probability distribution in Equation (101) by a
flat distribution of height 1/W(Z) and width W(Z), a common practice in the thermodynamic
limit of statistical mechanics [14]. Despite this modification, the entropy has the same value for a
macroscopic system, for which β and Fw are given by Equations (72) and (73), respectively; see also
Section 8.2.

Let us consider a different formulation of the entropy for a macrostate M̄(t) ∈ SX
specified by some X = X(t)⊂ Z at some instance t. This macrostate provides a more
incomplete specification than in SZ. Applying the above formulation to M̄ ∈ SX, and
consisting of microstates {mk}, forming the set m ≡ m(X), with probabilities {pk(t)}, we
find that

S(X, t) ≡ −
W(X)

∑
k=1

pk(t) ln pk(t),
W(X)

∑
k=1

pk(t) ≡ 1, (50)

is the entropy of M̄; here W(X) is the number of distinct microstates mk. It should be
obvious that

W(X) ≡ ∑ξ(t)W(Z).

Again, under the equiprobable assumption

pk(t)→ pk,eq = 1/W(X), ∀mk ∈ Γ(X),

Γ(X) denoting the sample space spanned by m = {mk}, the above entropy takes its
maximum possible value

Smax(X, t) = S(X) = ln W(X), (51)

which is the well-known value of the Boltzmann entropy for a body in equilibrium

S(X) = ln W(X), (52)

and provides a statistical definition of, and hence connects it with the, thermodynamic
entropy of the body proposed by Boltzmann. The maximization again has the same
implication as in Equation (48): For given X, we look for the maximum entropy at all
possible times. It is evident that

S(Z, t) ≤ S(Z) ≤ S(X). (53)

Thus, the NEQ entropy S(Z, t) as t→ τeq, the equilibration time, reduces to S(X) in
EQ, as expected. Before equilibration, S(Z) in SZ remains a nonstate function S(X, t) in SX
where we do not invoke ξ. It is the variation in ξ that is responsible for the time variation
in S(X, t). A simple proof of this conclusion is given in Section 8.3; see Remark 15 also. We
can summarize this conclusion as

Conclusion 1. The variation in time in S(X, t) in SX is due to the missing set of internal
variables ξ.
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We now revert back to the standard use of X, and Z. Let us consider a body Σ, which
we take to be isolated and out of equilibrium so that its macrostate M spontaneously
relaxes towardsMeq at fixed X. Its entropy S(X,t) in SX has an explicit time dependence,
which continue to increase towards S(X). For such NEQ states, the explicit time depen-
dence in S(X,t) is explained by introducing ξ to make their entropies a state function in
an appropriately chosen larger state space SZ [41]. It is also shown there that a NIEQ
macrostate with a nonstate function entropy S(Z,t) may be converted to an IEQ macrostate
with a state function entropy S(Z′) by going to an appropriately chosen larger state space
SZ′ spanned by Z′ with SZ its proper subspace. Therefore, in most cases of interest here,
we would be dealing with a state function and usually write it as S(Z), unless a choice
for Z has been made based on the experimental setup. In that case, we must deal with a
pre-determined state space SZ so that some NEQ states that lie outside SZ can become a
state function in some SZ′ ⊃ SZ.

We have discussed above that the explicit time dependence in a NEQ macrostate with
a nonstate function entropy Sneq(t)

.
= S(X,t) is due to additional state variables in ¸ and

that this NEQ macrostate may be converted into an IEQ macrostate with a macrostate
function entropy Sieq(Z) by going from SX to an appropriately chosen larger state space
SZ. Similarly, it has been shown [41] that a NIEQ macrostateMnieq in SZ with a nonstate
function entropy Snieq(t)

.
= S(Z,t) may be converted to an IEQ macrostate M′

ieq in an
appropriately chosen larger state space SZ′ with a state function entropy Sieq(Z′).The
additional internal variables ¸′ that are over and above ¸ in Z′ give rise to additional
entropy generation as they relax for fixed Z. This results in the following inequality:

Sieq(Z) ≥ Sieq(Z′) = Snieq(Z,t). (54)

However, if the choice for Z has been made based on the experimental setup and
the observation time τobs, see Section 8.1, we must restrict our discussion to SZ so that
we must consider Mnieq in SZ the following. This will be done in Section 8.3; see
Remarks 13 and 15.

4.3. A Proof of the Second Law

The second law has been proven so far under different assumptions ([53,58–61],
(among others)). Here, we provide a simple proof of it based on the postulate of the flat
distribution; see Remark 5. The current proof is an extension of the proof given earlier
see also ([53] (Theorem 4)). We consider an isolated system Σ0 for which the second law
is expressed by Equation (42). However, for simplicity, we will suppress the subscript 0
from all the quantities in this section. As the law requires considering the instantaneous
entropy as a function of time, we need to focus on the sample space at each instant to
determine its entropy S as a function of time. At each instance, it is an ensemble average
over the instantaneous sample space Γ(t) formed by the instantaneous set m(t) of available
microstates, see Equations (14) or (47). We will use the flat distributions for the microstates
at each instance, see Remark 5, so that the entropy is given by Equation (49b).

To prove the second law, see Proposition 1, we proceed in steps by considering a
sequence of sample spaces belonging to Γ as follows [53,58]. At a given instant, a system
happens to be in some microstate. We start at t = t1 = 0, at which time Σ happens to
be in a microstate, which we label m1. It forms a sample space Γ1 containing m1 with
probability p(1)1 = 1, with the superscript denoting the sample space. We have S(1) = 0.
At some t = t2, the sample space is enlarged from Γ1 to Γ2, which contains m1 and m2, with
probabilities p(2)1 and p(2)2 . Using the flat distribution, the entropy is now S2 = ln 2. We just
follow the system in a sequence of time so that at t = tn, we have a sample space Γn with
m1,m2, · · · ,mn so that Sn = ln n. Continuing this until all microstates in Γ have appeared,
we have Smax = ln W.

Thus, we have proven that the entropy continues to increase until it reaches its
maximum in accordance with Proposition 1.
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5. Hamiltonian Trajectories in SZ
5.1. Generalized Microforce and Microwork for Σ

Traditional formulation of statistical thermodynamics [14,19,53] takes a mechanical
approach in which mk follows its classical or quantum mechanical evolution dictated by its
SI-HamiltonianH(x|W). The quantum microstates are specified by a set of good quantum
numbers, which we have denoted by k above as a single quantum number for simplicity;
we take k ∈ N,N denoting the set of natural numbers. We will see below that k does
not change as W changes. In the classical case, we use a small cell δxk around xk = x as
discussed above as the microstate mk. The Hamiltonian gives rise to a purely mechanical
evolution of individual mk’s, which we will call the Hamiltonian evolution, and suffices to
provide their mechanical description. The change inH(x|W) in a process is

dH =
∂H
∂x
· dx +

∂H
∂W
· dW. (55a)

The first term on the right vanishes identically due to Hamilton’s equations of motion
for any mk. Thus, for fixed W, the energy Ek = Hk

.
= H(xk|W) remains constant as

mk moves about in Γ(W). Only the variation dW in SZ generates any change in Ek.
Consequently, we do not worry about how xk changes inH(x|W) in the phase space, and
focus, instead, on the state space SZ, in which can write

dEk =
∂Ek
∂W
· dW = −dWk, (55b)

where dWk denotes the generalized microwork produced by the generalized microforce Fwk:

dWk = Fwk · dW, Fwk
.
= −∂Ek/∂W. (55c)

For the case W = (V, ξ), the corresponding microforce Fwk is (Pk, Ak), where

Pk = −∂Ek/∂V, Ak = −∂Ek/∂ξ. (56)

The corresponding microwork is

dWk = PkdV + Akdξ. (57)

5.2. Statistical Significance of dW and dQ

Before proceeding further, let us see how the generalized macrowork and macroheat
could be understood from a statistical point of view so that we can identify them using the
Hamiltonian. Once W has been identified, the Hamiltonian must be expressed in terms of
it. Thus, mk and Ek are functions of W in SZ. We now prove

Theorem 2. E(t) is a function of W(t) and S(t) for any Marb, even though Ek[W(t)]’s are
functions of W(t) only.

Proof. We consider the differential

dE(t) ≡ ∑k pk(t)dEk(t) + ∑kEk(t)dpk(t). (58)

As pk(t)’s are unchanged in the first sum, this sum is evaluated at constant entropy so
this is purely mechanical macroquantity dEm; see Equation (20). This sum is a function of
W(t) as is seen clearly in Equation (55b). The second contribution is at fixed microstate
energies Ek so W(t) is held fixed, but require changes in the probabilities so it is the
stochastic contribution dEs, see Equation (55b). The changes {dpk(t)} result in is dS.
As dEs and

dS = −∑k(ηk(t) + 1)dpk(t) = −∑kηk(t)dpk(t) (59)
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are both extensive, they must be linearly related with an intensive constant of proportional-
ity. This proves that E(t) is a function of S(t) and W(t) in general for anyMarb.

Note that we have used the identity ∑kdpk = 0 above; see also Equation (108).
We introduce a special process, to be called a generalized isometric process, which is

a process at fixed W(t) and is a generalization of an isochoric process. In this process, the
work done by each mechanical variables in W(t) remains zero so dEm ≡ 0. We now prove
the following theorem that establishes the physical significance of the two contributions.

Theorem 3. The isentropic contribution represents the generalized macrowork dW(t) and the
stochastic contribution represents the generalized macroheat dQ(t) for anyMarb.

Proof. We follow Landau and Lifshitz [14] and rewrite the first term in Equation (58) as

dEm(t) ≡ ∑k pk(t)
∂Ek
∂W
· dW(t)

= −∑k pk(t)Fwk(t) · dW(t)

where we have used Equation (55c). The use of Equations (64a) and (64b) proves that

dW(t) ≡ −dEm(t) (60)

is the isentropic contribution, making macrowork a mechanical concept as we have already
pointed out. This identification then also proves that the macroheat in the first law, see
Equation (23a), must be properly identified with dQ(t). Accordingly,

dQ(t) ≡ dEs(t) ≡ ∑kEk(t)dpk(t), (61)

is purely stochastic.

The linear proportionality between dQ = dEs and dS mentioned above in the proof of
Theorem 2 results in

dQ(t)/dS(t) = Tarb(t), (62)

which is a statistical proof of the identity in Equation (5a) relating dQ(t) and dS(t) for any
Marb. We also note that the ratio Tarb(t) is related to the ratio of two SI-macroquantities.
Thus, it can be used to characterize the instantaneous macrostateMarb. This should be
contrasted with the M̊NEQT, in which the ratio

deQ(t)/deS(t) = T0 (63)

does not characterize the instantaneous macrostateMarb. In Equation (104), we provide a
general procedure for a thermodynamic identification of Tarb.

Remark 6. It is worth emphasizing that dQ(t) and dS(t) in Equation (61)–(59) are defined as
instantaneous quantities in terms of the instantaneous changes {dpk(t)}, regardless of the speed of
the segmental process dParb

.
= dP(t), and instantaneous values {Ek(t)} and {pk(t)}. Therefore,

the generalized macroheat and entropy change are defined regardless of the speed of the arbitrary
process. As dE(t) in Equation (58) is also defined instantaneously, it is clear from Equation (23a)
that the generalized work dW is also defined instantaneously regardless of the speed of the arbitrary
process. This is consistent with our above derivation of dW in terms of generalized forces. The
observation is very important as it shows that the existence of all SI-quantities does not depend on
the speed of the arbitrary process dParb. However, see also Section 8.1 further clarification on the
importance of τobs. From now onward, we will not make a distinction between T and Tarb.

We should point out that, as W(t) is a parameter, dW(t) is the same for all microstates.
The statistical nature of dEm is reflected in the statistical nature of Fw(t), such as P(t) and
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A(t), of the system. Thus, the SI-fields Fwk(t) are fluctuating quantities from microstate to
microstate as expected in any averaging process.

We can now identify W as the macrowork parameter, and the variation dZ(t) .
=

(dE(t), dW(t)) in SZ defines not only the microwork {dWk}, but also a thermodynamic
process P . The trajectory γk in SZ followed by mk as a function of time will be called the
Hamiltonian trajectory during which W varies from its initial (in) value Win to its final (fin)
value Wfin during P , the the path γP denotes the path the macrostate follows during this
process; see Definition 10. The variation produces the generalized microwork dWk. As pk
plays no role in dWk, its determination is simplifies in the MNEQT. The microwork dWk
also does not change the index k of mk as said above. The ensemble average of Fwk is Fw,
see Equation (28),

Fw = 〈Fw〉
.
= ∑k pkFwk; (64a)

that of dWk is dW given by

dW = 〈dW〉 .
= ∑k pkdWk

.
= Fw · dW, (64b)

as given earlier in Equation (27). It is based on using the mechanical definition (force X
displacement) of work. The macroforce corresponding to W = (V, ξ) is Fw = (P, A), where
P = 〈P〉, and A = 〈A〉. The corresponding SI-macrowork is given earlier in Equation (32a).

The above discussion proves that the definition of macroheat and macrowork is valid
for anyMarb. It is useful to compare the above approach with the traditional formulation
of the first law in terms of deQ(t) and deW(t): both formulations are valid in all cases. It
should be mentioned that the above identification is well known in equilibrium statistical
mechanics, but its extension to irreversible processes and our interpretation is, to the best
of our knowledge, novel. While the instantaneous average Fw(t) such as the pressure
P(t) is mechanically defined under all circumstances, it will only be identified with the
thermodynamic definition of the instantaneous pressure

P(t) = −(∂E/∂V)S,ξ (65)

for a uniquely identified macrostate in SZ.
Being purely mechanical in nature, a trajectory is completely deterministic and cannot

describe the evolution of a macrostateM during P unless supplemented by thermody-
namic stochasticity, which requires pk(M) as discussed above [14]. Thermodynamics
emerges when quantities pertaining to the trajectories are averaged over the trajectory
ensemble {γk} with appropriate probabilities that will usually change during the process.

Conclusion 4. The change dE consists of two independent contributions- an isentropic change
dEm = −dW, and an stochastic change dEs = TarbdS. On the other hand, the MI-macroheat and
the MI-macrowork suffer from ambiguity; see, for example, Kestin [12].

Remark 7. It is clear from the above discussion that it is the macroheat and not the macrowork that
causes pk(t), and therefore the entropy to change. This is the essence of the common wisdom that
heat is random motion. But we now have a mathematical definition: macroheat is the isometric part
of dE(t) that is directly related to the change in the entropy through changes in pk(t). Macrowork
is that part of the energy change caused by isentropic variations in the "mechanical" state variables
W(t). This is true no matter how far the system is from equilibrium. Thus, our formulation of the
first law and the identification of the two terms is the most general one, and applicable to anyMarb.

Remark 8. The relationship between the macroheat and the entropy becomes simple only when
M happens to be in internal equilibrium, see Section 6.1, in which case Tarb(t) is replaced by
T(t), which has a thermodynamic significance; see Equation (72) and we have the thermodynamic
identity, called the Clausius Equality in Equation (5a) dQ(t) = T(t)dS(t) for Mieq, which is
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very interesting in that it turns the well-known Clausius inequality deQ = T0deS ≤ T0dS into
an equality.

For the sake of completeness, we briefly discuss the various attempts to the study of
the microanalogs dWk and dQk of the dW and dQ, respectively, that has flourished into an
active field in diverse branches of NEQT at diverse length scales from mesoscopic to macro-
scopic lengths [33,34,36–38,62–66]; see also some recent reviews [67–69]. Unfortunately,
this endeavor is apparently far from complete [12,33,34,36,37,62–90]. This is because of the
confusion about the meaning of macrowork and macroheat even in classical NEQT [9,12] in-
volving SI- or MI- description, which has only recently been clarified [32,41,51,52,55,91,92]
in the MNEQT, where a clear distinction is made between the generalized macrowork
(macroheat) dW (dQ) and the exchange macrowork (macroheat) deW (deQ). In an EQ pro-
cess, both macroworks (macroheats) have the same magnitude, but not in a NEQ process,
where the difference determines diW ≥ 0 (diQ ≥ 0).

