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Abstract: We extend collisional quantum thermometry schemes to allow for stochasticity in the
waiting time between successive collisions. We establish that introducing randomness through a
suitable waiting time distribution, the Weibull distribution, allows us to significantly extend the
parameter range for which an advantage over the thermal Fisher information is attained. These results
are explicitly demonstrated for dephasing interactions and also hold for partial swap interactions.
Furthermore, we show that the optimal measurements can be performed locally, thus implying that
genuine quantum correlations do not play a role in achieving this advantage. We explicitly confirm
this by examining the correlation properties for the deterministic collisional model.

Keywords: open quantum systems; quantum thermometry; collision models

1. Introduction

Accurately determining the temperature of a physical system is a ubiquitous task. For
quantum systems, measuring the temperature becomes a significantly more involved job,
in part due to the inherent fragility of quantum states, and, more pointedly, due to the
fact that temperature itself is not a quantum observable. Recently, significant advances in
thermometry schemes for quantum systems have been proposed [1–6] (see Ref. [7] for an
extensive review). The thermometric precision of a probe in equilibrium with the sample
is limited by the thermal Cramer–Rao bound, which is inversely proportional to the heat
capacity, C, of the thermometer: (∆T/T)2 ≥ kB/NC. However, quantum systems have the
additional freedom to exploit resources, such as entanglement [8,9] and coherence [10–12],
to gain an advantage over their classical counterpart [13–21]. By making use of these
resources, along with collective measurements on multiple probes, it is possible to surpass
the 1/N scaling of the Cramer–Rao bound.

A typical “direct” thermometry scheme will involve a number of probes coupled
to the system of interest (environment) and, after a suitable interaction, these probes
are measured in order to estimate the temperature. However, recently, an alternative
approach was proposed that exploits collision models [22–32] that involve a stream of
auxiliary systems (often termed “ancillae”) interacting with an intermediary system, which
is directly coupled to the environment [33]. The collisions occur for a sufficiently small time,
such that the auxiliary systems never fully thermalise with the environment–intermediary
system compound. However, information about the temperature of the environment is
indirectly imprinted onto the auxiliaries, and thus this scheme allows us to make use of
this additional out-of-equilibrium information to enhance the precision of the temperature
estimation [33–35].

In this paper, we extend this collisional approach to allow for stochasticity in the
waiting times between the collisions. We show that introducing this stocasticity leads to a
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broadening of the range of parameters in which a meaningful advantage is gained over
a direct thermometry scheme, where N-probes thermalise with the environment and are
then measured. Interestingly, for a dephasing interaction between the intermediary system
and auxiliaries, we establish that the correlations generated in the collisional thermometry
approach are purely classical and, therefore, the demonstrated advantage can be gained by
performing simple local measurements.

The remainder of the paper is organised as follows. Section 2 gives an outline of
the various topics and techniques employed in collisional quantum thermometry. These
techniques are then examined more closely to determine the exact role of correlations and
the free parameters. In Section 3, we introduce stochasticity at the level of the waiting
time between collisions. We analyse how this stochasticity affects the precision of the
measurements and the form of the optimal measurements. We also discuss how our results
extend to different forms of measurements. Finally, our conclusions and some further
discussions are presented in Section 4.

2. Quantum Thermometry
2.1. Thermal Fisher Information

The maximum precision with which the temperature of the environment can be
measured is determined by the quantum Cramer–Rao bound

(∆T)2 ≥ 1
F (T, ρ)

, (1)

where F (T, ρ) is the quantum Fisher information (QFI) of the state, ρ, at temperature T.
In order to gain information from ρ, a measurement, or positive operator valued measure
(POVM), Π, must be performed on the state. The outcome of this measurement is then
determined by the probability distribution p(x)= tr(Πxρ), where Πx is the POVM element
associated with measurement outcome x. The Fisher information associated with this
measurement is given by

F(T, Π, ρ) = ∑
x

p(x)
(

∂

∂T
ln p(x)

)2
. (2)

The QFI is attained by maximising this Fisher information over all POVMs. This
maximisation can be determined from the expectation value of the square of the symmetric
logarithmic derivative, F (T, ρ)= tr

{
ρΛ2}, with Λ defined implicitly by 2∂tρ=Λρ + ρΛ.

