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Abstract: In video processing, background initialization aims to obtain a scene without foreground
objects. Recently, the background initialization problem has attracted the attention of researchers
because of its real-world applications, such as video segmentation, computational photography,
video surveillance, etc. However, the background initialization problem is still challenging because
of the complex variations in illumination, intermittent motion, camera jitter, shadow, etc. This paper
proposes a novel and effective background initialization method using singular spectrum analysis.
Firstly, we extract the video’s color frames and split them into RGB color channels. Next, RGB
color channels of the video are saved as color channel spatio-temporal data. After decomposing the
color channel spatio-temporal data by singular spectrum analysis, we obtain the stable and dynamic
components using different eigentriple groups. Our study indicates that the stable component
contains a background image and the dynamic component includes the foreground image. Finally, the
color background image is reconstructed by merging RGB color channel images obtained by reshaping
the stable component data. Experimental results on the public scene background initialization
databases show that our proposed method achieves a good color background image compared with
state-of-the-art methods.

Keywords: background initialization; separation of foreground and background; singular spectrum
analysis; spatio-temporal data

1. Introduction

Scene background initialization is a basic low-level process in video-processing appli-
cations, such as video segmentation [1], video compression [2], computational photogra-
phy [3], and video surveillance [4,5] (e.g., tracking, counting). The background initialization
is also known as background estimation, background reconstruction, and background
generation. The task of background initialization can be described as follows: given a
video, we need to construct a model that describes the clear background image despite the
continued presence of moving objects. The background image may be valid for the entire
video or updated in time if the background configuration changes due to illumination
change or the displacement of background objects.

Figure 1a shows frames from the HighwayII sequence of the scene background ini-
tialization (SBI) database [6]. There is an appearance of moving objects in each frame,
particularly cars. These frames are the input data of the background initialization model
as described in Figure 1b. Using the proposed background initialization model, we can
eliminate the appearance of moving objects to obtain a clean background, which is also
known as the closest-to-ground-truth background, as shown in Figure 1c.
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Figure 1. The background initialization task: (a) image sequence, (b) background initialization 
model, and (c) desired background. 

During the past two decades, many methods [1,7–25] were proposed for the back-
ground initialization task. In general, these techniques can be classified into four main 
categories: pixel-based methods [1,7–11], iterative-based methods [12–15], low-
rank/sparse data separation methods [16–22], and deep learning-based methods [23–27]. 

The first subcategory includes pixel-based methods where each pixel is processed 
individually over time. Chiu et al. [1] achieved the background by clustering the pixels. 
Pixels obtained from each location along its time axis are clustered according to their in-
tensity variations. The pixel corresponding to the cluster that has a maximum probability 
more significant than a time-varying threshold is extracted as a background pixel. Mad-
dalena and Petrosino [7] used a temporal median to compute the background pixel as the 
mean of the pixels at the same position across all the image sequences. The most well-
known method is a mixture of Gaussians (MoG) proposed by Stauffer [9]. The background 
is modeled probabilistically at each pixel location by fitting MoG to the observed pixel 
valued in a recent temporal window. MoG decides whether each pixel is classified as 
background or foreground. More recently, Laugraud et al. [10] presented a method called 
LaBGen, which combined a pixel-wise temporal median filter and a patch-selection mech-
anism based on motion detection. In each frame, a background subtraction algorithm de-
termines whether each pixel in the video belongs to the foreground or background. Tian 
et al. [11] introduced the block-level background modeling (BBM) algorithm to obtain 
video-coding background components. The BBM algorithm uses the residual gradient as 
the temporal information to distinguish the background blocks. BBM is used to consider 
the boundary difference, and the pixel smoothness process is handled using a weighted 
average of pixel temporal value. 

The second subcategory includes iterative-based methods [12–15]. These methods 
usually consist of two stages. In the first stage, these methods detect static regions consid-
ered reference backgrounds. The background model is iteratively completed in the second 
stage based on suitable spatial consistency criteria. Hsiao and Leou [12] performed back-
ground initialization and foreground segmentation tasks based on motion estimation and 
computation of the correlation coefficient. Each block of the current frame is classified into 
four categories: background, still object, illumination change, and moving entity to exploit 
for the background updating phase. The static blocks, such as “background” and “illumi-
nation change”, are selected as the reference, and the remaining blocks are suitably used 
for the iterative completion of the background model. In [13], Torre and Black applied 
robust principal component analysis (RPCA) for separating the background and fore-
ground to detect the outlier from video or image data. Firstly, the number of bases that 
preserve 55% of data energy is calculated using standard PCA. Then based on the ob-
tained number of bases, RPCA is used for minimizing the vital energy function until con-
vergence to receive the weight matrix. Finally, the weight matrix is used to detect outliers. 
Reitberger and Sauer [14] proposed a background-determining model based on an itera-
tive singular value decomposition via singular vectors spanning a subspace of the image 
space. The method has a fast processing speed and can be applied in real-time applica-
tions. But it has difficulty handling challenges, such as intermittent motion. Recently, 
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During the past two decades, many methods [1,7–25] were proposed for the back-
ground initialization task. In general, these techniques can be classified into four main
categories: pixel-based methods [1,7–11], iterative-based methods [12–15], low-rank/sparse
data separation methods [16–22], and deep learning-based methods [23–27].