It is important to draw attention to the following important fact. We first recog-
nize that the first law in Equation (23b) refers to the change in the energy caused by
exchange quantities. Therefore, dE on the left truly represents deE. Accordingly, we write
Equation (23b) as

deE = deQ− deW, (66)

which justifies Equation (21) for de. Subtracting this equation from Equation (23a), we
obtain the identity

diE = diQ− diW ≡ 0, (67)

which not only justifies Equation (21) for di but also Equation (22) for which we have used
Equation (9).

Remark 9. The above analysis demonstrates the important fact that the first law can be applied
either to the exchange process (de) or to the interior process (di). The last formulation is also
applicable to an isolated system.

5.3. Medium Σ̃

The above discussion can be easily extended to the medium (the suffix k̃ denotes its
microstates) with the following results

dW̃(t) = −dẼm ≡ −∑k̃ p̃k̃

∂Ẽk̃
∂w̃
· dw̃

= fw0 · dw̃ = −deW, (68)

dQ̃(t) = dẼs ≡ ∑k̃Ẽk̃dp̃k̃ = −deQ,

where all the quantities including k̃ refer to the medium, except deW and deQ, and have
their standard meaning. The analog of Equation (62) is dQ̃/dS̃ = T0 as expected; see
Equation (63). We clearly see that

dW0
.
= dW + dW̃ = diW ≥ 0 (69a)

such as when mechanical equilibrium is not present. In this case, we also have

dQ0
.
= dQ + dQ̃ = diQ ≥ 0, (69b)

with dW0 = dQ0 in view of Equation (22). In a finite process P , all infinitesimal quantities
are replaced by their net changes

∆W0
.
= ∆W + ∆W̃ = ∆Q0 = ∆iW ≥ 0, (69c)
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where ∆iW is obtained by integrating diW in Equation (77c) over P ; the result is given in
Equation (82), where it is discussed.

5.4. Irreversible Macrowork and Macroheat

We can now identify diW(t) and diQ(t) :

diW(t) ≡ −(dEm + dẼm), diQ(t) ≡ (dEs + dẼs), (70)

satisfying Equation (22), which follows from diE = 0; see Equation (9). It is easy to see that
diW(t) reproduces Equation (31), where we must use dw̃ = −dew, and dw =dew+diw.

6. Unique Macrostates
6.1. Internal Equilibrium

We now revert back to the original notation X and Z. We will refer to S(Z(t)) in terms
of microstate number W(Z(t)) in Equation (49b) as the time-dependent Boltzmann formula-
tion of the entropy or simply the Boltzmann entropy [65], whereas S(X) in Equation (51)
represents the equilibrium (Boltzmann) entropy. It is evident that the Gibbs formulation in
Equations (47) and (50) supersedes the Boltzmann formulation in Equations (48) and (51),
respectively, as the former contains the latter as a special limit. However, it should be also
noted that there are competing views on which entropy is more general [65,93]. We believe
that the above derivation, being general, makes the Gibbs formulation more fundamental.
The continuity of S(Z, t) follows directly from the continuity of pk(t). Its existence follows
from the observation that it is bounded above by ln W(Z) and bounded below by 0, see
Equation (49b).

We now introduce the central concept of the MNEQT, which is based on the existence
of S(Z) above; see Definition 5, which we now expand.

Definition 16. A NEQ macrostateM whose entropy is a state function S(Z) in SZ is said to be
an internal equilibrium (IEQ) macrostateMieq [41,55]; if not, its entropy S(Z, t) is an explicit
function of time t in SZ. An IEQ-macrostate in SZ is a unique macrostate in SZ.

We clarify this point. If we do not use ξ forM, which is not unique in SX, then its
entropy cannot be a state function in SX, and must be expressed as S(X, t). Thus, the
importance of ξ is to be able to deal with a state function entropy S(Z) by choosing an
appropriate number of internal variables. Throughout this work, we will only deal with
IEQ macrostates. However, as we will see, our discussion of NEQ macrowork will cover
all states.

Being a state function, S(Z) shares many of the properties of EQ entropy S(X), see
Definition 5:

1. Maximum: S(Z) is the maximum possible value of the NEQ entropy in SZ for a given
Z [41].

2. No memory -Its value also does not depend on how the system arrives in Mieq ≡
M(Z), i.e., whether it arrives there from another IEQ macrostate or a non-IEQ
macrostate [41]. Thus, it has no memory of the earlier macrostate.

There are some macrostates that emerge in fast changing processes such as the free
expansion that possess memory of the initial states so that their entropy will no longer be a
state function in SX. In this case, we need to enlarge the state space to SZ by including
internal variables as done in Section 14.

Remark 10. It may appear to a reader that the concept of entropy being a state function is very
restrictive. This is not the case as this concept, although not recognized by several workers, is
implicit in the literature where the relationship of the thermodynamic entropy with state variables
is investigated. To appreciate this, we observe that the entropy of a body in internal equilibrium
[41,55] is given by the Boltzmann formula in Equation (49b) in terms of the number of microstates
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corresponding to Z(t). In classical nonequilibrium thermodynamics [3], the entropy is always taken
to be a state function. In the Edwards approach [94] for granular materials, all microstates are
equally probable as is required for the above Boltzmann formula. Bouchbinder and Langer [42,43]
assume that the nonequilibrium entropy is given by Equation (49b). Lebowitz [65] also takes the
above formulation for his definition of the nonequilibrium entropy. As a matter of fact, we are not
aware of any work dealing with entropy computation that does not assume the nonequilibrium
entropy to be a state function. This does not, of course, mean that all states of a system are internal
equilibrium states. For states that are not in internal equilibrium, the entropy is not a state function
so that it will have an explicit time dependence. But, as shown elsewhere, Ref. [41] this can be
avoided by enlarging the space of internal variables. The choice of how many internal variables are
needed will depend on experimental time scales and cannot be answered in generality just as is the
case in EQ thermodynamics for the number of observables; the latter depends on the experimental
setup. A detailed discussion is offered elsewhere [45].

6.2. Gibbs Fundamental Relation

Being a state function, S(Z) in SZ forMieq results in the following Gibbs fundamental
relation for the entropy

dS =
∂S
∂Z
· dZ =

∂S
∂E

dE+
∂S
∂W
· dW, (71a)

which can be inverted to express the Gibbs fundamental relation for the energy as

dE = TdS− Fw · dW, (71b)

where we have introduced

β = 1/T .
= ∂S/∂E = 1/(∂E/∂S), (72)

Fw
.
= T∂S/∂W = −∂E/∂W (73)

as the inverse temperature of the system (we set the Boltzmann constant kB = 1
throughout the review), and have used Equation (28) for the generalized macroforce Fw.
Recalling Equation (64b), we see that the second term in Equation (71b) is nothing but the
SI-macrowork dW. Comparing Equation (71b) with Equation (23a), we can identify the
generalized macroheat dQ with TdS, which then proves Equation (5a).

It should be stated here that the choice and the number of state variables included in
X or Z is not so trivial and must be determined by the nature of the experiments [40]. We
will simply assume here that they have been specified. Just as S = S(X) is a state function of X
forMeq in SX, there areMieq in SZ for which S(Z) is a state function of Z.

The possibility of a Gibbs fundamental relation forMnieq is deferred to Section 8.3.

6.3. A Digression on the NEQ-Temperature

While the concept of the macrowork is quite familiar from mechanics, the concept of
the macroheat is peculiar to thermodynamics in view of Equation (5a). In EQ thermody-
namics, the macroheat dQ is directly proportional to the change dS, and the constant of
proportionality determines the EQ temperature T. Indeed, the concepts of entropy and
of temperature are unique to thermodynamics and are well established in EQ thermody-
namics. A Σ in thermal equilibrium with a Σ̃ at T0 obviously has the same temperature T0.
The temperature for an isolated system in equilibrium is also well defined; its inverse is
identified with the energy derivative of the equilibrium entropy [14]. The definition is valid
for all EQ systems, even those containing gravitational interaction. This is confirmed by
the fact that Bekenstein used it to identify the temperature of an isolated black hole [95,96].
The formulation is valid both classically and quantum mechanically [14].

The EQ definition of the temperature is formally identical to that in Equation (72),
which is valid in NEQT [41,51–53,55,91,92]. In this, we have a general thermodynamic
definition of a temperature for anyM. It is important to realize that the notion of a NEQ
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temperature is an absolute necessity for the Clausius statement of the second law that the
exchanged macroheat flows spontaneously from hot to cold to be meaningful.

It is clear from the above discussion that macrowork is the isentropic change in the
energy, while macroheat is the energy change due to the entropy change. This is not as
surprising a statement as it appears, since a mechanical system is usually thought of as
a system for which the entropy concept is not meaningful. A different way to state this
is that the entropy remains constant (isentropic) in any mechanical process as we have
done above. Planck [97] had already suggested that the temperature should be defined for
NEQ macrostates just as the entropy should be defined for them if we need to carry out a
thermodynamic investigation of a NEQ system. Such a temperature was apparently first
introduced by Landau [98] for partial set of the degrees of freedom (dof). This then allows
the possibility that the notion of temperature can be separately applied, for example, to
vibrational and configurational dof in glasses that are known to be out of equilibrium with
each other [46] in that they are ascribed different temperatures. This means that macroheat
would be exchanged between them until they come to equilibrium, but this is internally
exchanged. But there seems to be a lot of confusion about the meaning of the entropy
and temperature in NEQT ([8,24,40,93,99–105] (for example)), where different definitions
lead to different results. In contrast, the meaning of entropy and fields in equilibrium
thermodynamics has no such problem.

We agree with Planck and believe that there must exist a unifying approach to identify
the temperature forMarb; see Definition 6, with or without memory effects in SZ. The
inverse temperature defined above in Equation (72) is not directly applicable to nonIEQ-
macrostates in SZ for which S is not a state function, but can be extended to them so as to
accommodate memory effects as we do in Section 8.3. However, we will not consider them
in detail in this review.

Criterion 5. The identification of temperature inMarb must satisfy some stringent but obvious criteria:

C1 It must be intensive and must reduce to the temperature determined by Equation (72)
forMeq andMieq even for an isolated system.

C2 It must cover negative temperatures [106] that are commonly observed for some dof
such as nuclear spins in a system. As these dof are not involved in any macroscopic
motion ([14] (Section 73)), there is no kinetic energy involved. Most common occur-
rence of a negative temperature is when the above spin dof are out of equilibrium
with the other dof such as lattice vibrations in the system.

C3 It must satisfy the Clausius statement that macroheat between two objects always
flows spontaneously from hot to cold for positive temperatures. When negative
temperatures are considered, macroheat must flow from a system at a negative
temperature to a system at a positive temperature.

C4 It must be a global rather than a local property of the system so that we can differenti-
ate hot and cold between two different systems.

The first criterion ensures that the new temperature is an extension of the conventional
notion of the temperature that is valid when the entropy is a state function. This means
that the new notion of temperature is valid for any arbitrary macrostate. In addition, it
must exist even for an isolated system. The second criterion ensures that our formalism
includes negative temperatures that may occur in a lattice system. The third criterion
ensures compliance with the second law for interacting systems. This is a very important
criterion, which every notion of temperature must satisfy. We will come back to this issue
again in Section 6.5 where we prove it in the MNEQT. The last criterion ensures that the
temperature is associated with the entire system, whether the system is homogeneous or
not. This will be explained by direct calculations of inhomogeneous systems in Section 10.
By extension, the concept of a NEQ temperature can be also applied to different dof of a
system such as a glass under the assumption that they are weakly interacting in accordance
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with the approach taken by Landau [98]. This results in the Tool-Narayanaswamy relation
derived in Section 11.

Before we close this discussion, we wish to point out major differences between the
NEQ temperature T in the MNEQT and its other definitions. We first consider the M̊NEQT.
The most important theories belonging to this class are the classical local irreversible
thermodynamics (LNEQT) [3], the rational thermodynamics (RNEQT) [107], and the
extended irreversible thermodynamics (ENEQT) [104] as we had mentioned earlier. We
refer the reader to [40,104] for excellent reviews on these theories that use local densities of
energy e and entropy s. They are continuum theories, and can all be classified as continuum
M̊NEQT to be denoted by the CNEQT here. We consider them critically later in Section 15.
They differ in the choice of their state spaces. Considering the local entropy and energy
densities s and e, the inverse local temperature is defined as ∂s/∂e, and differs from the
global temperature in the MNEQT.

1. In the LNEQT, each local volume element is in EQ so the local temperature is the EQ
temperature of the volume element, and differs from T, which is a global temperature.

2. In the RNEQT, the temperature is taken as a primitive quantity along with the entropy.
Because of the memory effect, the temperature at any time depends on the entire
history. Thus, it is a local analog of the global temperature ofMnieq in the MNEQT,
but the latter is defined thermodynamically.

3. In the ENEQT, the fluxes are part of the state variables so the local temperature also
depends on them. Assuming the total entropy to also depend on the fluxes ([20], (see
Equation (5.66), for example)), one can identify the global analog of the temperature
in the ENEQT. However, as fluxes are MI-quantities, this temperature cannot be
compared with the SI-temperature in the MNEQT.

There is a recent attempt [108] to introduce another NEQ temperature by using
fluctuation theorems to determine the entropy generation, which is then related to the
Gouy-Stodola theorem derived later (see Equation (84b)). It is limited to a interacting Σ
in a medium Σ̃ so does not apply to an isolated system. In addition, its validity is limited
to the situation when the Gouy-Stodola theorem is valid as seen from the derivation of
Equation (84b).

6.4. Uniqueness of Sieq(Z) and T

We now give an alternative demonstration of the uniqueness of the entropy ofMieq
in SZ, which is based on the discussion of the internal variables in Section 3. Let us assume
that we divide Σ into a finite number of nonoverlapping EQ subsystems {Σi} such that
∪iΣi = Σ. Without loss of generality, we assume that the subsystems are not in EQ with
each other (their fields are not identical) so that Σ is in a NEQ macrostate. Let λ

(i)
corr denote

the correlation length of Σi, and we define λcorr = max
{

λ
(i)
corr

}
to denote the maximum

correlation length determining quasi-independence required for entropy additivity as
discussed in Section 2; see Equation (2). For this, we need to take the linear size ∆li & λcorr

of Σi. The EQ microstateM(i)
eq of Σi is uniquely described in SX. The additivity of entropy

gives Sieq that must be a function of {Xi}. Moreover, since eachM(i)
eq has a unique entropy

Si(Xi), Sieq also has a unique value

Sieq({Xi(t)}) = ∑iSi(Xi(t)). (74a)

As we need to express Sieq in terms of X(t) = ∑iXi(t), we need additional independent
linear combinations ξ(t) = ∪iξi(t) made from the set {Xi} as already discussed in Section 3
to ensure that S(Z(t)) depends on the same number n∗ of state variables as there are in
Sieq({Xi(t)}). This uniquely defines

S(Z(t)) = ∑iSi(Xi(t)) (74b)
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in SZ in terms of the unique values Si(Xi(t)). It is a mathematical identity between the left
side for ΣB and the right side for ΣC. We can also take Σi’s to be inMiieq’s in SZi ’s so that
Si(Zi(t)) are also uniquely defined. Then, the same reasoning as above also proves that

S(Z(t)) = ∑iSi(Zi(t)) (74c)

is unique by ensuring that the number of arguments n∗ are the same on both sides between
the entropies for ΣB and ΣC.

We now prove the following central theorem on the existence of NEQ entropy for any
Mieq with n∗ independent state variables.

Theorem 6. Existence: The SI-entropy S(Z(t)) for anyMieq exists, has a unique thermodynamic
temperature T, and is additive in SZ.

Proof. According to the postulates of classical thermodynamics, EQ entropies exist in SX
and are continuous. Therefore, Equation (74a) proves the existence of the entropy S(Z(t))
for anyMieq in the state space SZ, and is continuous. It follows from the existence of
S(Z(t)) thatMieq has a unique thermodynamic temperature T. In addition, S(Z(t)) is also
additive as follows from Equation (74c). This proves the theorem.

Corollary 1. The state space SZ contains SX as a proper subspace because of the presence of the
internal variables, except when Σ is in EQ, when they become the same.