For a typical thermometry scheme involving a number of probes fully thermalising
with the environment, the corresponding QFI is known as the thermal Fisher information,
and is given by

F (T, ρ) = Fth =
C

kBT2 , C =
〈H2

p〉 − 〈Hp〉2

kBT2 (3)

where C is the heat capacity of the probe, Hp is the probe Hamiltonian, and the probes are
assumed to have reached the Gibbs state with inverse temperature β=1/kBT. In the case
of a qubit probe with frequency Ω, the thermal Fisher information is

Fth =
1

n̄(n̄ + 1)(2n̄ + 1)

(
∂n̄
∂T

)2
(4)

where
n̄=1/(eh̄Ω/kBT − 1), (5)

is the mean occupation number at frequency Ω and temperature T. Thus, estimating n̄ is
equivalent to estimating temperature T. Equation (4) provides a lower bound, which we
can benchmark the performance of our stochastic collision scheme against.
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2.2. Collisional Thermometry

Here, we recap the basic ingredients of the collisional thermometry scheme outlined
in Refs. [33,34]. Our set up consists of a (large) environment, E, at fixed temperature T,
and it is this temperature that we wish to estimate. The environment is coupled to an
intermediary system, S, such that, in the absence of any other interaction, S will reach
thermal equilibrium with E. This intermediary system is, in turn, coupled to a stream of
independent and identically prepared auxiliary units, Ai, which form the collisional bath.
In what follows, we will assume both S and all Ai’s are qubits and that the S-Ai interaction
is unitary. Information about the temperature is then gained by performing measurements
on the Ai’s, either individually or in batches. This is in contrast to standard probe-based
thermometry, where the probes interact directly with the environment, with the best
precision occurring when they are permitted to thermalise fully before being measured. We
assume that the S-Ai interaction time, τSA, is small compared to the system–environment
coupling time, τSE, allowing us to neglect the system–environment coupling during the
collisions. After N collisions, the system and auxiliaries are given by the combined state

ρS,A1,...,AN = USAN ◦ E ◦USAN−1◦... ◦ E ◦USA1(ρS ⊗ ρA1 ⊗ ...⊗ ρAN ) (6)

where USAi (◦)=USAi ◦U†
SAi

and E corresponds to the map induced by the S-E interaction
acting on the intermediary system in between the collisions.

We model the S-E interaction by a general thermalising master equation in the weak
coupling limit, which, in the interaction picture, is given by

dρS
dt

= L(ρS) = γ(n̄ + 1)D[σS
−](ρS) + γn̄D[σS

+](ρS) (7)

where D[A](ρ)=AρA† − 1
2{A† A, ρ}, and γ is the system–environment coupling constant.

We can now calculate E in Equation (6) by integrating Equation (7) over the time between
subsequent collisions τSE. The resulting channel takes the form E = eτSEL. This is a
thermalising map that brings S towards the Gibbs state, ρth

S , i.e., E(ρth
S )=ρth

S . We choose the
intermediary system and auxiliaries to be resonant, i.e., HS =HA = h̄Ωσz/2. The system, S,
therefore experiences the stroboscopic map

ρi
S = trAi{USAi ◦ E(ρ

i−1
S ⊗ ρAi )} := Φ(ρi−1

S ). (8)

For equally spaced collision times, this map has a unique steady state ρ∗S = Φ(ρ∗S),
which is not necessarily the Gibbs state, with the notable exception of a pure dephasing
interaction between S and Ai, as outlined in the following section.