The first subcategory includes pixel-based methods where each pixel is processed indi-
vidually over time. Chiu et al. [1] achieved the background by clustering the pixels. Pixels
obtained from each location along its time axis are clustered according to their intensity
variations. The pixel corresponding to the cluster that has a maximum probability more
significant than a time-varying threshold is extracted as a background pixel. Maddalena
and Petrosino [7] used a temporal median to compute the background pixel as the mean
of the pixels at the same position across all the image sequences. The most well-known
method is a mixture of Gaussians (MoG) proposed by Stauffer [9]. The background is
modeled probabilistically at each pixel location by fitting MoG to the observed pixel valued
in a recent temporal window. MoG decides whether each pixel is classified as background
or foreground. More recently, Laugraud et al. [10] presented a method called LaBGen,
which combined a pixel-wise temporal median filter and a patch-selection mechanism
based on motion detection. In each frame, a background subtraction algorithm determines
whether each pixel in the video belongs to the foreground or background. Tian et al. [11]
introduced the block-level background modeling (BBM) algorithm to obtain video-coding
background components. The BBM algorithm uses the residual gradient as the temporal
information to distinguish the background blocks. BBM is used to consider the boundary
difference, and the pixel smoothness process is handled using a weighted average of pixel
temporal value.

The second subcategory includes iterative-based methods [12–15]. These methods
usually consist of two stages. In the first stage, these methods detect static regions con-
sidered reference backgrounds. The background model is iteratively completed in the
second stage based on suitable spatial consistency criteria. Hsiao and Leou [12] performed
background initialization and foreground segmentation tasks based on motion estimation
and computation of the correlation coefficient. Each block of the current frame is classified
into four categories: background, still object, illumination change, and moving entity
to exploit for the background updating phase. The static blocks, such as “background”
and “illumination change”, are selected as the reference, and the remaining blocks are
suitably used for the iterative completion of the background model. In [13], Torre and Black
applied robust principal component analysis (RPCA) for separating the background and
foreground to detect the outlier from video or image data. Firstly, the number of bases that
preserve 55% of data energy is calculated using standard PCA. Then based on the obtained
number of bases, RPCA is used for minimizing the vital energy function until convergence
to receive the weight matrix. Finally, the weight matrix is used to detect outliers. Reitberger
and Sauer [14] proposed a background-determining model based on an iterative singular
value decomposition via singular vectors spanning a subspace of the image space. The
method has a fast processing speed and can be applied in real-time applications. But it has
difficulty handling challenges, such as intermittent motion. Recently, based on long-term
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background stable and short-term foreground changes of scenes, Chen et al. [15] adopted a
Bayesian framework to classify the background and foreground.

The third subcategory includes low-rank/sparse data separation methods. The back-
ground information is considered low-rank information, and the remainder of the data
represents both noises and moving objects. One of the first attempts to initialize the
background in this subcategory was introduced by Candes et al. [16]. They perfectly
separated a given video into a low-rank matrix and a sparse matrix by solving a very
convenient convex program called principal component pursuit (PCP). However, PCP
has several disadvantages for real-world videos, such as its time consumption and com-
putational complexity. To overcome the limitations of the PCP method, many studies
were proposed, such as Javed et al. [17] and Zhou et al. [18], which work well in specific
environments. Ye et al. [19] presented a motion-assisted matrix restoration (MAMR) model
for background-foreground separation of a video. In the MAMR model, the sparse matrix
contains the foreground objects, and the low-rank matrix includes the background. A
dense motion field is calculated and mapped into a weighting matrix for each frame, which
indicates the likelihood that each pixel belongs to the background. In [20], Grosek and Kutz
introduced the video dynamic mode decomposition (DMD) method for foreground and
background separation. The DMD method decomposes video data into different dynamic
modes, which are associated with Fourier frequencies. The frequencies near the origin
do not change from frame to frame. Thus they are considered background components,
and the terms with Fourier frequencies bounded away from the origin are foreground
components. In [21], non-negative matrix factorization (NMF) was used to approximate a
non-negative matrix A to a product of two non-negative, low-rank factor matrices W and
H, where W contains background components and H contains foreground components.
More recently, Kajo et al. [22] introduced a spatio-temporal, slice-based, singular value
decomposition (SVD) method by organizing videos, such as tensors and seeks, to sparse
them into different components. Each of these components, namely the moving object and
the background, is represented by a few distinct significant eigenvalues. However, this
proposal can be time-consuming to process over an ample space. Besides, it still has some
limitations in the complex scenes, such as illumination variation, short video, and clutter.