Proof. For anyMieq, SZ contains all possible linear combinations of ξ(t) made from the
set {Xi}. Hence, it contains SX as a proper subspace. In EQ, internal variables become
superfluous as they are no longer independent so their affinity vanishes. Thus, SZ reduces
to SX in Equation

6.5. Irreversibility Inequalities inMieq

We consider the Hamiltonian H(x|w, ξ) in SZ. We only consider the case of ex-
tensive macrowork parameters. As mk evolves under the variation in W, its energy Ek
changes by dEk = −dWk without changing pk; see Equation (55b). The change deter-
mines the isentropic generalized macrowork dW = Fw · dW = −dEm. The stochasticity
appears from the generalized macroheat dQ = dEs = TdS. Recalling that for Σ̃, T = T0,
fw0 = (P0, · · · ), A0 = 0, we have in general,

deW = −dW̃ = fw0 · dew =P0dV + · · · , (75a)

deQ = −dQ̃ = T0deS, (75b)

where the missing terms in the top equation refires to other elements in w. The irreversible
macrowork diW

.
= dW − deW due to the thermodynamic macroforce ∆Fw has been given

in Equation (31).
Using deQ in dQ, we find

diQ = TdS− T0diS =

{
(T − T0)deS + TdiS
(T − T0)dS + T0diS

≥ 0. (76a)

Equating this with diW from Equation (31), we obtain for the irreversible
entropy generation

diS =

{
{(T0 − T)deS + ∆Fw · dW}/T
{(T0 − T)dS + ∆Fw · dW}/T0

≥ 0; (76b)
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see Equation (31) for ∆Fw · dW. Each term on the right side must be nonnegative for the
second law to be valid. Thus, in terms of ∆Fh = T0 − T, we see that the first term

∆FhdeS ≥ 0, (77a)

in the first equation, which proves the Clausius statement of the macroheat flow from “hot”
to “cold,” thus making sure that T indeed can be thought of as a "thermodynamic temper-
ature" of the entire system, even if the latter is inhomogeneous. This is the requirement
C4 for a thermodynamic temperature. Another important consequence of the second law
comes from the first term in the second equation [55]:

∆FhdS ≥ 0. (77b)

Similarly, the second term results in the inequality

diW ≡ ∆Fw · dW ≥ 0 (77c)

due to macroforce imbalance, and consists of three separate inequalities

(fw − fw0) · dew ≥ 0, fw · diw ≥ 0, A·dξ ≥ 0. (77d)

This thus proves the inequality for diW in Equation (31). Using the inequality for diW
in diQ = diW also proves the inequality for diQ in Equation (76a). All these inequalities
help drive the system towards EQ in accordance with the second law. We summarize the
result in the following corollary.

Corollary 2. The irreversible macrowork diW(t) or macroheat diQ(t) is nonnegative.

Proof. From Equation (77c), we find that

diW(t) = diQ(t) > 0 for T > 0 (78)

in accordance with the second law.

For example, if diW corresponds to the irreversible macrowork done by pressure
imbalance only (so that we omit the last term in diW in Equation (32b)), then

diW(t) = (P(t)− P0)dV(t) > 0. (79)

If the system’s pressure P(t) > P0, the pressure of the medium, the volume of the
system increases so that dV(t) > 0. In the opposite case, dV(t) < 0. In both cases,
diW(t) > 0 out of equilibrium. When diW(t) consists of several independent contributions,
each contribution must be nonnegative in accordance with the second law and Corollary 2.
The significance of the irreversible macrowork in Equation (79) has been discussed in
Refs [91,92], where it is shown that this macrowork results in raising the kinetic energy of
the center-of-mass of the surface separating Σ and Σ̃ by dKS and overcoming macrowork
dWfr done by all sorts of viscous or frictional drag. Because of the stochasticity associated
with any statistical system, both energies dissipate among the particles in the system and
appear in the form of macroheat diQ(t).

In the absence of any heat exchange (deS = 0) or for an isothermal system
(T = T0), we have

diQ = TdiS = diW, (80)

where diW is given by Equation (31).
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6.6. Internal Variables and the Isolated System

The above formulation of MNEQT is perfectly suited for considering an isolated
system Σ (deW = deQ ≡ 0) so that Equation (22) or diE = 0 in Equation (9) becomes
the most important thermodynamic equality. For an isolated system, dX = 0 so that
diW = A · dξ.

Theorem 7. The irreversible entropy generated within an isolated system is still related to the
dissipated macrowork performed by the internal variables.

Proof. As E remains fixed for an isolated system (dQ = TdiS), we have from Equation (23a)

diQ = TdiS = diW = A · dξ ≥ 0 (81)

in accordance with the second law.

Note that the above equation, though it is identical to Equation (80) in form, is very
different in that diW here is simply A · dξ. Same conclusion is also obtained when we apply
Equation (76b) to an isolated system.

Corollary 3. Neither the entropy can increase nor will there be any dissipated work unless some
internal variables are present in an isolated system. If no internal variables are used to describe an
isolated system, then thermodynamics requires it to be in Equation

Proof. The proof follows trivially from Equation (81).

6.7. Dissipation and Thermodynamic Forces

As the inequality diW ≥ 0, see Equations (31) and (77c), or ∆iW ≥ 0, see (69c), for the
irreversible macrowork forMieq in SZ follows from the second law, it is natural to identify
it as the dissipation or the dissipated work; recall that ∆iW is obtained by integrating diW in
Equation (31) over P

∆iW =
∫
P [(fw − fw0) · dew + fw · diw + A·dξ]. (82)

Definition 17. The irreversible macrowork diW ≥ 0 or ∆iW ≥ 0 forMieq belonging to SZ along
P , is identified as the dissipation or the dissipated work in the MNEQT.

The definition is applicable regardless of Z, and has contributions from macroforce
imbalance in SZ as given in Equation (30a) at each point in P . All microstates along the
path γP of P denote IEQ-macrostatesMieq belonging to SZ. In this sense, the definition is
a generalization of the definition of the lost work ∆Wlost in the M̊NEQT [11,12,14,16,25,26] in
an irreversible process P between EQ macrostatesAeq and Beq to any process P containing
Mieq between Aieq and Bieq. The overbar in P is for EQ macrostates Aeq and Beq. The lost
work is well known in the M̊NEQT; see for example, p. 12 in Woods [11] or Section 20 in
Landau and Lifshitz [14]. As ∆iS does not directly appear in the M̊NEQT, ∆Wlost, which is
given by

∆Wlost = (∆eW)rev − ∆eW, (83)

where (∆eW)rev is the exchange work during the reversible process P rev associated with P ,
is used to determine ∆iS indirectly as we now explain. We take Σ̃ = Σ̃′ ∪ Σ̃′′w, where Σ̃′ at
constant T0, P0 is thermally insulated from another working medium Σ̃′′w, with Σ0 = Σ ∪ Σ̃.
Let ∆eQ′ and ∆eW ′ be the exchange macroquantities from Σ̃′, which are well defined,
and ∆eW ′′ = −∆eW̃ ′′ the exchange macrowork from Σ̃′′w. We will closely follow Landau
and Lifshitz ([14] (where ∆eW̃ ′′ is denoted by R and deW̃ ′′ by dR)). We first consider an
infinitesimal process δP . In the M̊NEQT,

dE = deQ′ − deW ′ − deW ′′,
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so that deW̃ ′′ = dE− T0deS′ + P0dV = dE− T0dS + P0dV + T0diS, where we have used
dS = deS′ + diS. We thus have

deW̃ ′′ = dG− SdT0 + VdP0 + T0diS,

from which we obtain for P

∆eW̃ ′′ = ∆G−
∫
PSdT0 +

∫
PVdP0 +

∫
PT0diS,

which is the generalization of the known result in [14] to an arbitrary process in SX. For
fixed and constant T0 and P0, the first two integrals vanish and the third integral reduces to
T0∆iS over P . Thus, as the minimum of ∆eW̃ ′′ is given by ∆G, we derive the result in [14]:

∆eW̃ ′′ − ∆G = T0∆iS for fixed T0, P0.

Using ∆eW = −(∆eW̃ ′+∆eW̃ ′′), and recognizing that (∆eW)min = (∆eW)rev = −∆F,
we have proved not only Equation (83) but also

∆Wlost = −∆F− ∆eW. (84a)

We now show that we obtain the same result in the MNEQT, where we assume that
the temperature of Σ remains equal to T0 as assumed by Landau and Lifshitz [14], use
dE = T0dS− dW, and recognize that deW = deW ′ + deW ′′. Comparing it with the dE in
the M̊NEQT above, we immediately obtain

∆iW = ∆W − ∆eW = T0∆iS. (84b)

Thus, both theories give the same result in this simple example. But our general
expression for diW or ∆iW is not restricted to EQ terminal macrostates Aeq and Beq of
P ; they refer to any two end macrostates Aieq and Bieq of any arbitrary process P . The
procedure described by Landau and Lifshitz [14] or by Woods [11] is not general enough to
make ∆Wlost useful in all cases.

We now turn to our approach and relate dissipation with the entropy generation diS
for Σ in Equation (76b). The strategy is simple. We use Equation (22) and express diQ using
Equation (76a). Let us use the top equation, which gives

TdiS =
(T0 − T)

T0
deQ + diW ≥ 0. (85a)

For W = (V, ξ), it reduces to

TdiS =
(T0 − T)

T0
deQ + (P− P0)dV + Adξ ≥ 0; (85b)

see, for example, Ref. [16]. The first term in both equations is due to macroheat exchange
deQ with Σ̃ at different temperatures, which is not considered part of dissipation as we
have defined above.

It is clear that the root cause of dissipation is a "force imbalance" P(t) − P0, A(t) −
A0 ≡ A(t), etc. [11,12,41,51,52,54,55,91,92] between the external and the internal forces
performing macrowork, giving rise to an internal macrowork diW due to all kinds of force
imbalances in ∆Fw, which is not properly captured by dW̃ − dF in the M̊NEQT in all cases
as discussed above. The force imbalance are commonly known as thermodynamic forces
driving the system towards equilibrium.

The irreversible macrowork is present even if there is no temperature difference
such as in an isothermal process as long as there exists some nonzero thermodynamic
force. The resulting irreversible entropy generation is then given by TdiS = diW ≥ 0; see
Equation (76b). We summarize this as a conclusion [16]:
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Conclusion 8. To have dissipation, it is necessary and sufficient to have a nonzero thermodynamic
force. In its absence, there can be no dissipation.

We now prove one of the central results in the MNEQT in the following theorem.

Theorem 9. The proportionality parameter T in Equation (5a) or (62) satisfies all the criteria
(C1–C4) of a sensible temperature. Therefore, we identify T as the temperature of the system in any
arbitrary macrostateMarb.

Proof. As dQ and dS scale the same way with the size of Σ, T is an intensive quantity.
When the entropy is a state function in SZ or SZ′ ⊃ SZ, we have a Gibbs fundamental
relation given in Equation (71a). So the temperature is defined by a derivative in SZ or
SZ′ , the latter giving Tarb. This shows that C1 is satisfied for any Marb. As we have
not imposed any restrictions on the signs of dQ(t) and dS(t), the parameter T(t) can
be of any sign, which shows that C2 is satisfied. To demonstrate consistency with the
second law, we rewrite the top equation in Equation (76b) to express diS as a sum of two
independent contributions

diSQ(t) .
= (1/T − 1/T0)deQ(t), (86)

diSW(t) .
= diW(t)/T ≡ diQ(t)/T,

so that
diS(t) = diSQ(t) + diSW(t); (87)

here, diSQ(t) is generated solely by exchange macroheat deQ(t) at different temperatures,
and diSW(t) by the irreversible macrowork or macroheat diW(t) ≡ diQ(t). The two
contributions are independent of each other. Accordingly, both contributions individually
must be nonnegative in accordance with the second law. In particular, the inequality

diSQ(t) ≥ 0. (88)

For T(t) > T0, deQ(t) < 0 so that the macroheat flows from the system to the medium.
For T(t) < T0, deQ(t) > 0 so that the macroheat flows from the medium to the system.
This establishes that C3 is satisfied. As dQ(t) and dS(t) are global quantities, the parameter
T(t) is also a global parameter, which means that C4 is also satisfied. This proves the
theorem.

Because of the importance of C4, we give many example in Section 10 to justify that T
acts as a global temperature of the system even if it is composite with different temperatures.
These examples leave no doubt that C4 is satisfied.

We conclude this subsection by considering a special case, also studied by Landau and
Lifshitz ([14] (Section 13 and specifically Equation (13.4))): it deals with the irreversibility
generated only by macroheat exchange at different temperatures but no internal (macrowork)
dissipation. It follows from Equation (87) that diW = 0 in this case, even though there is
irreversibility (diS(t) > 0) due to the macroheat exchange. If there are internal variables
also, then A = A0 = 0 to ensure diW = 0. This example is important in that it shows that
just because there is irreversibility in the system, we do not have diW(t) ≡ diQ(t) 6= 0.
We see from Equation (87) that diS(t) = diSQ(t), which can be rewritten, using deQ(t) =
T0deS(t), as

deQ(t) = T(t)dS(t) = T0deS(t), (89)

a result also derived by Landau and Lifshitz; note that they use dQ for deQ. For diQ = 0,
we have dQ(t) = deQ(t) so that Equation (89) is consistent with Equation (5a), as it must.
In the presence of nonzero diQ, Equation (89) gets modified: one must subtract diQ from
the right side.
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6.8. Cyclic Process

For a general body that is not isolated, the concept of its internal equilibrium state
plays a very important role in that the body can come back to this macrostateMieq several
times in a nonequilibrium process. In a cyclic nonequilibrium process, such a macrostate
can repeat itself in time after some cycle time τc so that all state variables and functions
including the entropy repeat themselves:

Z(t + τc) = Z(t), M(t + τc) =M(t), S(t + τc) = S(t).

This ensures
∆cS ≡ S(t + τc)− S(t) = 0

in a cyclic process. All that is required for the cyclic process to occur is that the body must
start and end in the same internal equilibrium state; however, during the remainder of the
cycle, the body need not be in internal equilibrium.

The same argument also applies to a cyclic process that starts and returns toMeq after
some cycle time τc. However, the body need not be in EQ macrostates during the rest of
the cycle. We will consider such a case when we consider a NEQ Carnot cycle in Section 12.

6.9. Steady State

Consider a system between two different media as shown in Figure 2. For example,
we can consider Σ between two heat baths Σ̃h and Σ̃h replacing the two media in the figure.
We will study this example in the MNEQT in Section 10.3 using a composite system Σ
between the two heat sources. In the presence of two media, it is possible for Σ to reach
a steady state, in which it satisfies conditions similar to that for a cyclic process above in
terms of MI-macroquantities:

dZ = 0, dS = 0, (90a)

where the changes are over the system Σ. The above conditions in the MNEQT lead to
important relations between exchange and irreversible macroquantities:

diZ = −deZ, diS = −deS; (90b)

as usual, the irreversible contributions satisfy the second law inequalities. For E, we have
from Equation (23a)

dQ = dW = 0,

which follows from dQ = TdS = 0 forMieq in SZ or forMnieq in SZ′ . Therefore, in the
MNEQT,

diQ = −deQ ≥ 0, diW = −deW ≥ 0.

As a consequence,
deQ = deW ≤ 0,

a result that cannot be derived in the M̊NEQT by using the first law in Equation (23b).
It should be noted, as said earlier in Section 1, that the steady state occurs only over a

short period τ ∼ τst compared to the time τEQ required for the two media to equilibrate
with each other. The latter time period is extremely large compared to τst because of their
extreme sizes. For a time period longer than τst, the steady state cannot be treated as
steady as Σ will begin the equilibrium process between them so that eventually at τEQ, diS
will vanish as deQ → 0. We will not consider this possibility here, but can be studied in
the MNEQT.

6.10. Intrinsic Adiabaticity Theorem

We now have a clear statement of the generalization of the adiabatic theorem [14] for
nonequilibrium processes going on in a body in an arbitrary macrostate in terms of the
intrinsic quantity dS. We will call it the intrinsic adiabatic theorem.
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Definition 18. Intrinsic Adiabatic Process: An intrinsic adiabatic process is an isentropic process
(dS(t) = 0 and not necessarily deS(t) = 0).