2.3. Dephasing Interactions

We begin by focusing on a ZZ interaction between the collisional bath and the system,

HZZ
SAi

=
h̄g
2

σZ
S σZ

Ai
, (9)

which leads to a dephasing in the energy eigenbasis and is also referred to as an indirect
measurement interaction. We tune the effective system–environment coupling, γτSE, and
the effective S-Ai coupling, gτSA. Due to the fact that Equation (9) only affects the off-
diagonal elements (i.e., coherences), and assuming that S begins in thermal equilibrium
with E before any interactions with the auxiliaries occur, the reduced state of S will remain
in the Gibbs state. However, provided that a suitable choice of initial state for the auxiliaries
is chosen, information about the environment temperature can be imparted to the collisional
bath. For a single auxiliary unit, the QFI is maximised when its initial state is perpendicular
to the Z-axis, e.g., |+x〉=(|g〉+ |e〉)/

√
2, with the corresponding QFI given by
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F |+x〉 =
1− cos(2gτSA)

2
F th, (10)

which is clearly maximised when the coupling parameter gτSA = π/2. However, from
Equation (10), we clearly see that, for the considered interaction, it is impossible to beat
the thermal Cramer–Rao bound by measuring a single auxiliary unit. When multiple
Ai’s collide with the system in succession, correlations can be established between them;
however, for long times between successive collisions, the (re)thermalisation due to the
system–environment interaction will destroy all correlations, leaving the total QFI equal to
the sum of all of the individual QFIs for each Ai, i.e., N times Equation (10). Conversely,
in the short inter-collision time limit, the first collision provides as much information
about the temperature as possible and, while classical correlations are established between
successive Ai’s, no additional information can be gained about the temperature of the
environment by measuring multiple auxiliary units. Between these two extremes, relevant
information about the temperature of the environment can be encoded into the auxiliary
systems and provide significant advantages in precision over the thermal Cramer–Rao
bound.

Fixing the optimal S-Ai collision, such that gτSA = π/2, the QFI for N auxiliaries
interacting with S is given by [34]

F |+x〉
N = F th + (N − 1)∆, with, (11)

∆ =
(1 + n̄)2[1− eΓ(1 + 2n̄Γ)

]
(1− eΓ)

(
1− (1−eΓ)n̄

1+2n̄

) +
n̄2[−1 + eΓ(1− 2(1 + n̄)Γ)

]
(1− eΓ)

(
1− (1−eΓ)(1+n̄)

1+2n̄

) (12)

where Γ = γ(2n̄ + 1)τSE is the effective thermalisation rate of the system. From Equa-
tion (11), we find that the condition for beating the thermal Cramer–Rao bound corresponds
to ∆/Fth > 1, shown in Figure 1a [34]. Furthermore, the expression for ∆ demonstrates
that knowledge of the S-E coupling parameter, γτSE, is essential to achieve any boost in
thermometric performance. For the remainder of this section, we will assume a deter-
ministic collisional scheme, namely, the system and the environment interaction time is
identical between each of the collisional events, i.e., γτSE is the same between each collision.
Thus, we consider the same setting as Refs. [33,34] of equally distributed collisions, and in
Section 3, we introduce stochasticity.

2.4. Role of Correlations

Given that, for the ZZ interaction, measuring a single auxiliary cannot outperform
the thermal Cramer–Rao bound, it is natural to ask what allows for the enhancement when
multiple units are measured and how this relates to the correlations established between
successive Ai’s and/or between S and a given auxiliary. We can quantify these correlations
via the bipartite mutual information

I = S(ρA) + S(ρB)− S(ρAB), (13)

where S(·) is the von Neumann entropy. This quantity captures all correlations, both
quantum and classical, present in the state. In Figure 1b, we show the mutual information
shared between two successive auxiliaries, i.e., ρAi Ai+1 , where it clearly appears that sig-
nificant correlations are established that depend on the time between each collision and
the temperature of the environment. The dashed black line encloses the area in which
an advantage of >1% can be gained from this setup and indicates that, while there ap-
pears to be a qualitative relationship between the magnitude of the mutual information
shared between the auxiliaries and the corresponding thermometric performance, with
some amount of mutual information clearly being necessary in order to gain an advantage,
remarkably, too much correlation actually results in the QFI being lower than the thermal
Fisher information. The boundary is delineated by the white line, which tracks the peak
QFI for each value of n̄. We can further characterise the type of correlations present by
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determining the quantum discord [36,37], which captures the genuine quantum nature of
the correlations present, and, in this case, turns out to be identically zero. This implies that
the correlations contributing to the increased metrological performance are purely classical.

