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Abstract: Online social media provides massive open-ended platforms for users of a wide variety of
backgrounds, interests, and beliefs to interact and debate, facilitating countless discussions across a
myriad of subjects. With numerous unique voices being lent to the ever-growing information stream,
it is essential to consider how the types of conversations that result from a social media post represent
the post itself. We hypothesize that the biases and predispositions of users cause them to react to
different topics in different ways not necessarily entirely intended by the sender. In this paper, we
introduce a set of unique features that capture patterns of discourse, allowing us to empirically explore
the relationship between a topic and the conversations it induces. Utilizing “microscopic” trends to
describe “macroscopic” phenomena, we set a paradigm for analyzing information dissemination
through the user reactions that arise from a topic, eliminating the need to analyze the involved text
of the discussions. Using a Reddit dataset, we find that our features not only enable classifiers to
accurately distinguish between content genre, but also can identify more subtle semantic differences
in content under a single topic as well as isolating outliers whose subject matter is substantially
different from the norm.

Keywords: information dynamics; topic modeling; semantic analysis; network entropy

1. Introduction

Consider this question: if a person were to go to a movie theater and see a random
movie without knowing the title or anything else about it beforehand, how could this
person guess the movie’s genre while watching it? One way would be to examine the title
and characters’ dialogue. Another way would be to analyze the visuals and special effects.
However, a more atypical approach might be to turn around and look to the audience
for the answer. If we specifically do not want to use dialogue or visuals, we can use the
audience’s reactions. For example, if the audience is laughing frequently, it is likely to be a
comedy, but if they are mostly crying out in fear, the film is probably a horror movie. While
there are exceptions, the process described is reliable enough, given that an audience’s
emotional reaction is inherently tied to the nature of a movie’s genre. After all, the director
of a horror film needs the audience to react in fear; otherwise, their film will most likely fail.

While this concept as applied through our example is unconventional, it illustrates a
fascinating concept in the realm of social media. Hence, we conjecture that just as these
emotional reactions from an audience fundamentally describe the associated movie, topics
in online social media have their own set of unique “user reactions” that can be extracted
and used to characterize the unique properties of the discussed subject matter without any
help from text analysis. Specifically, we hypothesize that if a group of users are biased in a
certain way, they will react differently in more ways than what text analysis will reveal.
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An example supporting this hypothesis can be found in [1], where the authors showed
that, within Twitter, users have stable and consistent reactions associated with a given
topic, called a “Social Genotype Model”. However, this stable representation of bias is only
sparsely applied by the authors, being primarily used for the prediction of topic-specific
influencers and the high-level analysis of Twitter’s follower network. Moreover, while
extracting user reactions has been seen as an essential tool for social media analysis for a
while [2–5], most implementations tend to be limited to analyzing verbal responses using
natural language processing (NLP) and the quantification of baseline interest. Furthermore,
whatever structural response analysis does exist [6] is often used to study individual and
aggregate users, rather than examine the characteristics of topics.

Previous NLP work has established a paradigm for understanding human interactions
and the content they generate [7], but in this paper, we will explore the relationship between
the dynamics of discourse, conversation, and topic within social media without the use
of direct textual analyses. Instead of using NLP as our primary mode of analysis, we opt
for an alternative, novel approach of using text-agnostic, reaction-based measures that
provide significant insight into the understanding of topics in online social media. We show
that this approach not only allows us to identify topics and differentiate topical divisions,
but also capture more subtle semantic differences within individual topics. Provided
the mathematical quantification of discourse dynamics, we can use established outlier
detection tools, such as isolation forests [8], to identify content that is, according to our
measures, substantially different from the content of the norm. We subsequently investigate
the content of these identified outliers and discuss their various aspects that contribute to
their differences from the norm.

In this paper, we begin our exploration of our novel approach by introducing the
dataset we use in Section 2.1. We then describe the response features we chose to use,
their mathematical quantification, and the methods we use to employ them in Section 2.2.
Next, we explain the tests we use to validate and explore the capabilities of the response
features in Sections 2.4–2.6. We present and analyze the results of these tests in Section 3,
and conclude our work with a overarching discussion of the paper in Section 4.