Such a process also includes the stationary limit, i.e. the steady macrostate of a non-
equilibrium process discussed in the previous section. However, the extension goes beyond
the conventional notion of an adiabatic process commonly dealt with in the M̊NEQT,
according to which an adiabatic process [14] is one for which deQ(t) = 0, which is equiv-
alent to deS(t) = 0. If diS(t) = 0, it also represents a reversible process in a thermally
isolated system so that deQ(t) = 0. One can also have dS(t) = 0 in an irreversible process
during which

diS(t) = −deS(t) > 0; (91)

as usual, Equation (22) always remains satisfied. If the system is in aMarb, then we must
also have

diQ(t) = −deQ(t) = T0diS(t) > 0; (92)

recall Equation (62) for aMarb.

Theorem 10. In an intrinsic adiabatic process, the sets of microstates and of their probabilities pk
do not change, but de pk = −di pk 6= 0 for all k.

Proof. In terms de pk and di pk, Equations (91) and (92) become

∑
k

ηkdi pk = −∑
k

ηkde pk, (93a)

∑
k

Ekdi pk = −∑
k

Ekde pk. (93b)

Recognizing that there is only macrowork in dE, which requires pk not to change, we
conclude that

dpk = 0 for ∀k

in an adiabatic process. As diS(t) does not vanish in an irreversible process, di pk(t)
cannot vanish. Accordingly, de pk = −di pk 6= 0, ∀k for an irreversible adiabatic process.
The conditions in Equation (108) remain valid as expected. As pk’s do not change, no
microstate can appear or disappear. This proves the theorem.

7. Clausius Equality

We recall that Equation (5a), which we call the Clausius equality, follows from the
Gibbs fundamental equation for Mieq in SZ or Mnieq in SZ′ , see Equation (71b). It is
merely is a consequence of the state function S for a Mieq or Mnieq in respective state
spaces so the equality is also valid for any Marb, see Equation (62). Here, we are only
concerned with someMieq. The equality is very interesting, and should be contrasted with
the Clausius inequality

deQ ≤ T0dS. (94)

First, it follows from Equation (5a) that dQ/T is nothing but the exact differential dS for
Mieq so that ∮

dQ(t)/T(t) ≡ 0 (95)

for any cyclic process; here we have added the time argument for clarity. It is only because
of the use of dQ(t) in place of deQ(t) that the Clausius inequality has become an equality.
The equality should not be interpreted as the absence of irreversibility (∆iS > 0) as is clear
from Equation (96) obtained by using diS(t) ≡ dS(t)− deS(t) for a cyclic process taking
time τ:

N(t, τ) ≡
∮

diS(t) = −
∮

deQ(t)/T0 ≥ 0, (96)
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which is the second law for a cyclic process, and represents the irreversible entropy generated
in a cycle. This is the original Clausius inequality. The quantity N(t) is the uncompensated
transformation of Clausius [16] that is directly related to diS(t) [109]; in contrast, N0(t, τ)

N0(t, τ) ≡
∮

diQ(t)/T(t) ≡
∮

diW(t)/T(t) ≥ 0, (97)

where we have used the fundamental identity in Equation (22), is determined by the
irreversible macroheat diQ(t) or the irreversible macrowork diW(t), and represents a
different quantity as is evident. In terms of the two macroheats, we have∮

diQ(t)/T(t) = −
∮

deQ(t)/T(t) ≥ 0, (98)

which results in a new Clausius inequality∮
deQ(t)/T(t) ≤ 0; (99)

compare with the original Clausius inequality in Equation (96).

8. Extended State Space andMnieq

8.1. Choice of Z

We first discuss how to choose a particular state space for a unique description of a
macrostateM depending on the experimental setup. To understand the procedure for this,
we begin by considering a set ξn of internal variables (ξ1, ξ2, · · · , ξn) and Zn

.
= X ∪ ξn to

form a sequence of state spaces S
(n)
Z . In general, one may need many internal variables,

with the value of n increasing asM is more and more out of EQ [45] relative toMeq. We

will take n∗ to be the maximum n in this study, even though n << n∗ needed for S
(n)
Z

will usually be a small number in most cases. We refer to Section 6.4, where the choice
of n∗ is determined by the mathematical identity in Equation (74b) in S

(n∗)
Z . The two

most important but distinct time scales are τobs, the time to make observations, and τeq,
the equilibration time for a macrostateM to turn intoMeq. For τobs < τeq, the system
will be in a NEQ macrostate. Let τi denote the relaxation time of ξi needed to come to its
equilibrium value so that its affinity Ai → 0 [3,16,45,48–50]. For convenience, we order ξi
so that

τ1 > τ2 > · · · ;

we assume distinct τi’s for simplicity without affecting our conclusions. For τ1 < τobs, all
internal variables have equilibrated so they play no role in equilibration except thermo-
dynamic forces T − T0, P− P0, etc. associated with X that still drive the system towards
Equation We choose n satisfying τn > τobs > τn+1 so that all of ξ1, ξ2, · · · , ξn have not
equilibrated (their affinities are nonzero). They play an important role in the NEQT,
while ξn+1, ξn+2, · · · need not be considered as they have all equilibrated. This specifyM
uniquely in S

(n)
Z , which was earlier identified as in IEquation

Note that NEQ macrostates with τn+1 > τobs > τn+2 are not uniquely identifiable in
S

(n)
Z , even though they are uniquely identifiable in S

(n+1)
Z . Thus, there are many NEQ

macrostates that are not unique in S
(n)
Z . The unique macrostatesMieq are special in that

its Gibbs entropy S(Zn) is a state function of Zn in S
(n)
Z . Thus, given τobs, we look for the

window τn > τobs > τn+1 to choose the particular value of n. This then determines S
(n)
Z

in which the macrostates are in IEquation From now onward, we assume that n has been
found and S

(n)
Z has been identified. We now suppress n and simply use SZ below.

Remark 11. The linear sizes of various subsystems introduced in Section 6.4 must be larger than
the correlation length λcorr as discussed elsewhere [41] for the first time, and briefly revisited in
Section 2 to ensure entropy additivity; see also Section 15. Therefore, it is usually sufficient to take
the linear size of Σ to be a small multiple (for example, 10 to 20) of the correlation length to obtain a
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proper thermodynamics, which is extensive. This means that we will usually need a theoretically
manageable but small number of internal variables n.

8.2. Microstate Probabilities forMieq

AsMieq is unique in SZ, we need to identify the unique set {pk}. If we keep W fixed
inMieq as the parameter, then Fwk are fluctuating microforces in SZ as we have seen in
Section 5.2. In additions, we have microstate energies Ek also fluctuating. We need to
maximize the entropy S(Z) at fixed

E = ∑
k

Ek pk, Fw = ∑
k

Fwk pk

by varying pk without changing {mk} , i.e. Ek and Fwk. This variation has nothing to do
with dpk in a physical process. Using the Lagrange multiplier technique, it is easy to show
that the condition for this in terms of three Lagrange multipliers with obvious definitions is

ηk = λ1 + λ2Ek + λ3 · Fwk, (100)

from which follows the statistical entropy S = −(λ1 + λ2E + λ3 · Fw); we have reverted
back to the original symbol for the statistical entropy here. It is now easy to identify
λ2 = −β, λ3 = −βW by comparing dS with dS in Equation (71a) by varying E and W so
we finally have

pk = exp[β(Ĝ− Ek −W · Fwk)], (101)

where λ1 = βĜ with Ĝ(t) is a normalization constant and defines a NEQ partition function

exp(−βĜ) ≡∑
k

exp[−β(Ek + W · Fwk)]. (102a)

It is easy to verify that

Ĝ(T, W) = E + W · Fw − TS, (102b)

so that if we neglect the fluctuations Ek − E and Fwk − Fw and replace Ek by E and Fwk by
Fw, then pk reduces to the flat distribution pk = 1/W(E, W) = exp[β(Ĝ− E−W · Fw)] =
exp(−S) in Remark 5, which can be identified as the microstate probability in the NEQ
microcanonical ensemble. It should be stressed that this is consistent with the well-known
fact that thermodynamics does not describe fluctuations; the latter require using statistical
mechanics [14].

It should be remarked that the Lagrange multipliers in pk are determined by com-
paring the resulting entropy to match exactly the Gibbs fundamental relation, a thermo-
dynamic relation. This then proves that S is the same as the thermodynamic entropy S
up to a constant [52], which can be fixed by appeals to the third law, according to which
S vanishes at absolute zero. We avoid considering here the issue of a residual entropy,
which is discussed elsewhere [45,58]. The pk above clearly shows the effect of irreversibility
and is very different from its equilibrium analog peq

k

peq
k = exp[β0(Ĝ(T0, w)− Ek −w · fwk)],

see Equation (28), obtained by replacing W by w, Fwk by fw0k, and β by β0. The fluctuating
Ek, fwk satisfy

E = ∑
k

Ek peq
k , fw0 = ∑

k
fw0k peq

k .

The observation time τobs is determined by the way T and W are changed during a
process. Thus, during each change, τobs must be compared with the time needed for Σ
to come to the next IEQ macrostate, and for the microstate probabilities to be given by
Equation (101) with the new values of T and W.



Entropy 2021, 23, 1584 37 of 63

8.3.Mnieq in SZ

We now focus on a non-unique macrostateMnieq in SZ. This will be needed if τobs
is reduced to make the process faster so that instead of falling in the window (τn, τn+1), it
now falls in a higher window such as (τn+1, τn+2). As said above,M can now be treated as
a unique macrostate in a larger state space SZ′ ⊃ SZ. Let ξ′(t) denote the set of additional
internal variables needed over SZ so that

Z′(t) = (Z(t), ξ′(t)).

The entropy S(Z′(t)) = S(Z(t), t) for Mieq(t) in SZ′ satisfies the Gibbs funda-
mental relation

dS(Z′(t))=
∂S
∂E

dE+
∂S
∂W
· dW+

∂S
∂ξ′
· dξ′,

where W is the work variable in SZ. Expressing the last term as

∂S
∂ξ′
· dξ′

dt
dt,

we obtain the following generalization of the Gibbs fundamental relation forMnieq(t) in SZ:

dS(Z(t), t) =
∂S
∂E

dE+
∂S
∂W
· dW+

∂S
∂t

dt, (103a)

where
∂S
∂t

.
=

∂S
∂ξ′
· dξ′

dt
≥ 0. (103b)

In SZ′ , we can identify the temperature T as the thermodynamic temperature in SZ′

by the standard definition. But, it is clear from the above discussion that ∂S(Z′(t))/∂E in
SZ′ has the same value as ∂S(Z(t), t)/∂E in SZ. Therefore, we are now set to identify Tarb
in Equation (62) as a thermodynamic temperature.

Remark 12. Tarb in Equation (62) in SZ is identified by the same derivative in the Gibbs funda-
mental relation in SZ′ as follows

βarb = 1/Tarb = ∂S(Z′(t))/∂E = ∂S(Z(t), t)/∂E. (104)

Definition 19. As the presence of ∂S/∂t above in SZ is due to "hidden" internal variables in ξ′,
we will call it the hidden entropy generation rate, and

diShid(t) =
∂S
∂t

dt =
∂S
∂ξ′
· dξ′ ≥ 0, (105a)

the hidden entropy generation. It results in a hidden irreversible macrowork

diWhid .
= TdiShid = A′ · dξ′, (105b)

in SZ due to the hidden internal variable with affinity A′.

Remark 13. A macrostate Mnieq(t) with S(Z(t), t) can be converted to Mieq(t) with a state
function S(Z′(t)) in an appropriately chosen state space SZ′ ⊃ SZ by finding the appropriate
window in which τobs lies. The needed additional internal variable ξ′ determines the hidden entropy
generation rate ∂S/∂t in Equation (103b) due to the non-IEQ nature of Mnieq(t) in SZ, and
ensures validity of the Gibbs relation in Equation (103a) for it, thereby providing not only a new
interpretation of the temporal variation of the entropy due to hidden variables but also extends the
MNEQT toMnieq(t) in SZ.
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The above discussion strongly points towards the possible.

Proposition 2. The MNEQT provides a very general framework to study anyMnieq(t) in SZ,
since it can be converted into aMieq(t) in an appropriately chosen state space SZ′ , with diShid(t)
originating from hidden internal variable ξ′.

Remark 14. In a process P resulting inMnieq(t) in SZ, it is natural to assume that the terminal
macrostates in P areMieq so the affinity corresponding to ξ′ must vanish in them.

Remark 15. By replacing Z by X, and Z′ by Z, we can also express the Gibbs fundamental relation
for any NEQ macrostate in SX as

dS(X(t), t) =
∂S
∂E

dE+
∂S
∂w
· dw+

∂S
∂t

dt, (106)

by treatingM asMieq in SZ. In a NEQ process P between two EQ macrostates but resulting
inMieq(t) between them in SZ, the affinity corresponding to ξ must vanish in the terminal EQ
macrostates of P .

Equation (106) proves extremely useful to describeM in SX as it may not be easy to
identify ξ in all cases.

Remark 16. The explicit time dependence in the entropy forMneq in SX orMnieq(t) in SZ is
solely due to the internal variables, which do not affect dQ = dEs, Equation (5a) remains valid,
with T defined as the inverse of ∂S/∂E at fixed w, t or W, t in the two state spaces, respectively; see
Equation (72).

8.4. External and Internal Variations of dpk(t)

We focus on Nk in Section 4.2, and partition its change dNk in accordance with the
micropartition rule; see Definition 11. We take N fixed. Then, the macropartition results in
the partition for dpk given in Equation (17a), where de pk is the change due to exchanges
with the medium and di pk the change due to internal processes. It follows from the
partition that

deQ(t) ≡ ∑kEkde pk(t), diQ(t) ≡ ∑kEkdi pk(t), (107)

where we have replaced d by dα in Equation (61). As dαQ(t) are thermodynamic quantities,
they must not change their values if we change Ek by adding a constant toH. This requires

∑kdα pk(t) = 0, ∀α, (108)

and put a limitation on the possible variations dα pk. We will assume this to be true. Using
this fact, we similarly have

deS(t) ≡ −∑kηkde pk(t), diS(t) ≡ −∑kηkdi pk(t). (109)

The relation deQ(t) = T0deS(t) can be expressed in terms of de pk(t)

∑k(ηk − β0Ek)de pk = 0.

Similarly, the relation diQ(t) = T(t)dS(t)− T0deS(t) can be written as

∑k(Ek − T0ηk)di pk = (T(t)− T0)∑kηkdpk,

which acts as a constraint on possible variations di pk, given that dpk can be directly obtained
from Equation (101).
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9. A Model Entropy Calculation

We consider a gas of non-interacting identical structureless particles with no spin,
each of mass m, in a fixed region confined by impenetrable walls (infinite potential well).
Initially, the gas is in a NEQ macrostate, and is isolated in that region. In time, the gas will
equilibrate and the microstate probabilities change in a way that the entropy increases. We
wish to understand how the increase happens.

9.1. 1-Dimensional Ideal Gas

In order to be able to carry out an exact calculation, we consider the gas in a
1-dimensional box of initial size Lin. As there are no interactions between the particles, the
wavefunction Ψ for the gas is a product of individual particle wavefunctions ψ. Thus, we
can focus on a single particle to study the nonequilibrium behavior of the gas [110–112].
The simple model of a particle in a box has been extensively studied in the literature but
with a very different emphasis. Refs. [113–117] The particle only has non-degenerate
eigenstates whose energies are determined by L, and a quantum number k. We use the
energy scale ε1 = π2h̄2/2mL2

in to measure the eigenstate energies, and α = L/Lin so that

εk(L) = k2/α2; (110)

the corresponding eigenfunctions are given by

ψk(x) =
√

2/L sin(kπx/L), k = 1, 2, 3, · · · . (111)

The pressure generated by the eigenstate on the walls is given by [118]

Pk(L) ≡ −∂εk/∂L = 2εk(L)/L. (112)

In terms of the eigenstate probability pk(t), the average energy and pressure are given by

ε(t, L) ≡ ∑k pk(t)εk(L), (113a)

P(t, L) ≡ ∑k pk(t)Pk(L) = 2ε(t, L)/L. (113b)

The entropy follows from Equation (47) and is given for the single particle case by

s(t, L) ≡ −∑k pk(t) ln pk(t).