(a) (b) (c)

Figure 1. (a) Plot of the (log of the) ratio between ∆, Equation (12), and Fth. Positive regions indicate parameter regimes
where a thermometic advantage is achievable via the collisional scheme. (b) Mutual information between two adjacent
auxiliary units after each has interacted with the system via a ZZ interaction for a deterministic collisional therometry
protocol. (c) Measure of the interdependence between γ and n̄ captured by Equation (15) for a deterministic protocol with
N = 2 (arbitrary choice). In all panels, the area captured by the dashed black line represents the region in parameter space
where the scheme achieves an advantage over the thermal QFI. The white line corresponds to the value of n̄ where the QFI
is maximal.

2.5. Parameter Dependence

We see from Equation (12) that the advantage gained from this collisional approach
depends on the effective thermal relaxation parameter Γ = γ(2n̄ + 1)τSE. Consequently,
in order to maximise this advantage both γ and τSE must be known with certainty. While
τSE corresponds to the time between collisions, which, given sufficient control over the
collisional bath, can, in principle, be known, the parameter γ, which corresponds to the
coupling strength between the system and the environment, is more delicate. In certain
circumstances, it may be that, prior to any measurements, γ is known for the setup.
However, when this is not the case, or if the bath is prone to some other disturbance,
determining it precisely is essential [38].

We can demonstrate the importance of knowing γ through the total variance of a
measurement in multi-parameter estimation by summing the variances of all parameters.
When estimating m unknown parameters, we obtain the following chain of inequalities [39].

m

∑
a

var(xa) ≥
1
m

tr
{
F−1

}
≥∑

a

1
mFaa

, (14)

where F is the QFI matrix. In our case, m = 2 and xa ∈ {n̄, γ}. The second inequality is
only saturated when all of the parameters are independent of each other, and, therefore,
comparing the ratio between the second and third terms, which we denote as

R =
tr
{
F−1}

∑a
1
Faa

, (15)

allows us to identify the areas in which knowledge of γ is necessary in order to estimate
the temperature. Figure 1c shows the peaks of this ratio line up perfectly with the peaks of
the QFI. Additionally, if one has no knowledge of γ, it is impossible to gain any advantage
over the thermal Fisher information. In fact, the QFI is smaller than the thermal Fisher
information in the case when the time between collisions is small.
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3. Stochastic Approach

The previous section outlined the basic ingredients of the collisional thermometry
scheme for the deterministic case introduced in Refs. [33,34]. We now turn our attention to
our main focus: introducing stochasticity at the level of the time between collisions, τSE,
while keeping the average collision time, τSA, consistent with the previous section.

3.1. Random Collision Times

In nature, interactions will not generally occur in fixed intervals or at deterministic
times. Rather, processes are typically random, with the time between interactions captured
by a suitable probability distribution, the waiting time distribution (WTD). Within the
framework of open quantum systems, collision models allow us to introduce such random-
ness, either in the intervals between successive collisions or in the collision time itself, and
are referred to as stochastic collision models [40–42].

While employing WTDs in this sense clearly brings collision models closer to mod-
elling real physical systems [43–45], here, we explore how introducing such randomness
affects the performance of the collisional thermometry scheme. As we shall demonstrate,
stochastic collision models allow us to achieve a greater range of parameter estimation over
deterministic collision models without significantly sacrificing the maximal achievable
precision. For concreteness, we shall focus on the Weibull renewal distribution,

p(t) =
k
λ

(
t
λ

)k−1
e−(t/λ)k

, (16)

where λ is the average time between collisions and k determines the shape of the distri-
bution, cfr. the inset of Figure 2. In particular, large k tends to regular intervals between
collisions, i.e., k→∞ corresponds to deterministic, equally-spaced collisions, as considered
in Refs. [33,34] and Sections 2.4 and 2.5, whereas small k is characterised by bursts of
collisions followed by long breaks [42]. For k=1, the WTD corresponds to the exponential
distribution characterising a Poisson point process. We remark that our results remain
qualitatively unaffected for other families of WTD, e.g., Erlang distributions.