We note that this paper is an extension of our conference paper: Flamino, J.; Szymanski,
B.K. A Reaction-Based Approach to Information Cascade Analysis. 28th Int. Conf. Comput.
Commun. Netw. IEEE, 2019, pp. 1–9 [9]. We have significantly extended this initial work
by adding substantial new analyses and results and revising some of our original content.
Specifically, we improve our feature clustering analysis by introducing a PageRank method
for extracting keywords. This allows us to add a word cloud illustration analysis that
corroborates the semantic separation of the clusters. We also introduce an entirely new
correlative analysis between top 10 keyword lists of feature cluster pairs and the distances
between their centroids. Furthermore, we perform a new latent Dirichlet allocation (LDA)
comparative analysis, comparing LDA topic distributions against the response feature
clusters. Finally, we expand upon the outlier detection process by introducing a different
outlier detection algorithm (isolation forest) and by adding an entirely new outlier example
with improved descriptions of the submissions we were analyzing.

2. Materials and Methods
2.1. Datasets

Given our focus on the dynamics of discourse, we need to analyze a dataset from
an online social media platform that encourages in-depth discussions of a wide variety
of topics and subjects. The format that we found to best fit this description was the
group of online platforms called forums. A forum is a network of registered users in
which any user can freely submit posts about certain topics (generally under some related
category). This post triggers responses to the posted material. In turn, these responses
trigger more responses, resulting in a cascade of information exchanged between unique
users. A majority of these cascades are short-lived, as they are quickly superseded by
more recent topics. Yet, the conversations that do occur due to that post follow the theme
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established by the source post, characterizing a majority of the interactions that occur
within that cascade.

One of the most well-known forum-like social media platforms is Reddit. In Reddit,
the posts are clustered by Subreddit, which generally encompasses a defining theme (e.g.,
the Subreddit r/politics is comprised of discussions about U.S. politics). Within a Subreddit,
a user can create a submission pertaining to the Subreddit’s genre. The submission then
becomes available to all other users. Users can vote on the quality of the submission and
start discussions in the comment section of the submission. The more provocative the
subject of a submission, the greater the response, ultimately increasing the activity of the
submission and the vote count, which inevitably increases the exposure of the submission,
evoking additional responses.

We use the data provided from [10], which offers a Reddit dataset that covers 5692
Subreddits, 88 million submissions, and 887.5 million comments collected from 2006 to
2014. The comments in this dataset are formatted as a comment tree extension, accentuating
the natural branching conversations that sprout from the source submission. We reformat
this structure into event sequence style, where the identifiers id, root_id, and parent_id
reveal the event’s position in a cascade. To clarify, the root_id indicates the id of the
source submission, while the parent_id indicates the id of the event that the posting user is
responding directly to. We also supplement the 88 million submissions with their respective
titles, text bodies, and scraped headlines from any linked URLs, using Reddit’s official API.

2.2. Characterizing the Dynamics of Conversation and Discourse

Our objective is to use the dynamics of conversation and discourse to characterize
and understand the overarching topic. With respect to Reddit, this means we use the
comment tree to identify the theme of the submission without any text mining from the
comment tree and even from the submission itself. Instead, we capture attributes relating
to the structure and evolution of the comment trees. Some past works have established
groundwork on harnessing such response structures within social media like Twitter [1]
and Reddit [11]. As mentioned in the introduction, ref. [1] demonstrates in particular
consistent topic-dependent user behavior, which can be used to reinforce our hypothesis
that users will oftentimes respond differently as a whole depending on the subject matter.

2.2.1. Definitions

Given Reddit’s emphasis on forum-like interactions, the emergent online social media
network G(M, L) is not formed in a typical fashion, where edges connect unique users
m ∈ M like l = (mi, mj), l ∈ L. While users can “follow” other users in Reddit, the more
apparent link to content is through the subscription to Subreddits. Once subscribed, a user
becomes part of a collective of fellow subscribers that are all updated when any other
subscribed users post a submission to that Subreddit. This leads us to Observation 1.

Observation 1. Reddit can be considered a set of Subreddit tags S. Each Subreddit has a set of
associated users M. All users m in set M are connected with an edge representing information flow.
This system forms an isolated, undirected complete graph.