The time dependence in ε(t) or P(t) is due to the time dependence in pk and εk(L).
Even for an isolated system, for which ε remains constant, pk cannot remain constant as
follows directly from the second law [53] and creates a conceptual problem because the
eigenstates are mutually orthogonal and there can be no transitions among them to allow
for a change in pk.

As the gas is isolated, its energy, volume and the number of particles remain constant.
As it is originally not in equilibrium, it will eventually reach equilibrium in which its
entropy must increase. This requires the introduction of some internal variables even in this
system whose variation will give rise to entropy generation by causing internal variations
di pk(t) in pk(t). Here, we will assume a single internal variable ξ(t). What is relevant is
that the variation in ξ(t) is accompanied by changes dpk(t) occurring within the isolated
system. According to our identification of heat with changes in pk(t), these variations must
be associated with heat, which in this case will be associated with irreversible heat diQ(t).

9.2. Chemical Reaction Approach

A way to change pk in an isolated system is to require the presence of some stochastic
interactions, whose presence allows for transitions among eigenstates [51]. As these
transitions are happening within the system, we can treat them as “chemical reactions”
between different eigenstates [1,3,16] by treating each eigenstate k as a chemical species.



Entropy 2021, 23, 1584 40 of 63

During the transition, these species undergo chemical reactions to allow for the changes in
their probabilities.

We follow this analogy further and extend the traditional approach [1,3,16] to the
present case. For the sake of simplicity, our discussion will be limited to the ideal gas in a
box; the extension to any general system is trivial. Therefore, we will use microstates {mk}
instead of eigenstates in the following to keep the discussion general. Let there be Nk(t)
particles in mk at some instant t so that

N = ∑k Nk(t)

at all times, and pk(t) = Nk(t)/N. We will consider the general case that also includes
the case in which final microstates refer to a box size L′ different from its initial value L.
Let us use Ak to denote the reactants (initial microstates) and A′k to denote the products
(final microstates). For the sake of simplicity of argument, we will assume that transitions
between microstates is described by a single chemical reaction, which is expressed in
stoichiometry form as

∑kak Ak −→ ∑ka′k A′k. (114)

Let Nk and N′k denote the population of Ak and A′k, respectively, so that N = ∑k Nk =

∑k N′k. Accordingly, pk(t) = Nk(t)/N for the reactant and pk(t + dt) = N′k(t)/N for the
product. The single reaction is described by a single extent of reaction ξ and we have

dξ(t) ≡ −dNk(t)/ak(t) ≡ dN′k′(t)/a′k′(t) for all k, k′.

It is easy to see that the coefficients satisfy an important relation

∑kak(t) = ∑ka′k(t),

which reflects the fact that the change |dN| in the reactant microstates is the same as in the
product microstates. The affinity in terms of the chemical potentials µ is given by

A(t) = ∑ak(t)µAk (t)−∑a′k(t)µA′k
(t),

and will vanish only in "equilibrium," i.e. only when pk’ s attain their equilibrium values.
Otherwise, A(t) will remain non-zero. It acts as the thermodynamic force in driving the
chemical reaction [1,3,16]. But we must wait long enough for the reaction to come to
completion, which happens when A(t) and dξ/dt both vanish. The extent of reaction ξ is
an example of an internal variable. There may be other internal variables depending on the
initial NEQ macrostate. This will be discussed in the following section.

10. Simple Applications
10.1. Isothermal Expansion

Let us first consider an isothermal expansion of an ideal gas in which the temperature
T of the gas remains constant and equal to that of the medium T0. During an irreversible
isothermal expansion, energy is pumped into the gas isothermally from outside so E(t)
remains constant. The pumping of energy will result in the change de pk(t). This will
determine deS(t) = deQ(t)/T0. In addition, the gas may undergo transitions among
various energy levels, as discussed in Section 9.2, without any external energy input, which
will determine the change di pk(t). From Equation (76a), we determine diQ(t) = T0diS(t),
and consequently diW(t). Thus,

[P(t)− P0]dV(t) + A(t)dξ(t) = T0dS(t)− deQ(t).

Such a calculation will not be possible using the first law in Equation (23b) in
the M̊NEQT.
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10.2. Intrinsic Adiabatic Expansion

In a nonequilibrium intrinsic adiabatic process, we have diW(t) = − deQ(t) so the
heat exchange |deQ(t)| = T0|deS(t)| is converted into the irreversible work. We can use
this to determine the work diWξ(t) due to the single internal variable

A(t)dξ(t) = −deQ(t)− (P(t)− P0)dV > 0.

The identification diW(t) = − deQ(t) and the calculation of A(t)dξ(t) and of diS(t)
cannot be done in the traditional formulation of the first law in the M̊NEQT, in which
deQ(t) = 0 for the traditional adiabatic process so that dE = −deW(t).

10.3. Composite Σ with Temperature Inhomogeneity

Here, we will show by examples that the thermodynamic temperature T of Σ allows
us to treat it as a "black box" ΣB without knowing its detailed internal structure such as
its composition in terms of two subsystems Σ1 and Σ2. Alternatively, we can treat Σ as
a combination ΣC of Σ1 at T1 and Σ2 at at T2 < T1, and obtain same thermodynamics.
Thus, both approaches are equivalent, which justifies the usefulness and uniqueness (see
Theorem 6) of T as a thermodynamically appropriate global temperature.

In the following, we will consider various cases that can be obtained as special cases
of the following general situation (2): Σ1 in thermal contact with the medium Σ̃h1 at
temperature T01, and Σ2 in thermal contact with the medium Σ̃h2 at temperature T02, with
the two media having no mutual interaction.

We will consider the two realizations for Σ: ΣB and ΣC to compare their predictions.
As discussed for the case (b) in Section 3, Σ1 and Σ2 are always taken to be in EQ, but Σ in
IEquation The entropies in the two realizations are

SB(t) = S(E(t), ξ(t)); SC = S1(E1(t)) + S2(E2(t)), (115)

and have the same value; recall that E(t) = E1(t) + E2(t), and ξ(t) = E1(t)− E2(t) for Σ(t);
see Equation (36). For clarity, we will often use the argument t to emphasize the variations
in time t in this section. In general, the irreversible entropy generation is given by

diS(t) = dS̃1(t) + dS̃2(t) + dS(t), (116)

where dS should be replaced by dSB or dSC as the case may be:

dSB(t) = β(t)dE(t) + β(t)A(t)dξ(t),
dSC(t) = β1(t)dE1(t) + β2(t)dE2(t),

(117)

where we are using the inverse temperatures for various bodies. Let deQl(t), l = 1, 2 be the
energy or macroheat transferred to Σl(t) from Σ̃(l)

h , and dEin(t) = deQin(t) the energy or
macroheat transferred from Σ1(t) to Σ2(t). We have, using δ1 = +1 and δ2 = −1,

dEl(t) = deQl(t) + δldEin(t),

dE(t) = deQ1(t) + deQ2(t), (118a)

dS̃l(t) = −deSl(t) = −β0ldeQl(t).

We see that dE(t) is unaffected by the internal energy transfer dEin(t), while

dξ(t) = deQ1(t)− deQ2(t) + 2dEin(t), (118b)

is affected by the macroheat exchange disparity deQ1(t)− deQ2(t) along with dEin(t).
We finally have

diS(t) = −∑l β0ldeQl(t) + dS. (119)

We now consider various cases to make our point.
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10.3.1. Isolated Σ

We first consider the realization ΣB. Using dE(t) = dE1(t) + dE2(t), dξ(t) = dE1(t)−
dE2(t), see Equations (36) and (117) for dSB(t) above, we obtain

β(t) =
β1(t) + β2(t)

2
, β(t)A(t) =

β1(t)− β2(t)
2

. (120a)

This identifies T(t) in terms of T1(t) and T2(t). As EQ is attained, T(t)→ T0, the EQ
temperature between Σ1 and Σ2, and A(t)→ A0 = 0 as expected. In the following, we will
use A′(t) for β(t)A(t) for simplicity. In terms of β and A′, we also have

β1 = β + A′, β2 = β− A′. (120b)

We now justify that in this simple example, A′(t)dξ(t) determines diS(t) due to irre-
versibilty in Σ(t); see Equation (80). Setting dE(t) = 0 in dSB(t), we have by
direct evaluation,

diS(t) = A′(t)dξ(t) = β(t)diW(t). (121)

The last equation follows from the general result in Equation (81). It should be
emphasized that the existence of diS(t) ≥ 0 due to ξ inMieq is consistent withMieq as a
NEQ macrostate, even though its entropy is a state function in the extended state space.

We now consider ΣC, which is also very instructive to understand the origin of diS(t)
in a different way. Considering internal energy or macroheat transfer dEin(t) = deQin(t)
between Σ1(t) and Σ2(t) at some instant t, we have

dS1(t) =
dEin(t)
T1(t)

, dS2(t) = −
dEin(t)
T2(t)

, (122a)

due to this transfer. This results in

diS(t) = [β1(t)− β2(t)]dEin(t) = A′dξ(t), (122b)

since dξ(t) = dE1(t)− dE2(t) = 2dEin(t). Thus, the physical origin of diS(t) is the internal
entropy change of the subsystems.

10.3.2. Σ Interacting with Σ̃h

To further appreciate the physical significance of the NEQ T(t) of the above com-
posite system Σ(t), we allow it to interact with Σ̃h, a heat bath, at the EQ temperature T0.
For this, we take Σ̃h1 and Σ̃h2 at the same common temperature T0 = T01 = T02 so that we
can treat them as a single medium Σ̃h with macroheat exchange deQ(t). We thus obtain
from Equation (119)

diS(t) = −β0deQ(t) + dS.

We will consider two different kinds of interaction below:
(i) We first consider ΣB(t) inMieq at T(t) so we use dSB(t) above. We thus have (using

the identity deS(t) = β0deQ(t))

diS(t) = [β(t)− β0]deQ(t) + A′(t)dξ(t), (123)

which is consistent with the general identity given by the top equation in Equation (76a),
a result which was derived for a single system at temperature T(t). This confirms that
the composite ΣC here can be treated as a noncomposite ΣB at T(t). To be convinced that
the above diS(t) includes the internally generated irreversibility in Equation (121) due to
macroheat transfer between Σ1(t) and Σ2(t), we only have to set deS(t) = 0 to ensure the
isolation of Σ. We reproduce Equation (121) as diQ(t) = diW(t). The remaining source
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of irreversibility T(t)diSQ(t) given by the first term above is due to external macroheat
exchange between Σ and Σ̃h

diSQ(t) = [T0β(t)− 1]deS(t), (124)

as expected; see the first term on the right in Equation (85b).
(ii) We take treat Σ(t) as ΣC(t) in contact with Σ̃h. We deal directly with the two

macroheat exchanges deQl(t), l = 1, 2 to Σl(t) from Σ̃h, and the internal energy transfer
dEin(t). Using dEl(t) from Equation (118a) in dSC given in Equation (119), we find that

diS(t) = ∑l [βl(t)− β0]deQl(t) + [β1(t)− β2(t)]dEin(t).

Using Equation (120b) to express βl , we can rewrite the above equation as

diS(t) = [β(t)− β0]deQ(t) + A′dξ,

where we have used the identity

deQ(t) = deQ1 + deQ2, (125)

and have found
dξ = deQ1 − deQ2 + 2dEin (126)

using its general definition dξ(t) = dE1(t)− dE2(t). We thus see that diS(t) obtained by
both realizations are the same as they must. However, the realization ΣC(t) allows us to
also identify dξ.

Each exchange generates irreversible entropy following Equation (124). Using
deQ(t) = deQ1(t) + deQ2(t) in dQ(t) = T(t)dS(t) to determine diQ(t), we find the gener-
alization of Equation (123):

diS(t) = [β1(t)− β2(t)]deQin(t) + ∑l [T0βl(t)− 1]deSl(t). (127)

It is easy to see that the last term above gives nothing but the sum of the irreversible
entropies due to external exchanges of macroheat by Σ1(t) and Σ2(t) with Σ̃h:

diSQ(t) = diS
Q
1 (t) + diS

Q
2 (t), (128)

where
diS

Q
l (t) = [T0βl(t)− 1]deSl(t), l = 1, 2 (129)

is the external entropy exchange of Σl(t) with Σ̃h.
Thus, whether we treat Σ as a system ΣB at temperature T(t) or a collection ΣC of Σ1(t)

and Σ2(t) at temperatures T1(t) and T2(t), respectively, we obtain the same irreversibility.
In other words, T(t) is a sensible thermodynamic temperature even in the presence of
inhomogeneity.

10.4. Σ Interacting with Σ̃h1 and Σ̃h2

We now consider our composite Σ in thermal contact with two distinct and mutually
noninteracting stochastic media Σ̃h1 and Σ̃h2 at temperatures T01 and T02. We will again
discuss the two different realizations as above.

(i) We first consider ΣB(t) at temperature T(t), which interacts with the two Σ̃h’s,
and use the general result in Equation (119). A simple calculation using dSB generalizes
Equation (123) and yields

diS(t) = ∑l [β(t)− β0l ]deQl(t) + A′(t)dξ(t), (130a)
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since this reduces to that result when we set β01 = β02 = β0. As above, diQ(t) = diW(t) =
A(t)dξ(t); see Equation (121), which gives rise to the last term above. Thus, setting
deQl(t) = 0, l = 1, 2 to make Σ isolated, we retrieve diS(t) in Equation (121) as expected.
The first sum above gives the external entropy exchanges with the two stochastic media
as above.

(ii) We now consider ΣC, and allow Σ̃h1 to directly interact with Σ1(t) at temperature
T1(t) and Σ̃h2 to directly interact with Σ2(t) at temperature T2(t). Using dSC generalizes
Equation (123) and yields

diS(t) = ∑l [βl(t)− β0l ]deQl(t) + [β1(t)− β2(t)]dEin(t). (130b)

Again using Equation (120b) to express βl , we can rewrite the above diS(t) as the
diS(t) in Equation (130a) for ΣB, and also find that dξ is given by Equation (126).

It should be emphasized that the determination of diS(t) in Equations (130a) and
(130b) is valid for all cases of Σ interacting with Σ̃h1 and Σ̃h2 as we have not imposed
any conditions on T1(t) and T2(t) with respect to T01 and T02, respectively. Thus it is very
general. The derivation also applies to the NEQ stationary state, which happens when
T1(t)→ T01 and T2(t)→ T02. For the stationary case, using Equation (130b), we have

diSst = [β01 − β02]dEin, (131)

where all quantities on the right have their steady values. Thus, diSst is only determined
by the stationary value of the internal energy exchange dEin. The reader can easily verify
that diS(t) in Equation (130a) also reduces to the above result in the stationary limit.

From the above examples, we see that we can consider Σ in any of the two realization
ΣB and ΣC as we obtain the same thermodynamics in that diS(t) is identical. We emphasize
this important observation by summarizing it in the following conclusion.

Conclusion 11. If we consider Σ(t) as a single system ΣB with an uniform temperature T(t) and
with an internal variable ξ(t), we do not need to consider the energy transfer dEin(t) explicitly to
obtain diS(t). If we consider Σ(t) as a composite system ΣC formed of Σ1(t) and Σ2(t) at their
specific temperatures, then we specifically need to consider the energy transfer dEin(t) to obtain
diS(t) but no internal variable.

This conclusion emphasizes the most important fact of the MNEQT that the homo-
geneous thermodynamic temperature T(t) of ΣB can also describe an inhomogeneous
system ΣC. This observation justifies using the thermodynamic temperature T(t) for treat-
ing Σ(t) as a single system ΣB, a black box, without any need to consider the internal
energy transfers.

The above discussion can be easily extended to also include inhomogeneities such as
two different work media Σ̃(1)

w and Σ̃(2)
w corresponding to different pressures P01 and P02.

We will not do that here.

10.5. Σ Interacting with Σ̃w and Σ̃h

In this case, Σ is specified by two observables E and V so to describe any inhomogene-
ity will require considering at least two subsystems Σ1 and Σ2 specified by E1, V1 and E2,V2,
respectively. From these four observables, we construct the following four combinations

E1 + E2 = E, ξE = E1 − E2,

V1 + V2 = V, ξV = V1 −V2,

to express the entropy of the system

S(E, V, ξE, ξV) = S1(E1, V1) + S2(E2, V2)
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in terms of
E1,2 =

E± ξE

2
, V1,2 =

V ± ξV

2
.