As we see from Equation (11), when the waiting time between subsequent collisions
is deterministic and constant, it is possible to obtain a QFI that is orders of magnitude
higher than the thermal Fisher information for specific values of the coupling parameters
and temperature [33,34]. However, a drawback of this is that such high precision is
restricted to a narrow parameter range, and is delicately dependent on the temperature
of the environment. Such a situation is clearly not ideal given that the temperature is the
very quantity that we wish to estimate [33,34]. Approaches to address this issue include
introducing global estimation schemes [13,46–49] and biased estimators [35]. Here, we
demonstrate that, if the interactions are random and governed by a particular WTD, this
randomicity has an important effect on the value of the parameter ∆ that determines the
possible advantage over the thermal Fisher information. It is straightforward to extend the
proof of Equation (12) from Ref. [34] to random waiting time distributions

F |+x〉
N = F th +

N−1

∑
i=1

∆i, (17)

where ∆i takes an identical form to the one given in Equation (12), except with τSE now
replaced with a variable time τi

SE. To determine the average performance of a particular
WTD, p(t), we now average over each collision time

F
|+x〉
N =

∫ ∞

0
· · ·

∫ ∞

0

N−1

∏
i=1

dτi
SE p(τi

SE)F
|+x〉
N = F th + (N − 1)∆̄, (18)
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where ∆=
∫ ∞

0 dτSE p(τSE)∆, with the WTD p(t) being any positive function that satisfies∫ ∞
0 dt p(t) = 1. In Figure 3, we show the (log of the) ratio between ∆ for an exponential

distribution, i.e., k = 1 (arbitrary choice) and the deterministic ∆. We can see that the
randomness allows for a significant performance boost (up to 10 times larger) over a wide
range of parameters at the cost of a slight sensitivity loss when the deterministic QFI
is maximal.

1 2
τSE

0.4

0.8

1.2

p(τSE)

k=1

Det

k=0.1

k=2

0.0 0.2 0.4 0.6 0.8 1.0
γ τSE

1

2

3

4

5
Δ

Figure 2. Comparison of the value of the quantum Fisher information for various Weibull distribu-
tions of the collision time interval (see Equation (16)), with the deterministic case, for n̄=2. Similar
behavior is seen for other values of temperature above n̄=1.5. Inset: Distributions for various values
of k shown in the main panel.

Figure 3. Comparison of the ratio between ∆ for a Weibull distribution for the exponential distri-
bution, i.e., k = 1, and a deterministic equally spaced waiting time distribution. The green plane
represents the crossing point where one term becomes larger than the other. γτSE is the average time
between collisions.

While we have established that an advantage over the regularly spaced collisions
can be achieved for a particular choice of WTD, we now turn our attention to how the
particular form of distribution affects the performance. As mentioned previously, varying k
in the Weibull distribution, Equation (16), interpolates between distributions with regularly
space collisions for k→∞ to collisions in batches followed by long pauses as k→ 0. We
compare the QFI for various values of k at a fixed (arbitrarily chosen) value of temperature,
corresponding to n̄ = 2, in Figure 2. For larger values of k, we find that the behaviour
tends to the deterministic case, which is characterised by a QFI with a large peak that is
narrow in the parameter range. While the scheme is highly effective, it requires a precise
knowledge of the coupling between system and environment. However, for smaller values
of k leading to a more random sequence of collisions, we find that the range over which
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an advantage can be demonstrated is significantly broadened, albeit at the expense of
reducing the “maximum” achievable precision. Thus, by introducing stochasticity to the
process, we are able to alleviate the need for precise knowledge of the optimal system–
environment coupling. Interestingly, there is a limit to how small k can be and still retain
an advantage, with very small k leading to collisions occurring so close together that no
additional information can be gained.