Naturally, the network of Reddit becomes more complicated once you consider that
users subscribe to multiple Subreddits and follow other users, but when considering the
graph topology within the scope of a single Subreddit, the observation holds. Given this
approach, we can intuitively state that submissions within a Subreddit are also generally
detached from each other. The graphical topologies of these submissions are fundamentally
different since responses to a source node stack on top of each other. This leads us to make
Observation 2.

Observation 2. Each submission that occurs within a Subreddit is an independent information
cascade that represents a set of users r = {m}, r ⊆ M interacting for some period of time, with the
resultant event sequence following the graph topology of a directed tree network.
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We denote as T(N, L) the event sequence generated by the users of some submission
r, where each n ∈ N represents a message somewhere in the event sequence triggered
by said submission. A connecting edge is defined as l = (ni, nj), l ∈ L, where nj is the
responder’s message, and ni is the respondee’s message. It is important to note that not
every message n has a uniquely associated user m. While each node n is unique, a user
has free reign to generate as many nodes as they please, resulting in user degeneracy in T.
We illustrate this terminology and the architecture of T in Figure 1. As seen in Figure 1,
we refer to n0 as the root node, and all nodes that directly link to the root node are referred
to as initial nodes. All other nodes are simply referred to as response nodes. We can also
extract a subset of directly correlated messages called branches. Branches are represented
by B = {B1, B2, ..., Bb} where b is equal to the total number of initial nodes. We can use
some ith branch Bi where Bi ⊆ N to evaluate the response cascade that is triggered by the
ith initial node. We note that for every branch, we include the root node as an element of the
set. This is because for all intents and purposes, the root node is the submission’s content
itself; thus, we must include this node to ensure our features capture that initial reaction
from users that directly respond to the submission. Table 1 summarizes the mentioned
symbols. Now that we have established our definitions, we can begin constructing our
response features from the empirical data.

2.2.2. Feature Design

To characterize the dynamics of discourse and conversation in Reddit, we split our
features into two sets: individual features and aggregate features. For the individual
features, the real values must describe the nature of user interactions within a single branch
Bi ∈ B. To generate these values, we design features that capture innate behavior exhibited
in both scale and time without recursively analyzing each involved user or message. We
shall refer to these as our individual features.

Table 1. Symbols and definitions.

Symbol Definition

S Some Subreddit within Reddit.

M All users subscribed to S.

r A submission within S, represented as a set of users that responded to the
submission, r = {r}, r ⊆ M.

T(N, L) A tree network representing the structure of hierarchically linked comments made
by responders of a submission.

n A user-generated comment within T, n ∈ N where N is the total set of comments
within T.

n0
The head node. This is the text submitted to the Subreddit that triggers the comment
cascade.

l
A directed edge within T, representing the direction of information flowing between
comments (from respondee to responder), l ∈ L where L is the total set of edges
within T.

B The set of branches found in T. Bi = {n}, Bi ⊆ N where the ith branch contains
some subset of linked comments (including n0) generated for a submission.
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Figure 1. Representation of a directed tree network T.

1. Depth: The path length between the root node and the farthest response node in a
branch. We use Dijkstra’s algorithm (DA) to measure this.

DEP(Bi) = max
n∈Bi ,n 6=n0

(DA(n0, n))

2. Magnitude: The maximum in-degree centrality in a branch. Given the adjacency
matrix A for T, then

MAG(Bi) = max
n∈Bi

(∑
k

ak,n), ak,n ∈ A

3. Engagement: The total number of users involved in a branch where nm is the set of
messages generated by user m.

ENG(Bi) = |{m | |nm ∩ Bi| > 0}|

4. Longevity: The time t that expired between the creation of an initial node and the latest
response node.

LNG(Bi) = max
n∈Bi

(t(n))− min
n∈Bi ,n 6=n0

(t(n))

In addition to these four features, we introduce two additional holistic features, raising
the number of features to six. We use these holistic features to evaluate a submission’s
aggregate discourse dynamics within T, independently of B. These methods are extracted
from [12] in which the authors evaluate human communication in temporal networks using
entropy and introduce entropy-based measures for human communication. In particular,
we chose to consider both the first and second order entropy measures that were introduced.
These two methods produce distinct numerical representations that portray aggregate
comment interactions succinctly. Thus we refer to these measures as our aggregate features.