Note that we have assumed that Σ1 and Σ2 are in EQ (no internal variables for
them). We now follow the procedure carried out in Section 10.3 to identify thermodynamic
temperature T, pressure P, and affinities:

β = (β1+β2)
2 , βP = (β1P1+β2P2)

2 ,
βAE = (β1−β2)

2 , βAV = (β1P1−β2P2)
2 .

(132)

All these quantities are SI-quantities and have the same values regardless of whether
Σ is isolated or interacting. A more complicated inhomogeneities will require more
internal variables.

Remark 17. We now make an important remark about Equation (85b) that contains only a single
internal variable. From what is said above, it must include at least two internal variables if Σ
contains inhomogeneity. in both E and V. If it contains inhomogeneity. in only one variable, then
and only then we will have at least one internal variable. Thus, either we will ξE or ξV as the case
may be.

11. Tool-Narayanaswamy Equation

We consider a simple NEQ laboratory problem to model the situation in a glass [55].
It is a system consisting of two "interpenetrating" parts at different temperatures T1 and
T2 > T1, but insulated from each other so that they cannot come to equilibrium. The two
parts are like slow and fast motions in a glass, and the insulation allows us to treat them
as independent, having different temperatures. This is a very simple model for a glass.
A more detailed discussion is given elsewhere [55], where each part was assumed to be in
EQ macrostates. Here, we go beyond the earlier discussion, and assume that the two parts
are in some IEQ macrostatesM1 andM2 with temperatures T1 and T2, respectively; we
have suppressed "ieq" in the subscripts for simplicity. Thus, there are irreversible processes
going on within each part so that there are nonzero irreversible macroheat diQ1 and diQ2
generated within each part. We wish to identify the temperature of the system that we treat
as a black box ΣB. This will require introducing its global temperature T. However, we also
need to relate it to T1 and T2 so that we need to treat Σ as ΣC. We now imagine that each
part is added a certain infinitesimal amount of exchange macroheat from outside, which we
denote by deQ1 and deQ2 so that dQ1 = deQ1 + diQ1 and dQ2 = deQ2 + diQ2. This does
not affect their temperatures. We assume the entropy changes to be dS1 and dS2. Then, we
have for the net macroheat and entropy change

dQ = dQ1 + dQ2, dS = dS1 + dS2.

We introduce the temperature T by dQ = TdS. This makes it a thermodynamic
temperature of the black box. Using dQ1 = T1dS1, dQ2 = T2dS2, we immediately find

dQ(1/T − 1/T2) = dQ1(1/T1 − 1/T2).

By introducing x = dQ1/dQ, which is determined by the setup, we find that T is
given by

1
T

=
x
T1

+
1− x

T2
. (133)

As x is between 0 and 1, it is clear that T lies between T1 and T2 depending on the
value of x. For x = 1/2, this heuristic model calculation reduces to that in Equation (120a)
as expected. The derivation also shows that the thermodynamic temperature T is not
affected by having two nonoverlapping parts or overlapping parts. A similar relation also
exists for the pressure P of a composite system; see Equation (156).
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If the insulation between the parts is not perfect, there is going to be some energy
transfer between the two parts, which would result in maximizing the entropy of the
system. As a consequence, their temperatures will eventually become the same. During
this period, T will also change until all the three temperatures become equal. This will
require additional internal variable or variables as in Section 10.3.

12. Irreversible Carnot Cycle

Let us consider an “irreversible” Carnot engine running between two heat sources
Σ̃h1 and Σ̃h2 as shown in Figure 5 that are always maintained at fixed temperatures T01
and T02, respectively, during each cyclic process Pcyc. As Σ needs to perform work, we
also need to consider it to be in constant with a work source Σ̃w. We first observe the
following features of a reversible Carnot cycle. The system, which we take to be formed
by an ideal gas, starts in thermal contact with Σ̃h1 in Aeq = Meq(T01, V1) as it expands
to V2 > V1, and ends in Meq(T01, V2) through an isothermal process P1eq resulting in
∆eQ1eq = ∆eW1eq > 0. It is then detached from Σ̃h1 so no heat is exchanged (∆eQ2eq = 0)
but exchanges work ∆eW2eq > 0 during the process P2eq as it expands to V3 and ends in
Meq(T02, V3) at temperature T02. The system is brought in thermal contact with Σ̃h2 now,
and the volume is compressed to V4 isothermally during the process P3eq and ends in
Meq(T02, V4). During P3eq, ∆eQ3eq = ∆eW3eq < 0. The choice of V4 is chosen so that Σ
comes back to Aeq =Meq(T01, V1) along a process P4eq after detaching it from Σ̃h2 during
which ∆eQ4eq = 0, but ∆eW4eq < 0. The four segments bring back Σ to its starting state
Aeq, and form a cycle Peq,cyc. It is well known that the EQ efficiency εeq of the Carnot
cycle is

εeq = 1− T02/T01, (134a)

so that
∆eWeq = εeq∆eQ1, (134b)

the equilibrium macrowork obtained from the cycle for a given ∆eQ1.

ΔeQ1

ΔeQ2

ΔeW

Figure 5. An irreversible Carnot cycle running between two heat reservoirs Σ̃h1 and Σ̃h2.

We now consider an irreversible cyclic process P , which consists of the same four
segments except that some or all may be irreversible. We have discussed such a pro-
cess in Section 6.8. However, to have a cyclic process, the system must start and end in
Meq(T01, V1), which does not require any internal variable. Being an irreversible process,
there is no guarantee that Σ would be in EQ macrostates at the end of P1,P2, and P3;
P4 must bring Σ to the EQ initial macrostate Meq(T01, V1). However, we will simplify
the calculation here by assuming that the end states in P1,P2, and P3 areMeq(T01, V2),
Meq(T02, V3), andMeq(T02, V4), respectively. However, relaxing this condition does not
change the results below.

Being a cyclic process, we have

∆cE = ∆cS = 0 (135a)
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over P . Thus, over P ,
∆eQ = ∆eW. (135b)

In the MNEQT, we also have over P ,

∆Q = ∆W. (135c)

Let ∆eQ1 = T01∆eS1 and ∆eQ3 = T02∆eS3 be the macroheat exchanges during P1 and
P3, and ∆eQ = ∆eQ1 + ∆eQ3. Similarly, let ∆eWl be the macrowork exchanges during
Pl , l = 1, 2, 3, 4, and ∆eW = ∑l∆eWl , the net exchange macrowork. From ∆cS = 0 follows

∆eQ1/T01 + ∆eQ3/T02 + ∆iS = 0,

which can be rewritten by simple manipulation as

∆eW = ∆eQ1(1− T02/T01)− T02∆iS, (136a)

where we have used the identity in Equation (135b). We can also express it as

∆eW = εeq∆eQ1 − T02∆iS ≤ ∆eWeq. (136b)

The efficiency of the irreversible Carnot cycle is given by

εirr = εeq − T02∆iS/∆eQ1 ≤ εeq. (137)

We remark that εirr above is similar to the result obtained by Eu ([109] (see Equation
(7.139))) in which the numerator of the last term is identified as "the total dissipation" by
Eu; however, the analysis is tedious compared to the one given here.

The determination of ∆iS requires the extended state space SZ needed for the four
process segments. We will focus on Equation (85b). Let Tl(t) and Pl(t) be the temper-
ature and pressure of Σ along Pl , respectively, with l = 1, · · · , 4 for Pl . As seen from
Equation (132), we need at least two internal variables ξEl and ξVl along Pl that are usually
different along the four segments. The corresponding affinities must vanish at the end
points of each segment because they are EQ macrostates. We will assume this to be the
case, and introduce

Al(t) · dξl(t) = AEl(t)dξEl(t) + AVl(t)dξVl(t)

for each segment. Then,

∆iSl =
∫
Pl

[(βl(t)− β0l)deQl(t) + (Pl(t)− P0l)dV(t) (138)

+ βl(t)Al(t) · dξl(t)],

where deQl(t) = 0 for l = 2, 4, and where P0l is the external pressures of Σ̃w along Pl and
must be the same as for the reversible Carnot engine. This then determines ∆iS so that εirr
is determined.

Using ∆iQ = ∆Q− ∆eQ, we also have

∆iW =
4
∑

l=1

∫
Pl

[Tl(t)diSl(t) + (Tl(t)− T0l)deSl(t)] (139)

Recognizing that deSl(t) is nonzero only for l = 1, 3, we can also rewritten ∆iW as

∆iW = ∑
l=1,3

∫
Pl

(β0l/βl(t)− 1)deQl(t) +
∫
P

T(t)diS(t). (140)
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It should be noted that nowhere did we use the vanishing of the affinities in the EQ
states at the end ofP1,P2, andP3 so the calculation above is not limited by this requirement.
Thus, the results in this section are general.

13. Origin of Friction and Brownian Motion

It is well known, see for example Kestin ([12] Sections 4.7 and 5.12), that there are
several ways to incorporate friction in a system in thermodynamics. This has to do with
the difficulties in making an unambiguous distinction between various possibilities of
exchange macroheat in a process P . We overcome this problem by using the MNEQT in
which this is not an issue as both dQ and deQ are uniquely defined. We identify the origin
of friction in our approach [41,51,52,91,92] by considering relative motion between parts of
a system or between the system and the medium; see also [14,32]. Such a situation arises
during sudden mixing of fluids or in a Couette flow or when friction is involved between
two bodies. The origin of friction is also applicable to NEQ terminal states of the process in
the MNEQT.

13.1. Piston-Gas System

We consider the piston gas system in Figure 4a. As discussed in Section 3.5, the
system entropy inMieq is S(E, V, Pgc, Pp). Hence, the corresponding Gibbs fundamental
relation becomes

dS = β[dE + PdV −Vgc·dPgc −Vp·dPp],

where we have used the conventional conjugate fields

β
.
= ∂S/∂E, βP .

= ∂S/∂V, ,
βVgc

.
= −∂S/∂Pgc,βVp

.
= −∂S/∂Pp

(141)

as shown by Landau and Lifshitz [119] and by us elsewhere ([41] and references theirin).
Using Equation (40), we can rewrite this equation as

dS = β[dE + PdV −V·dPp] (142)

in terms of the relative velocity, also known as the drift velocity V .
= Vp − Vgc of the pis-

ton with respect to Σgc. We can cast the drift velocity term as V·dPp ≡ Fp·dR, where
Fp

.
= dPp/dt is the force (a macroforce in nature) and dR = Vdt is the relative displacement

of the piston.
The internal motions of Σgc and Σp is not controlled by any external agent so the

relative motion described by the relative displacement R represents an internal variable
[12] so that the corresponding affinity Fp0 = 0 for Σ̃. Because of this, the first law
dE = T0deS − P0dV as given in Equation (23b) does not involve the relative displace-
ment R. We now support this claim using our approach in the following. This also shows
howH(x|V, Pgc, Pp) develops a dependence on the internal variable R. We manipulate dS
in Equation (142) by using the above first law for dE so that

TdS = T0deS + (P− P0)dV − Fp·dR,

which reduces to
T0diS = (T0 − T)dS + (P− P0)dV − Fp·dR.

This equation expresses the irreversible entropy generation as sum of three distinct
and independent irreversible entropy generations. To comply with the second law, we
conclude that for T0 > 0,

(T0 − T)dS ≥ 0, (P− P0)dV ≥ 0, Fp·dR ≤0, (143)
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which shows that each of the components of diS is nonnegative. In equilibrium, each
irreversible component vanishes, which happens when

T → T0, P→ P0, and V→ 0 or Fp → 0. (144)

The inequality Fp·dR ≤0 shows that Fp and dR are antiparallel, which is what is
expected of a frictional force Ffr. Thus, we can identify Fp with Ffr, and the irreversible
frictional macrowork diWfr done during this motion by

diWfr
.
= −V(t) · dP(t) = −dR(t) · Ffr(t) > 0. (145)

This macrowork, which appears as part of diW in our approach, vanishes as the
motion ceases so that the equilibrium value V0 of V(t) is V0 = 0 just as the equilibrium
affinity A0 = 0 for ¸. This causes the piston to finally come to rest. As Ffr and V vanish
together, we can express this force as

Ffr = −µV f (V2), (146)

where µ > 0 and f is an even function of V. The medium Σ̃ is specified by T = T0, P = P0
and V0 = 0 or Fp = 0. We will take Ffr and dR to be colinear and replace Ffr·dR by
−Ffrdx (Ffrdx ≥ 0), where dx is the magnitude of the relative displacement dR. The
sign convention is that Ffr and increasing x point in the same direction. We can invert
Equation (142) to obtain

dE = TdS− PdV − Ffrdx (147)

in which dQ = TdS from our general result in Equation (5a). Comparing the above
equation with the first law in Equation (23a), we conclude that

dW = PdV + Ffrdx. (148)

The important point to note is that the friction term Ffrdx properly belongs to dW. As
deW = P0dV, we have

diW = (P− P0)dV + Ffrdx. (149)

Both contributions in diW are separately nonnegative.
We can determine the exchange macroheat deQ = dQ− diW

deQ = TdS− (P− P0)dV − Ffrdx (150)

It should be emphasized that in the above discussion, we have not considered any
other internal motion such as between different parts of the gas besides the relative motion
between Σgc and Σp. These internal motions within Σg can be considered by following the
approach outlined elsewhere [41]. We will not consider such a complication here.

13.2. Particle-Spring-Fluid System

It should be evident that by treating the piston as a mesoscopic particle such as a
pollen or a colloid, we can treat its thermodynamics using the above procedure. This allows
us to finally make a connection with the system depicted in Figure 4b in which the particle
(a pollen or a colloid) is manipulated by an external force F0. We need to also consider two
additional forces Fs and Ffr, both pointing in the same direction as increasing x; the latter
is the frictional force induced by the presence of the fluid in which the particle is moving
around. The analog of Equation (149) for this case becomes

diW = (Fs + F0)dx + Ffrdx = Ftdx, (151)

where Ft = Fs + F0 + Ffr is the net force. The other two macroworks are dW = (Fs + Ffr)dx
and dW̃ = F0dx = −deW. In EQ, Ffr = 0 and Fs + F0 = 0 (F0 6= 0) to ensure diW = 0.
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13.3. Particle-Fluid System

In the absence of a spring in the previous subsection, we must set Fs = 0 so

dW = Ffrdx, dW̃ = F0dx = −deW, diW = (F0 + Ffr)dx. (152)

In EQ, F0 + Ffr = 0 so that Ffr = −F0. This means that in EQ, the particle’s nonzero
terminal velocity is determined by F0 as expected.

14. Free Expansion

What makes NEQ thermodynamics complicated than EQ thermodynamics is the eval-
uation of nonzero irreversible entropy generation diS(t) ≥ 0. As diSQ(t) and diSW(t) are in-
dependent contributions, it is simpler to consider an isolated system for which diSQ(t) ≡ 0
so that we only deal with diSW(t) in Equation (87). Then the use of Equation (81) allows us
to determine the temperature of the system in any arbitrary macrostate. In free expansion,
there is no exchange of any kind so d = di. This simplifies our notation as we do not need
to use di when referring to Σ, which we will do in this section.

14.1. Classical Free Expansion in SZ

The gas, which forms Σ, expands freely in a vacuum (Σ̃) from Vin, the volume of
the left chamber, to Vfin = 2Vin, the volume of Σ0; the volume of the right chamber is
Vfin −Vin = Vin. The initial and final macrostate are denoted by Aeq and Beq. The vacuum
exerts no pressure (P̃ = Pvacuum = 0). The left (L) and right (R) chambers are initially
separated by an impenetrable partition, shown by the solid partition in Figure 6a, to ensure
that they are thermodynamically independent regions, with all the N particles of Σ in the
left chamber, which are initially in an EQ macrostate Aeq with entropy Sin. For ideal gas,
we have [14]

S(E, V) = N ln(eV/N) + f (E),

where N is kept as a suffix for a reason that will become evident below. The initial pressure
and temperature of the gas prior to expansion in Aeq at time t = 0 are Pin and Tin = T0,
respectively, that are related to E0 = Ein and Vin by its EQ equation of state. A similar set
of quantities also pertain to Beq. As Σ0 is isolated, the expansion occurs at constant energy
E0, which is also the energy of Σ.