3.2. Optimal Measurements

While the QFI places an asymptotic bound on the accuracy of parameter estimation,
it does not provide details on precisely what POVM should be implemented in order to
saturate the bound. Therefore, identifying the measurements that must be performed on
the auxiliary units is important for assessing the implementability of the scheme, something
which is particularly relevant for our stochastic collisional approach, in order to assess
whether optimal measurements depend on the waiting time between collisions. To find the
optimal measurement, we need the symmetric logarithmic derivative (SLD) operator La for
parameter xa. In terms of the eigen-decomposition of ρ=∑i λi|λi〉〈λi|, the SLD operator
is [39]

〈λi| La |λj〉 = δij
∂aλi
λi

+
2(λj − λi)

λi + λj
〈λi| ∂aλj〉.

For our scheme, we find that the eigenvectors {|li〉} of La are independent of xa, and that
the Fisher information is

Iaa = ∑
i

〈li| ∂aρ |li〉2

〈li| ρ |li〉
= ∑

i

〈li| ρLa + Laρ |li〉2

〈li| ρ |li〉

= tr
{

ρL2
a

}
= Faa

where Faa is the quantum Fisher information for parameter xa. This implies that the
optimal measurement corresponds to one performed over the {|li〉} basis. For the ZZ
interaction considered with gτSA =π/2, the eigenvectors |λi〉 of ρ are independent of T
and γ, meaning that the optimal measurement is precisely the measurement in the {|λi〉}
basis, and is the same for both T and γ. For the auxiliary units initialised in the |x+〉 state
considered here, there is some ambiguity in the measurement basis due to degeneracy in
the eigenvalues. However, the simplest basis is |yi〉 . . . |yj〉 for i, j∈{+,−} and y+={1, i},
y− = {1,−i}, with this result holding for any number of auxiliary units. Thus, the
optimal measurements involve only product states, and can therefore be performed using
only local, single-qubit projective measurements, which is consistent with the results of
Section 2.4, where we established that there are no genuinely quantum correlations present
in the state.

3.3. Partial Swap Interactions

We conclude our analysis by considering an alternative form for the S-Ai interaction
that has been considered frequently in collisional thermometry [33–35]. The partial swap
(also referred to as an exchange) interaction is given by

HSwap
SA = h̄g(σ+

S σ−A + σ−S σ+
A ). (19)

where, similarly to the previous case, we are able to tune the effective couplings, γτSE
and gτSA. In contrast to the ZZ interaction, now the system and auxiliaries will exchange
energy as well as coherences, and thus the intermediary system will not remain in the
Gibbs state throughout the dynamics. As a consequence, it is possible to gain a significant
advantage over the thermal Fisher information from just a single auxiliary unit. When
a single collision corresponds to a full swap, the QFI is maximised and there are no
correlations established between subsequent collisional units. Clearly, this interaction is
highly disruptive to the intermediary system. We now find that the optimal state for each
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Ai is the ground state [34] and that the corresponding optimal measurements are projective
measurements in the energy eigenstates. It is worth remarking that a similar advantage
could be obtained by measuring the intermediary system directly and not letting it fully
thermalise in between measurements [50]. While there are clearly some differences due to
the change in interaction, we find that introducing different waiting time distributions has
a qualitatively identical effect in this case, i.e., the introduction of stochasticity allows us to
significantly extend the range over which a thermometric advantage can be gained from
the collisional thermometry scheme.

4. Conclusions

We have extended the framework of collisional quantum thermometry to include
stochastic waiting time distributions (WTDs). We demonstrated that introducing a random
WTD results in an advantage over the thermal Fisher information for a broader range
of parameters, thus alleviating the need to precisely know the coupling strength with
the environment. For a dephasing interaction between the collisional units and the in-
termediary system, we find that only classical correlations between the auxiliary units
are established, and that, while these correlations appear to be a necessary ingredient to
achieve the increased performance, there is not a clear one-to-one relation between the
attained precision and degree of correlation.
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