5. First order entropy: The probability p1(m) of some user m within r generating a message
n for T.

E1 = − ∑
m∈r

p1(m) ln(p1(m))

6. Second order entropy: The probability p2(lij) of a unique edge lij = (ni, nj) being
formed between two messages by two specific users mi and mj within T.
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E2 = − ∑
lij∈L

p2(lij) ln(p2(lij))

For the remainder of the paper, we use these features to characterize the response
dynamics in Reddit. Employing the individual measures for some response r yields a
matrix Mr of dimensions b × z where b = |B| and z = 4 for the 4 individual features
defined above.

MT
r =


DEP(B1) DEP(B2) . . . DEP(Bb)
MAG(B1) MAG(B2) . . . MAG(Bb)
ENG(B1) ENG(B2) . . . ENG(Bb)
LNG(B1) LNG(B2) . . . LNG(Bb)


Matrix Mr describes our individual features for all branches of r. Combined with

our aggregate features, we have a compact yet detailed portrayal of the dynamics of a
submission’s entire discourse.

2.3. Validating Response Features through Genre Classification

With the methods for discourse characterization defined, a necessary next step is
to validate the actual effectiveness of the selected features in the scope of our dataset.
In particular, we need to assess how accurately these features represent the topics of the
Reddit submissions they are quantifying. We can do this through a Subreddit classification
process: given a few distinct Subreddits acting as labels, we use the extracted response
features from a subset of submissions to train a classifier to distinguish between said labels.
In essence, we investigate if our features’ characterizations of some set of submissions
are enough to train a classifier to differentiate between these submissions’ genres. We
run this test on the Subreddits r/politics, r/gaming, r/soccer, and r/atheism, each rep-
resenting an independent genre within Reddit. We curated a set of 1000 submissions
from each Subreddit, only selecting submissions whose total comment counts range from
1000–3000 comments (see the Supplementary Materials for an explanation as to why we
use this specific comment range for submission filtering). Then for each submission, we
calculate Mr and the aggregate features. We condense Mr by finding the maximum depth
(the height of the tree), average breadth, average engagement, and average longevity for
each submission. We map the submission’s measures into R6 feature space by taking these
values and appending to them the aggregate features. We can represent this process as
the equation

f = < max
B

(DEP), avg
B

(MAG), avg
B

(ENG), avg
B

(LNG), E1, E2 >

where vector f is our feature vector. Pairing f with its associated Subreddit label S, we
then split the assembled dataset into 70%/30% training/testing subsets and train a support
vector machine classifier (SVM) [13]. For each element in the test subset, the SVM attempts
to correctly label S, given f for r. A positive match results in a score of 1 for r, and a
negative match yields a 0.

2.4. Feature Exploration through Clustering

Although classification is a fairly robust way of testing the effectiveness of a set of
feature labels, there are many other ways to evaluate them. In particular, these features
are meant to represent the patterns of user response within a submission. Knowing this,
another effective form of testing is to use the features to attempt to find underlying patterns
that differentiate clusters of submissions within a single genre. If this is possible, it would
indicate that the response features themselves are rich and informative enough to extract
previously undetected trends and sub-divisions of content.