(b)

(a)

Gas
Vacuum

Vacuum

Figure 6. Free expansion of a gas. The gas is confined to the left chamber, which is separated by a
hard partition (shown by a solid black vertical line) from the vacuum in the right chamber as shown
in (a). At time t = 0, the partition is removed abruptly as shown by the broken line in its original
place in (b). The gas expands in the empty space, devoid of matter and radiation, on the right but the
expansion is gradual as shown by the solid front, which separates it from the vacuum on its right.
We can also think of the hard partition in (a) as a piston, which maintains the volume of the gas
on its left. The piston can be moved slowly or rapidly to the right within the right chamber with a
pressure P0 < P to change this volume. The free expansion occurs when the piston moves extremely
(infinitely) fast by letting P0 → 0.
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It should be stated, which is also evident from Figure 6b, that while the removal of
the partition is instantaneous, the actual process of gas expanding in the right chamber
is continuous and gradually fills it. This is obviously a very complex internal process
in a highly inhomogeneous macrostate. As thus, it will require many internal variables
to describe different number of particles, different energies, different pressures, different
flow pattern which may be even chaotic, etc. in each of the chambers. For example, we
can divide the volume Vfin into many layers of volume parallel to the partition, each
layer in equilibrium with itself but need not be with others; see the example in Section 3.
As our aim is to show the feasibility of the MNEQT in this investigation, we will sim-
plify the situation by limiting to two internal variables. The first internal variable ξN

ξN
.
= NR/N (153)

is obtained by considering only two layers to describe different numbers NL = (1− ξN)N
particles to left and NR = NξN particles to the right of the chamber partition in Figure 6a
as a function of time. Initially, ξN = 0 and finally at EQ, ξN = 1/2. At each instant, we
imagine a front of the expanding gas shown by the solid vertical line in Figure 6b containing
all the particles to its left. We denote this volume by a time-dependent V = V(t) to the
right of which exists a vacuum. This means that at each instant when there is a vacuum to
the right of this front, the gas is expanding against zero pressure so that deW = 0. Since we
have a NEQ expansion, dW > 0. As V(t) cannot be controlled externally, it can be used to
determine another internal variable by using V′ = V −Vin:

ξV
.
= V′/V = 1−Vin/V,

so that V′ = ξVV and Vin = (1− ξV)V. Initially, ξV = 0 and finally at EQ, ξV = 1/2. The
choice of the two internal variables ξN(t) and ξV(t) follows the procedure in Section 11 for
two subsystems of different sizes, and allow us to distinguish between P ′ and P ′′ as we
will see below. We assume that the expansion is isothermal (which it need not be) so there
is no additional internal variable associated with temperature variation. As dQ = dW > 0,
the expansion is irreversible so the entropy continues to increase.

At t = 0, the partition is suddenly removed, shown by the broken partition in
Figure 6b and the gas expands freely to the final volume V(t′) = Vfin at time t′ < τeq
during P ′. At t′, the free expansion stops but there is no reason a priori for ξN = 0 so the
gas is still inhomogeneous (ξN 6= 0). This is in a NEQ macrostate until ξN achieves its EQ
value ξN = 0 during P ′′, at the end of which at t = τeq the gas eventually comes into Beq

isoenergetically. The complete process is P = P ′ ∪ P ′′ between Aeq and Beq. We briefly
review this expansion in the MNEQT [92].

We work in the extended state space with the two internal variables, which we denote
simply by S here. Using Equation (23a), we have

dS(t) = dW(t)/T(t). (154a)

Setting P0 = 0 in Equation (32b), we have

dW(t) =
{

P(t)dV(t) + A(t) · dξ(t) for t < t′ < τeq,
A(t)dξ(t) for t′ < t ≤ τeq;

(154b)

here, we have used the fact that V(t) does not change for τ′ < t ≤ τeq. Thus,

∆S =
∫
P

dW(t) + A(t) · dξ(t)
T(t)

> 0,

∆Q =
∫
P

dW(t) = ∆W > 0;
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the last equation is the fundamental identity in Equation (22). The irreversible entropy
change ∆S from EQ macrostate from Aeq to Beq is the EQ entropy change ∆iS is

∆S ≡ Sfin − Sin, (155)

and can be directly obtained since the EQ entropy S(E, V) is known. The above analysis is
also valid for any arbitrary free expansion process P and not just P as we have not used
any information yet about Aeq to Beq.

For Vfin = 2Vin, ∆iS = N ln 2, a well-known result [16]. Here, we provide a more
general result for the entropy for t ≤ t′, which can be trivially determined:

S(ξV, ξN) = NL ln(eVin/NL) + NR ln(eV′/NR) + f (E0).

Thus, for arbitrary ξV and ξN, we have ∆iS(ξV, ξN) = S(ξV, ξN)− Sin. We can deter-
mine the two affinities. A simple calculation gives

AV/T = ∂S/∂ξV = 1− ξN − ξV,

AN/T = ∂S/∂ξN = ln
(1− ξN)ξV

(1− ξV)ξN
.

We see that AV does not vanish when V′ = Vfin as discussed above. It is easy to verify
that A vanish in Beq. The pressure of the expanding gas is obtained by using the derivative
∂S/∂V as usual. A simple calculation yields

βP = (1− ξV)
NL

Vin
+ ξV

NR

V′
(156)

= (1− ξV)βPL + ξVβPR.

The last expression for pressure has a close similarity with the Toll-Narayanaswamy
Equation (133), which should not be surprising. Before expansion, we have βPin = N/Vin
in Aeq and βPfin = N/Vfin in Beq as expected. At EQ in Beq, the entropy is given by
Sfin = N ln(2eVin/N), which gives ∆iS = N ln 2, as expected. We can also take the initial
macrostate to be not an EQ one in P by using one or more additional internal variables.
Thus, the approach is very general.

14.2. Quantum Free Expansion

The sudden expansion has been studied [110,111,113] quantum mechanically (without
any ξN) as a particle in an isolated box Σ0 of length Lfin, which we restrict to 2Lin here,
with rigid, insulating walls. We briefly revisit this study and expand on it by introducing a
ξN to parallel the study of the classical expansion above but using the µNEQT. Thus, we
will closely follow the microstates and follow Ref. [111] closely.

We make the very simplifying assumptions in the previous section to introduce ξN.
At time t = 0, all the N particles (or their wavefunctions) are confined in EQ in the left
chamber of length Lin so that NL = N initially. We can think of an intermediate length
Lfin ≥ L(t) > Lin, in analogy with V(t) in the previous section, so that NR = N − NL
particles are simultaneously confined in the intermediate chamber of size L(t), while NL
particles are still confined in the left chamber for all t > 0. This is slightly different from
what we did in the previous section. Eventually, at t = τeq, all the NR = N particles are
confined in the larger chamber of size Lfin so that there are no particles are confined in the
initial chamber. We let ξN = NR/N, which gradually increases from ξN = 0 to ξN = 1.
Note that this definition is different from the previous section but we make this choice for
the sake of simplicity. At some intermediate time τ′ < τeq that identifies P ′, L(t) = Lfin,
but NR is still not equal to N (ξN 6= 0). We then follow its equilibration during P ′′ as the
gas come to EQ in the larger chamber at the end of P when ξN = 1. Again, there are two
internal variables L and ξN. The expansion is isoenergetic at each instant. As we will see
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below, this means that it is also isothermal. However, dQ = dW 6= 0 ensuring a irreversible
process so the microstate probabilities continue to change.

Since we are dealing with an ideal gas, we can focus on a single particle whose energy
levels are in appropriate units Ek = k2/l2, where l is the length of the chamber confining it.
The single-particle partition function for arbitrary l and inverse temperature β = 1/T is
given by

Z(β, l) = ∑ke−βEk(l),

from which we find that the single particle free energy is F = −(T/2) ln(πTl2/4) and
the average single particle energy is E = 1/2β, which depends only on β but not on l.
Assuming that the gas is in IEQ so that the particles in each of the two chambers are in EQ
(see the second example in Section 3) at inverse temperatures βL and β, we find that the
N-particle partition function is given by

ZN(βL, β) = [Z(βL, Lin)]
N(1−ξN)[Z(β, L)]NξN

so that the average energy is EN(βL, β, Lin, L, ξN) = N(1− ξN)/2βL + NξN/2β. As this
must equal N/2β0 for all values of L and ξN, it is clear that βL = β = β0, which proves the
above assertion of an isothermal free expansion at T0.

To determine ∆Wk, we merely have to determine the microenergy change
∆Ek = Ek,fin − Ek,in [54,111].

Below we will show that the quantum calculation here deals with an irreversible P .
The single-particle energy change ∆Ek is

∆Ek = k2(1/L2 − 1/L2
in) < 0, L > Lin.

The micropressure
Pk = −∂Ek/∂L = 2Ek/L 6= 0 (157)

determines the microwork

∆Wk =
∫ Lfin

Lin

PkdL > 0. (158)

It is easy to see that this microwork is precisely equal to (−∆Ek) as expected. It is also
evident from Equation (157) that for each L between Lin and Lfin,

P = ∑k pkPk = 2E/L 6= 0,

We can use this average pressure to calculate the thermodynamic macrowork

∆W =
∫ Lfin

Lin

PdL = 2∑k

∫ Lfin

Lin

pkEkdL/L 6= 0.

as expected. As ∆E = 0, this means that the irreversible macroheat and macrowork are
nonnegative and equal: ∆Q = ∆W > 0. This establishes that the expansion we are studying
is irreversible.

We now turn to the entire system in which the work is done by NR particles occupying
the larger box. We need to think of the microstate index k as an N-component vector
k = {ki} denoting the indices for the single-particle microstates. For a given ξN, we
have ∆Wk(L, ξN) = −∑i∆Eki

, where i runs over the NR particles. We can compute the
macrowork, which turns out to be ∆WN(ξN) = NξN∆W > 0. The corresponding change
in the free energy is

∆FN(L, ξN) = NξN[F(β0, L)− F(β0, Lin)]

= −∆WN(ξN),

which is consistent with Equation (84a) for an isolated system for any ξN.
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At the end of P0, ∆WN(0) = N∆W > 0, and ∆FN(0) = N[F(β0, Lfin)− F(β0, Lin)].
We find that for the isothermal expansion

∆WN = −∆FN = T0∆iSN > 0. (159)

after using Equation (81). The same result is also obtained from the classical isothermal
expansion; see Equation (84b). All this is in accordance with Theorem 7 in the MNEQT,
as expected.

15. Discussion and Conclusions

As we noted in Section 1, thermodynamics is a science of entropy and temperature.
As these macroquantities should uniquely describe the system, we have required them
to SI-quantities in developing the new NEQT, called the MNEQT, to go beyond the EQ
thermodynamics. We will now briefly summarize and discuss our conclusions form this
thermodynamics. We will consider them separately.

15.1. Unique NEQ S in SZ

We first point out the important consequence of the restriction imposed by quasi-
independence discussed in Sections 2 and 6.4. By always dealing with the SI-entropy
S, which we have shown to be identical to the statistical quantity S in all cases, we
can appreciate the concept of quasi-independence by considering pk that appears in
Equation (47). Considering Σ to consist of two subsystems Σ1 and Σ2, which are in
macrostatesM1

.
=
{
mk1 , pk1

}
andM2

.
=
{
mk2 , pk2

}
. IfM1 andM2 are quasi-independent

and formM for Σ, then
pk ' pk1 pk2 .

As a consequence, the entropy additivity

S(X(t),t) ' S1(X1(t),t) + S2(X2(t),t)

is approximately satisfied. This has a generalization to many subsystems {Σi} given in
Equations (74a)–(74c) so that they are all quasi-independent. In terms of the volume ∆Vi of
Σi so that V = ∑i∆Vi, the generalization can be simply written in the form of the entropy
additivity requirement over ∆Vi

S(X(t),t) = ∑iSi(Xi(t),t), (160a)

in accordance with quasi-independence. The requirement of quasi-independence forces the
linear size ∆li of Σi to be not less than the correlation length λcorr as discussed in Sections 2
and 6.4; see also [41]. Thus, there will be no nonlocal effects ([120,121] (for example)) to
consider in the MNEQT as they are subsumed within each subsystem. Each subsystem has
its own HamiltonianH containing all the information regarding interactions between its
constituent particles and internal variables (see howH in Section ) so its microstates will
contain the effects of all the interactions in {Ek}.

By a proper choice of SZ, S(X(t),t) can be replaced by a unique state function S(Z(t)).
Similarly, by a proper choice of SZi , a subspace of SZ, Si(Xi(t),t) can be replaced by a state
function Si(Zi(t)) in SZi . By matching the number of independent variables n∗ on both
sides in Equation (160a) as discussed in Section 6.4, we ensures that S(Z(t)) is uniquely
determined as a sum of Si(Zi(t)) in accordance with Equation (74c). By replacing SZi by
SX, ∀i, and using Theorem 6 and Corollary 1, we know that S(Z(t)) uniquely exists in the
MNEQT so there is no freedom to choose any other variables on which S(Z(t)) can depend
on. But the actual choice of n << n∗ for a givenMieq is determined by the experimental
setup. It is this n > nobs that is physically relevant forMieq unless we are dealing with
aMeq, where nobs is the number of independent variables in X. The remaining n∗ − n
internal variables have equilibrated so their affinities vanish.
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We turn back to S(X(t),t) and Si(Xi(t),t). If ∆li is less than the correlation length, then
Equation (160a) must be replaced by

S(X(t),t) = ∑iSi(Xi(t),t) + Scorr(X(t),t) (160b)

due to the correlations present among various Σi’s; cf. Equation (2). In a continuum NEQT
introduced as CNEQT in Section 6.3, we are in the limit of "infinitesimal volume element"
over which Si(Xi(t),t) can be expressed as s(r | x(r,t),t)dr; here, x(r,t) is the local analog
of Xi(t) over this volume element. In this limit, Equation (160b) reduces to

S(X(t),t) =
∫

s(r | x(r,t),t)dr + Scorr(X(t),t), (160c)

where Scorr cannot be converted to a volume integral as it is a nonlocal quantity over at
least the correlation length. Unfortunately, Scorr is almost invariably overlooked in the
CNEQT [20,40], which allows the function s(r | x(r,t),t) to be commonly identified as the
entropy density. This is most probably a misleading nomenclature as Scorr(X(t),t) has been
neglected. Even in EQ, the correct entropy density should be precisely S(X(t),t)/V(t),
which is not s(r | x(r,t),t). With this approximation, the SI-entropy is replaced by SCT(X(t),t)
given by the integral on the right side (CT for the CNEQT),

S(X(t),t)
?' SCT(X(t),t) =

∫
s(r | x(r,t),t)dr; (160d)

the questionmark is because it is hard to estimate the error due to the neglect of Scorr.
Thus, the additivity of s in the integral is not the postulated additivity of S even in EQ
thermodynamics. To ensure that s satisfies the second law, it is postulated that s shares this
property [20]. Because of these issues, we do not focus on s in this review as the volume
elements are not usually quasi-independent unless we are at high enough temperatures so
that the correlation lengths become small enough to make them quasi-independent.

The above limitations also distinguish the MNEQT with all CNEQT theories, which
fall under the category of the M̊NEQT. Here, we will briefly comment on two success-
ful theories.

The first one is the extended irreversible thermodynamics (ENEQT) [20], a well-known
CNEQT, which also neglects Scorr but treats the corresponding entropy density sET (ET
for the ENEQT) as a state function involving various dissipative fluxes such as the heat
flux. As said above, one needs to be careful to incorporate nonlocal effects ([120,121], (for
example.)) in the CNEQT. In addition, the total entropy SET ([20] (see Equation (5.66)
and the discussion thereafter)) is also a state function involving the same fluxes for Σ,
which violates Corollary 1 about requiring a larger state space relative to sET: Both SET and
sET cannot have the same state space for the additivity of entropy to be an identity; see
also Remark 11. As the fluxes determine MI-macroquantities deQ and deW, SET is not a
SI-entropy as S is in the MNEQT.

The second one is the MNET [122] that is based on the idea of internal dof (dofin)
proposed by Prigogine and Mazur [123] for a Σ in contact with a Σ̃. The authors provide a
very good comparison of the MNET with other important theories to which we direct the
reader. Here, we only compare it with the MNEQT. The emphasis in the MNET is to study
slow relaxation in Σ (cf. Section 11) caused by the dof, that we denote here by dofslow or by
observables Xslow, and the corresponding part of Σ by Σslow; the remainder of the system
is denoted by Σfast with observables Xfast. In addition to Σ̃, Σslow is also allowed to interact
with another work medium, which we denote by Σ̃′(w) with an extra prime, with which
it exchanges macrowork only; see ([14] (Section 20)). This makes As is well-known from
the Tool-Narayanaswamy equation, see Equation (133), and other works [41–43,124,125],
Σslow and Σfast usually have different temperatures, see Equation (133), pressures, see for
example Equation (132), etc. and they need not be equal to those of Σ̃. This is not considered
in the MNET, where it is assumed that T = T0, P = P0, etc. so Σ is assumed to be in EQ
with Σ̃, so there cannot be any internal exchanges between Σslow and Σfast. The main focus
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in the MNET is only on Σslow and not the entire Σ. This makes Σ as the realization ΣC; see
Section 10. The entropy in the MNET in our discrete notation is given by

SMNET(X, t) = Seq(X)− H(Xslow, t), (161)

where

H(Xslow, t) .
= ∑

k
Pk(t) ln

Pk(t)
Peq

k

is the net contribution from Xslow ([122] (Equation (7))); here, Pk(t) is the probability of mc
k,

the microstate in the internal configurational space (c) formed by dofslow [123], with Xslowk
denoting its configuration. As Σslow equilibrates with Σ̃′, Pk(t) → Peq

k so that H(t) → 0.
Consequently, SMNET(X, t) → Seq(X) so that SMNET(X, t)− Seq(X) = −H(Xslow, t) is the
contribution from the NEQ dofslow [126]. The presence of Peq

k , which surely depends on the
conjugate fields of the medium Σ̃slow controlling Xslow, makes SMNET(X, t) an MI-quantity.
Thus, it is different from our SI-entropy S(X, t). Moreover, as Σslow interacts with Σ̃′(w),
there is an exchange work ∆W̃ ′ = −∆eWslow done by Σ̃′(w) [14]. As Xslow in the MNET
is controlled externally, it does not represent an internal variable in the sense used in
the MNEQT, which explains the use of Xslow and not ξ to represent dofslow. This is also
consistent with Conclusion 11 since there is no need to consider any internal variable for
the realization ΣC. This is further clarified in the next paragraph. It is easy to see that
∆eWslow satisfies Equation (23b):

∆E = T0∆eS− P0∆V − ∆eWslow; (162)

see ([14] (see the derivation leading to Equation (20.1))). Thus, MNET belongs to the
M̊NEQT as pointed out above. A configuration temperature for mc

k is also introduced in
the MNET by using sck = − ln Pk(t), which is not considered in the MNEQT, where only a
global thermodynamic temperature is defined.

As the examples in Section 10.3 have revealed, we can treat Σ either as ΣB or ΣC. We
need internal variables to specify ΣB that help to describe whatever is going on within
Σ without knowing these processes. While we do not need internal variables to specify
ΣC, we need to know internal processes such as the internal transfer dEin(t) = deQin(t).
Both realizations are equivalent in the MNEQT. As the entropy is a unique function in
SZ, there is no room for any extra dependence such as external fluxes in either realization;
see Theorem 6. The internal fluxes such as dEin(t) are needed for ΣC, but they are not
controlled by the medium (they are present even if Σ is isolated). Thus, the MNEQT always
deals with a SI-entropy.

Thus, the two entropies, SET and S, are very distinct in many ways, and cannot be
compared as their predictions will be very different.

We now turn to the significance of the new NEQT (MNEQT) in the enlarged state
space, which is a SI-thermodynamics. As macroheat and macrowork are two independent
quantities in the MNEQT, it is clear that the notion of temperature can be understood by
merely focusing of the relationship between dQ and dS for any arbitrary process; dW plays
no role in it. This is what makes the MNEQT a very useful thermodynamic approach. It
should be stressed that the generalized macrowork dW (the generalized macroheat dQ)
is not the same as the exchanged macrowork deW (exchanged macroheat deQ) with the
medium unless diW = 0 (diQ = 0), i.e., unless there is no internal irreversibility caused by
internal processes.

Thus, any deviation of dW from deW or dQ from deQ in a process is the result of
irreversibility due to internal processes alone. Indeed, diW is the macrowork done internally
by the system against all dissipative forces within the system, see Equation (82), which explains
why diW is a measure of dissipative irreversibility (Definition 17) within the system. In
a similar manner, diQ is the macroheat generated internally by the system, which from
diQ = diW is also due to all dissipative forces within the system. It must be emphasized
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that irreversible macroheat transfer due to temperature difference between a system and
a medium does not affect diW = diQ; see Equation (86). On the other hand, irreversible
macroheat transfer between different internal parts of Σ will be part of diW = diQ as seen
from the discussion of ΣC in Section 10.

The use of SI-quantities to specify a macrostate and microstates of a system allows us
to determine a statistical definition of the entropy of anyMarb in Section 4, which is based
on the ideas of Boltzmann. Using the flatness hypothesis, see Remark 5, known to be valid
for macroscopic systems, we provide a simple proof of the second law in Section 4.3; see
also [53] (Theorem 4).

15.2. Unique NEQ T in SZ

As dQ and dS are SI-macroquantities, their extensivity requires a linear relation be-
tween them for anyMarb as discussed in Section 5.2; see Equation (62). The proportionality
parameter is identified as the temperature T in Equation (104). With this extension to deal
withMnieq in SZ′ ⊃ SZ, the definition is applicable to anyMarb. Thus, there is no need
to differentiate between Tarb and T in the MNEQT as said earlier. The same definition also
applies to an isolated system in an arbitrary macrostate. Determining other fields related
to dW such as the pressure do not pose any new complications in the new approach as
they are mechanical in nature as discussed in Section 6.2. We have thus proposed a novel
approach to define the unique temperature (see Theorem 6) that is applicable to anyMarb
by selecting the particular SZ′ whereMnieq is convert toMieq. Then the changes in {dpk}
and {Ek} identify dS, dQ and dW for given T and W in SZ′ . All these SI-macroquantities
have the same values also in SZ forMnieq. All of this strongly supports Proposition 2 as
the fundamental axiom of the MNEQT that can explain the behavior of anyMarb.

It should be pointed out that the statistical definition of temperature in Equations (5a)
or (81) is not limited to extensive systems only. The discussion and the conclusions are also
valid for systems for which dQ and dS scale the same way with N. We have only considered
a linear scaling between the two SI-macroquantities in this work. It should be pointed out
that our concept of temperature has some similarity with the idea of a contact temperature
for a system in thermal contact with a medium. The latter is introduced [23,100,127] by the
inequality in Equation (88) for a system in thermal contact with a medium (but not when
the system is isolated). We, instead, define the temperature as an equality in Equation (5a)
for any arbitrary macrostate, which works even for an isolated system. Equation (88) is a
consequence of our definition.

We have seen that this definition of T satisfies the four requirements, see Criterion 5,
listed in Section 6. This thus solves the dreams of Planck and Landau [97,98]. For example,
we need to ensure that macroheat deQ, if it is transferred at different temperatures, always
flows from hot to cold. Indeed, this is a fundamental requirement for a consistent notion
of temperature due to the second law; see Criterion C3. To the best of our knowledge,
this question has not been answered satisfactorily [93,99,100,103–105] for an arbitrary
nonequilibrium macrostate. The question is not purely academic as it arises in various
contexts of current interest in applying nonequilibrium thermodynamics to various fields
such as the Szilard engine [128–131], Jarzynski process [34], stochastic thermodynamics [36],
Maxwell’s demon [132,133], thermogalvanic cells, corrosion, chemical reactions, biological
systems [134–136], etc. to name a few. Our approach thus finally solves the long-standing
unsolved problem of defining the temperature for an arbitrary macrostate in a consistent
way that satisfy the stringent criteria C1–C4 as proven in Theorem 9. Thus, T must be
treated as a genuine unique temperature of the system in any macrostateM.

Our definition of the temperature in Equations (5a) and (81) introduces T(t) as a
global quantity, see C4 in Criterion 5, for the entire system and should not be confused as a
local quantity, which varies from region to region within the system. This is true even if
the system is inhomogeneous. Recall that we have not imposed any requirement for the
system to be homogeneous in our discussion in Section 6. One may wonder if it makes any
sense to call T(t) the temperature of the system even if it is inhomogeneous. It is possible



Entropy 2021, 23, 1584 58 of 63

to think of an inhomogeneous system to be composed of a number of homogeneous
subsystems Σ1, Σ2, · · · , each macroscopic in its own right. In that case, we can assign a
temperature T1(t), T2(t), · · · to Σ1, Σ2, · · · , respectively. It is then possible to relate T(t) to
T1(t), T2(t), · · · . We have explicitly shown this here by considering only two subsystems in
Section 10 when they are of identical sizes, and Section 11 when they are of different sizes,
and treating the system as ΣB; see Equations (120a) and (133), respectively. For example,
we can divide Σ into four subsystems Σ1, Σ2, Σ3, and Σ4 of equal volumes and numbers
of particles, but of different energies. We can assume them in their own EQ macrostate
Mi(Ei, V/4, N/4) at temperature Ti. Then, we will obtain for Σ = ΣB

β(t) = [β1(t) + β2(t) + β3(t) + β4(t)]/4,

which will require three internal variables as shown in Equation (37). It is easy to generalize
the above relation to many subsystems and allowing the possibility of different sizes. We
can also allow for volumes to be different for different subsystems as was done in deriving
Equation (132).

The possibility to study the formation of internal structures in Σi in a NEQ Σ should
prove very useful to understand what drives their formation. A very simple example
of this is the pattern formation of Rayleigh-Bérnard cells and their competition [137] in
a fluid system. This pattern formation has received a lot of attention recently ([138,139]
(for example)), where stable cells are studied in nonturbulent convection in steady state.
It is found that each cell can be described in one of its EQ macrostate to a very good
approximation with its own temperature Ti. What our approach shows is that the stable
convection here can also be described by a thermodynamic constant (steady) temperature
T associated with the steady macrostate of the entire fluid.

Having a global temperature for an inhomogeneous system does not mean that if
we insert a thermometer in it anywhere, we will measure T. This is because the act of
"inserting" a thermometer amounts to looking at the "internal" structure of the system, so
we will be probing it as ΣC. Thus, if we insert it in Σ1, we will record T1; and if we insert it
in Σ2, we will record T2, and so on. This should not be a surprise. We refer the reader to an
interesting discussion of this issue in [127].

As far as fields such as the pressure that are associated with dW are concerned, they
do not pose the same kind of problem as they are purely mechanical. All one needs to
do is to take their instantaneous averages over microstate probabilities for any arbitrary
macrostate; see, for example, Equation (64a) involving such an average. This is possible
because W is a parameter, which makes Fwk fluctuating quantities over mk. This cannot
be done for the temperature as E is not a parameter in the Hamiltonian. In this sense, we
are considering a NEQ version of the canonical ensemble in the MNEQT, which makes Ek
fluctuating over mk. Thus, T plays the role of a "parameter." For this reason, there is no way
to define a temperature Tk for mk and then take its average. What we can do in the MNEQT
is to use the temperature of various subsystems to obtain T as is done in Equations (120a)
or (133).

We have shown that the definition of the irreversible macrowork diW is always
nonnegative as required by the second law; see Equation (77c). Various consequences of
the second law are discussed in Section 6.5. We have shown that, once a model for a
system is given, we can identify the required number and nature of internal variables as
a computational scheme in Sections 3 and 10, and later sections in the second half of the
review. These applications provide a clear strategy, once a model has been created, for
computation for an arbitrary thermodynamic process and should prove useful in the field.

We have mostly alluded to Mieq’s above to highlight the importance of internal
variables in SZ, and toMnieq’s for memory-effects with respect toMieq’s in SZ. In the
absence of a reliable model, finding SZ in many cases may not be easy to do. Compared
to this, the identification of the state space SX is almost trivial based on the experimental
setup. Therefore, it is much more convenient to work with SX, with respect to which all
NEQ states possess memory. Thus, the novel approach we develop here is extremely useful as
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it does not require knowing the internal variables as discussed in Section 8.3. However, for
completeness, we have developed the MNEQT in SZ, which can be easily adapted to SX
by the procedure outlined in Remark 13.

It should be stressed, as noted in Remarks 6 and 16 that both dQ and dS exist, and
so does their relation in Equation (5a), regardless of the speed of the arbitrary process
Parb. This makes the Clausius equality extremely important and useful as there is no
restriction on its validity. It is a genuine equality even in the presence of irreversibility
without any restriction on the process. This should be contrasted with the conventional
form of Clausius’s inequality in Equation (94); the equality here holds only in the absence
of irreversibility.

The existence of a unique T also appears in the microstate probabilities, see Section 8.2
that can be used to determine various fluctuations of interest. These probabilities forMieq
also give a generalization of the EQ partition function to a NEQ partition function in
Equation (102a). Because of the space limitation, we did not cover its consequences.

15.3. Applications

We now come to the various applications of the MNEQT in the later half of the
review. The main lesson here is that several applications cannot be carried out in the
M̊NEQT. Apart from the many applications in Section 10 that we have already discussed
above, we have applied it to glasses when we derive the famous Tool-Narayanaswamy
equation in Section 11. It is a phenomenological equation for which we provide a theoretical
justification within the MNEQT. We study an irreversible Carnot cycle in Section 12 and
derive its efficiency in terms of the entropy generation ∆iS and show how it differs from
the that of a reversible Carnot cycle. We also show how to compute ∆iS for a simple case in
which each segment is irreversible but between EQ macrostates; see Equation (138).

The next important application is about friction and the Brownian motion in Section 13.
By considering the relative motion between Σ and Σ̃, we theoretically predict the well-know
empirical fact that friction is caused by the relative motion. We apply the approach to a
system of piston in a cylinder, a moving particle-spring system in a fluid, and just a particle
fluid system.

The last application is on free expansion in Section 14. Here, we consider classical and
quantum expansion. In both cases, we make a simple model of the process and show how
it can used to determine ∆iS between not only twoMeq macrostates but also between two
Mnieq; the latter cannot be determined in the M̊NEQT.

15.4. Summary

To summarize, we have given a detailed review of the MNEQT in an extended
state space that was initiated a while back [41,52,92]. Its main attraction is the variety
of new applications, many of which cannot be investigated in the M̊NEQT in which
internal variables play no direct role. The approach is applicable to a system in any
arbitrary macrostateMarb and is used to provide a unique but very sensible definition
of the temperature, which satisfies all of its important requirements. The useful aspect
of the statistical approach needed for the MNEQT is that it provides a unique definition
of generalized macroheat and macrowork dQ and dW, respectively, that are independent
contributions in the generalized first law in Equation (23a); both quantities are system
intrinsic and obey the conventional partitioning in Equation (4) valid for any process.
These macroquantities differ from the exchange macroheat and macrowork deQ and deW,
respectively. Therefore, the MNEQT directly considers the irreversible components diQ and
diW that originate from all internal dissipation within the system and satisfy an important
identity diQ ≡ diW > 0, see Corollary 2, for any arbitrary irreversible process. The
irreversible macroquantities vanish for a reversible process. The identification of a global
and unique temperature T is the most significant aspect of the MNEQT in that it allows us
to deal with Σ as a blackbox so that we do not need to know its interior. This requires a
certain number of internal variables, which explains the extended state space. We similarly
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define other fields like the pressure, etc. statistically in terms of generalized “mechanical”
forces; these also include generalized forces for internal variables. All these definitions are
instantaneous and are not affected by how slow or fast any arbitrary process is. The latter
only determines the time window of relaxations of the internal processes, and the choice of
the state space. We believe that our novel approach provides a first-ever definition of the
temperature, pressure, etc. and of dQ and dW for any arbitrary macrostate, whether the
system is isolated on in a medium. Our approach is also valid to investigate nonequilibrium
macrostates with respect to SX, which brings memory effects in the investigation. Thus,
the approach is applicable in a wide variety of situations, and fulfils Planck’s dream.
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