To perform the clustering analysis, we evaluate a set of 1000 submissions under a
single S whose total comment counts range from 1000–3000 comments. Here, we use
K-means for our clustering algorithm for its simplicity, speed of convergence, and centroid-
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based hard assignments (which we use further in a complementary analysis, described in
the following paragraph). Using K-means paired with the silhouette score [14] to determine
the K, we can find distinct clusters among the submissions of the same label. We define
these clusters as C = {C1, C2, ..., CK}, where K is the cluster number given the highest
average silhouette score. Provided the clusters, we need to validate that the clusters into
which the content is separated are divided in a way that can be interpreted by humans.
To do this, we implement a NLP method to accurately summarize the content that is being
clustered. For a cluster Ck, we aggregate the titles and text bodies (but not comment text)
of all submissions belonging to that cluster into a single document. We then extract all
nouns (and proper nouns) and project them into a network, where each node represents a
unique keyword. Note that a keyword can either be a word or a sequence of words that
occur together consistently in the considered text. The edge between two nodes represents
keyword co-occurrence, where the weight of that edge is equal to the total number of times
that pair of keywords has co-occurred in any of the sentences in the joined text. We then run
PageRank [15] on the resultant network in order to identify the keywords in our text that
have a significant presence. We extract all non-trivial keywords, as identified by PageRank,
and count the occurrence frequency of these keywords as they appear within said clusters.
If the extracted keywords associated with each cluster have minimal (or no) overlap, this
indicates that the response features used to identify the detected clusters have done an
effective job in grouping topic using our text-agnostic quantification of discourse dynamics.

With K-means and our keywords, we are also able to explore if the separation in
content correlates with the distances between clusters. Given a set of clusters where
K > 2, we extract from each a list of the top 10 keywords as ranked in descending
order by PageRank. We then find the Euclidean distance between each pair of cluster
centroids. To quantify the content difference between each pair, we use ranked bias overlap
(RBO) [16], a list comparison measure, on the two top 10 keyword lists associated with the
two submissions in consideration. With RBO, the lower the score, the greater the difference
in the keyword lists, with emphasis on the higher-ranking keywords. When RBO is at 0,
there is no overlap in the top 10 keyword lists extracted from the pools of content of the
two submission clusters in question. By plotting the RBO scores against the Euclidean
distances of each pair of cluster centroids, we are then able to more directly observe a
quantifiable relationship between our response features and the topics they cluster together.
If our hypothesis holds, the farther apart any two clusters are, the less overlap in terms of
content there should be, as the comment structures should be increasingly different.

2.5. Comparing Response Features to Latent Dirichlet Allocation

This system of submission clustering could be considered a form of non-semantic
topic modeling, as the process is designed to identify distributions of stable topics exclu-
sively through discourse dynamics, with each cluster representing a set of keywords (or
submissions) that in itself represents a semantic grouping (or topic). As such, it makes
sense to compute a correlative analysis between our response feature clustering approach
and the topical assignments made through the traditional NLP topic modeling methodol-
ogy. Specifically, we explore the topic distributions of the submissions we cluster through
response features using a latent Dirichlet allocation model (LDA) [17].

For a clustering sample used in our response feature analysis, we pool the titles and
text bodies of the submissions in the sample. Then for the LDA model, we set the number of
topics to the value of K previously assigned to the sample. The model produces K number of
topics, each associated with a combination of keywords. Treating the sample’s submissions
as independent documents, the LDA model assigns each submission a distribution of
topics, with each topic being weighted by the contribution that that topic makes to that
submissions. As K-means uses hard assignments, for comparison, we label each submission
with their dominant topic. Then, we project the submissions into 2D space again using
the response features. We assign the submissions their K-means cluster labels as well as
their LDA topic labels in order to see if there is similar groupings. A similar grouping
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would indicate there is a correlation between the topics that the LDA model finds and the
groupings the text-agnostic response features have extracted.

2.6. Outlier Detection

A natural extension of analyzing the topical differences of clusters of submissions is
to implement outlier detection. If the response features can accurately separate content
through discourse dynamics, an outlier, as characterized by those response features, would
naturally indicate that the topic of the outlier submission is quite different from those
that were grouped together. Like the previous section, to investigate the importance of
outliers as detected through response features, we evaluate a set of 1000 submissions
(within the 1000–3000 comments range) under a single S. Provided with the response
features for all submissions, we use the isolation forest outlier detection algorithm to
identify what submissions are substantially different from the others and investigate the
content of those submissions. An isolation forest is a collection of decision trees that isolate
submission outliers by randomly choosing a feature from our response features, then
randomly selecting a split value that is between the available minimum and maximum
values of this feature. Given enough data to help establish a trend of the norm, this
random partitioning of features should generate shorter paths in the trees for outliers,
which distinguishes these anomalous data points from the rest. The isolation forest method
operates on the principle that outliers are observations that are few and different from the
norm, which allows us to use the resultant shorter paths to act as our identifiers. For each
point, the isolation forest outputs an anomaly score that has the range of [−1, 1]. The more
negative the score, the more likely the point in question is an anomaly, or outlier. The more
positive, the more likely the data are part of the norm.

3. Results
3.1. Genre Classification

For our SVM genre classification process, Table 2 shows the classifier scores between
several pairs of label sets. See Supplementary Materials Figure S1 for corresponding
confusion matrices of these classifications. The average score is 0.85, indicating that the
patterns of conversation are distinctly different between Subreddits due to their themes.
In general, people will not talk about games in the same ways they will talk about religion.
This innate difference in conversation style contributes enough to the overall structure
so that an SVM can accurately classify a submission using only the six response features.
We observe that the scores in Table 2 can also be seen as a high-level quantification of the
similarities and differences between themes. For example, while the classification score
between r/politics and r/soccer is 0.96, the score between r/politics and r/atheism is 0.76.
In agreement with our intuition, even though intense debates are certainly known to the
world of soccer, the depth and intensity of debates that sprout up from every aspect of
politics provide a clear dichotomy in comment structure. However, the atheism Subreddit
(and the religious genre in general) also provides an environment for continuous in-depth
debate due to its religious connotations, which might be consistent enough to be more
similar to politics. For robustness, we also use this SVM process to explore the differences
between response features extracted from submissions from the time range of 2006 to 2010
and response features from the time range of 2011 to 2014. See Supplementary Materialsfor
details and results.

Table 2. Classifier scores for combinations of Subreddit labels.

S politics, gaming,
soccer

politics,
gaming

politics,
soccer

gaming,
soccer

politics,
atheism

Score 0.81 0.82 0.96 0.91 0.76



Entropy 2021, 23, 1642 9 of 14

3.2. Clustering Analysis

For our analysis of clustering under a genre, we consider r/hockey as our first example.
We use K-means on 1000 submissions within the 1000–3000 comment range for K = 2.
After clustering, we use our keyword extraction process to extract all prevalent keywords
from the pool of submission texts in C1 and C2. For visualization purposes, we implement
principle component analysis (PCA) to reduce the R6 dimensionality to R2. This reduces
each submission’s set of response features to a two-dimensional point that can be projected
onto a 2D plot, allowing us to view the differences in response features easily. We plot our
1000 submissions, color coded by their associated cluster, in Figure 2. To complement the
plot, we also illustrate the extracted keywords in word clouds linked to the clusters, where
the size of the words in the clouds corresponds to the magnitude of their PageRank score.

Figure 2. PCA of response features for 1000 submissions from r/hockey, clustered by K-means
(K = 2). Word clouds of keywords extracted from the text of the submissions contained in each cluster
are shown above together, with the size of each keyword corresponding to the magnitude of their
respective PageRank score.

As seen in Figure 2, there are two apparent clusters, delineating a difference in
comment structure within the Subreddit itself. Using the word clouds complemented
with a cursory textual analysis of the involved submissions, we see that cluster 1 contains
submissions pertaining to official “Game Thread” discussions, while cluster 2 is primarily
related to trash talking and memes. We further reinforce our word cloud observation by
also counting the frequency of occurrence of some of the top keywords in the text pools of
both clusters, shown in Table 3.

From Table 3, we can see that the keyword occurrence is asymmetric, with little
overlap between the highest occurring keywords of the first and second cluster. When
paired with our other observations, these results indicate that the two r/hockey clusters,
while under the same genre, are still semantically different, involving different types
of discussions therein. Intuitively, we know there is a difference between official game
discussions and trash talking in the ways in which the corresponding conversations are
carried out, and these differences are captured by our response features through K-means.
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Table 3. Comparison of keyword frequency between the two identified topic clusters in r/hockey.

Game Thread Playoff Series Friday Trash Talk

Cluster 1
Frequency 204 76 35 1 1

Cluster 2
Frequency 1 1 22 31 32

As the two sets of keywords for our two clusters in r/hockey are clearly separate
in both content and in Euclidean space, the next step is to investigate the relationship
between cluster distance and content differences. To do this, we use 1000 submissions
from r/politics, finding their response features and then clustering them through K-means
where K = 5. The result for this is shown in Figure 3a. For robustness, we repeat the above
process for r/atheism as well, where K = 3. These results are shown in Figure 3b.

(a) (b)
Figure 3. RBO score of top 10 keyword lists versus Euclidean distance of response feature clusters for
(a) r/politics where K = 5 and (b) r/atheism where K = 3. RBO’s weight parameter p is set to 0.98.

3.3. LDA Analysis

We trained an LDA model on the r/science and r/news Subreddits, selecting
1000 submissions with a comment range of 1000–3000 within these genres. Extracting
our response features from these samples, we find that the best K for the K-means process
is K = 3 for r/science while K = 2 for r/news. Using this for the number of topics in our
LDA model, we found for r/science that the average dominant topic for each submission
had a 90.7%± 8.2% contribution weight on average, with a median of 92.7%. For r/news
we found the average to be 89.4%± 9.4% with a median of 92.5%, which suggests that
using hard assignments for our LDA topics here is appropriate.

We then color-coded each submission by their associated dominant topics and by
their K-means cluster assignment, presenting these submissions projected into 2D space
by PCA on their corresponding response features. We show a side-by-side comparisons
of these two types of groupings in Figure 4. As seen in the figure, the distributions of
topics do not match in any way, as the LDA topics do not group submissions in a similar
fashion as the response features. While this does not indicate any kind of superiority of
either model, the comparison here establishes that there is no correlation between such
established NLP topic modeling processes and our novel approach to semantic grouping.
Specifically, this comparison shows that the latent dynamics captured by our response
features cannot directly be tied to textual analysis, and are distinctly independent from
NLP, accentuating the text-agnostic component of this paradigm.
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(a) (b)

(c) (d)
Figure 4. Comparison of clustering patterns with response feature K-means (a,c) and LDA (b,d) on
the Subreddits r/science (a,b) and r/news (c,d).

3.4. Outlier Analysis

In both examples of Figure 3, the overlap in top keywords decreases with the increase
in Euclidean distance between the cluster centroids. This indicates a clear correlation
between topical separation of submission content and the distance between submissions as
represented through our response features. As such, an outlier should suggest a substantial
difference in the content of the outlier submission and the rest of submissions being
considered. Similar to the previous section, we consider 1000 submissions. We cluster
them using K-means to establish different topical groupings, then isolate outliers using an
Isolation Forest. For r/soccer, we set K = 6. After clustering all the submissions, we plot
them in 2D space using PCA and present them in Figure 5a.

Within Figure 5a, there are three clusters containing the majority of the submissions.
In order to understand the reasons behind the differences in comment cascades between
inliers and outliers, we manually investigate the title and comments of the involved sub-
missions. However, before identifying our outlier, we first explore the textual differences
in topic between the primary clusters. While C4 contains only general discussions, C2 and
C5 consist exclusively of “Match Thread” submissions. While in this example there is no
clearly apparent textual disparity between these “Match Thread” clusters, we do discover
that there is a more subtle degree of underlying differences. Supplemental analysis of the
comments reveals that submissions in C2 are often subject to more extensive discourse,
as opposed to submissions in C5, which tend to only have surface-level conversations.
Thus, while there are few text-based dissimilarities between the two clusters, the response
features are still able to identify additional latent differences in the similar topics visible
only through user reactions.
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When using our isolation forest on this data, we find that the rightmost point in C6 has
one of the highest anomaly scores and is one of the more distant points in Euclidean space
with respect to the majority of other response features. Extracting the title and discussion
from this outlier, we find this submission discusses a scandal involving FIFA concerning
Qatar hosting the World Cup for soccer. Compared to the other submissions in our set, this
is substantially different, inciting outrage from its repliers. However, it is important to note
that this outlier, while different from its surrounding submissions, cannot be considered
a “viral” post from just this classification as a response feature outlier. The virality of a
post generally depends on the post receiving a large, disproportional number of responses,
likes, or attention in a comparatively short amount of time. As this approach identifies
response feature (and thus topical) abnormalities, some of the indicated submissions might
be viral due to their significant topical differences (and likely novelty), but they are not
necessarily guaranteed to be.

(a) (b)
Figure 5. PCA of response features for 1000 submissions, clustered with K-means, from (a) r/soccer
where K = 6 and (b) r/gaming, where K = 7.

We compute another example of clustering and outlier detection in the r/gaming
Subreddit. As before, we extract the response features of the collected 1000 submissions
and cluster them using K-means, where K = 7. The PCA of the response features is shown
in Figure 5b. While a majority of submissions can be found in C3 and C7, there are a
few outliers.

Like in our r/soccer example, when we analyze the text of the greatest group of sub-
missions, we find that C7 primarily contains video game giveaways, while C3 consists of
more general discussions. When using an isolation forest, we find that the singular point
in C5 is considered the greatest outlier of the submission set in terms of the anomaly score.
Investigating this submission, we find that the involved text contains a story about a person
who beat cancer and stayed emotionally strong, thanks to video games. In the context of
r/gaming this can be seen as a very appealing story. Additionally, past work has confirmed
that affect-laden text tends to drive the appeal (and often virality) of content [18], and the
influx of supportive responses in this outlier confirms this. Our response features charac-
terize this resultant cascade, identifying the significant difference in discourse dynamics
such that this submission can be easily identified by an isolation forest.

4. Discussion

In this paper, we introduced a novel approach to analyzing social media information
cascades using only the audience reactions triggered by a source post. Following this ap-
proach, we designed unique features to represent different aspects of discourse dynamics.
Using these measures as response features to characterize an information cascade, we vali-
dated the effectiveness of these representative features through label classification and topic
clustering, showing that response features can identify the differences between Subreddit
genres without needing text. We then explored the relationship between cluster centroid
distances of response features grouped through K-means, and the differences in keywords
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extracted from the clustered submission content. We found that the farther apart any
two response feature clusters, the more topically distinct the involved submissions. This
indicates that the dynamics of discourse and conversation that result from a submission (as
characterized through our response features) can capture unique differences in topic both
between genres and even more finely in a single genre itself. We then compared the submis-
sion clusters found with the response features against more traditional NLP topic modeling.
Using a LDA model where the number of topics is equal to the number of response feature
clusters, we investigated the correlation between LDA topic distribution and the semantic
groupings discovered by the response features. We found that there was no correlation
between the LDA topic distributions and the response features, indicating that the latent
discourse patterns that the response features are using are distinctly independent of such
NLP approaches. As an extension of our clustering analysis, we used outlier detection
within particular Subreddits to identify topically aberrant submissions that stand out from
the norm in terms of response features. We found that the identified outliers tend to involve
unique, shocking, affect-laden, or generally novel content that is highly likely to spawn
intense discussions and deep comment cascades that can be characterized by the response
features in a way that sets it apart from the norm without ever using textual analysis for
assistance and enhancement. Ultimately, we introduced a paradigm for identifying topics
within social media using text-agnostic, reaction-based features that comes with multiple
advantages, including the ability to identify latent semantic sub-divisions in a single topic,
and the ability to isolate submissions that are topically aberrant from surrounding content
without directly using text comparisons. In the future, we seek to integrate our response
features into a pipeline that can analyze content generated from Reddit in real time, actively
characterizing submissions and tracking outliers. Furthermore, while our paradigm for
characterizing topics through reactions is text-agnostic, NLP and response features are not
mutually exclusive. Therefore, we also plan to enhance our response features with text
through multimodal embeddings, as text could improve topic classification (both across
and within genres) and the detection of outliers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/e23121642/s1: Figure S1: Confusion matrices for the Support Vector Machine classifications of
Subreddits, complementing Table 2 from the main text. The order of the figures corresponds to the
order of results in the table. Figure S2: Distribution of comment response counts for all submissions.
For each submission in the Reddit dataset, we computed the total number of comments (|N|), and
binned all submissions by their corresponding counts. Note how the result follows the power law.
Table S1: Classifier scores for combinations of Subreddit labels, grouped by the different comment
ranges used to filter the submission pools.
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