The fourth subcategory includes deep learning-based methods [23–27]. These methods
used the effectiveness of the deep learning model to automatically learn the background
model. Ramirez-Quintana and Chacon-Murguia [23], based on self-organizing maps
(SOMs) and cellular neural networks (CNNs), proposed a self-adaptive system named
SOM-CNN. This system includes two neural network architectures called retinotopic SOM
(RESOM) and neighbor threshold CNN (NTCNN) for video and motion analysis. The
system can work with typical and complex scenarios in real time. Zhao et al. [24] proposed
a background modeling method called the stacked multilayer self-organizing map back-
ground model (SMSOM-BM). This model can learn the background model of challenging
scenarios and automatically determine most network parameters by considering every
pixel and spatial consistency at each layer. Halfaoui et al. [25] proposed a CNN-based
method to estimate the background component. This method is effective for challenges,
such as dynamic backgrounds, illumination variation, and clusters. Yang et al. [26] pro-
posed a deep neural network for background modeling. First, they used the temporal
encoding to sample multiple frames from original sequential images with variable intervals,
then they used a fully convolutional network to extract temporal and spatial information
from frames. In the work by Gregorio et al. [27], the authors introduced a background
initialization approach by weightless neural network. Each pixel is allied to an artificial
weightless neural network that learns more frequently. This method is useful for processing
long-term and live videos.

In the real world, background initialization still faces many challenges, such as light-
ing changes, the foreground occupying most of the frames, the automatic adjustment of the
video camera, and objects moving heterogeneously (sometimes stationary, sometimes mov-
ing). To address these issues, we propose a novel method belonging to the low-rank/sparse
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data separation method named background initialization with singular spectrum analysis
(BISSA). Firstly, the input image sequence is reorganized into a spatio-temporal data type
useful for background–foreground separation tasks. Secondly, an adaptive background ini-
tialization algorithm for image sequences based on the SSA is proposed. Finally, to evaluate
the effectiveness of our method, we compare our approach with some of the state-of-the-art
techniques by doing experiments on a SBI [6] database. The experiment results show that
our proposed method is more accurate and easier to apply in real-world applications.

The rest of the paper is organized as follows: Section 2 describes an overview of the
SSA algorithm. Section 3 presents our proposed method. Finally, experimental results and
discussion are summarized in Section 4, while conclusions and future work are represented
in Section 5.

2. Singular Spectrum Analysis

In recent years, singular spectrum analysis (SSA) [28–30] has emerged as a powerful
non-parametric tool to apply for analyzing and predicting time series data. This method
aims to decompose the input data into a sum of different meaningful components, where
these components can be grouped and merged based on their common properties to
compose subsequent components. These grouped components indicate different groups of
features of the original time series data. Currently, many researchers apply SSA in different
areas, such as biomedical diagnostic tests [31], climatology [32], economics [33,34], signal
processing [35], etc. A flowchart of SSA, consisting of the substages of decomposition and
reconstruction, is shown in Figure 2.
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As can be seen in Figure 2, the basic SSA algorithm consists of two isolated stages:
decomposition and reconstruction stages. In the first stage, embedding and singular value
decomposition steps are applied for the decomposition. In the last stage, eigentriple
grouping and diagonal averaging steps are used to reconstruct the time series. For example,
given non-zero time series X = ( f1, f2, . . . , fK) of length K, W is denoted as the window
length and 1 < W < K; L = K−W + 1. The SSA algorithm is described below:

Stage 1: Decomposition
Step 1: Embedding
Embedding is a standard procedure in time series analysis. Embedding can be re-

garded as a mapping that transfers a one-dimensional time series into a multidimensional
series. By selecting a large window size, more information about the basis pattern of the
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time series is captured. Constructing the trajectory matrix F of the original time series X,
which is a matrix of size W × L, gives:

F =


f1 f2 f3 . . . fL
f2 f3 f4 . . . fL+1
f3 f4 f5 . . . fL+2
...

...
...

. . .
...

fW fW+1 fW+2 . . . fK


W×L

, (1)

where rows and columns of F are subseries of the original time series.
Step 2: Singular value decomposition (SVD)
This step computes the SVD of the trajectory matrix F sized W × L. By using SVD,

matrix F can be decomposed into the product of three matrices: an orthogonal matrix U
of size W × r, a diagonal matrix Σ of size r× r, and the transpose of another orthogonal
matrix V of size r× L, where r is the rank of matrix F. In general, the SVD of trajectory
matrix F can be written as:

F = UΣVT =
r

∑
i=1

uiσivT
i , (2)

where U = [u1, u2, u3, . . . , ur] and V = [v1, v2, v3, . . . , vr] are the column-orthonormal
matrices, respectively (i.e., UTU = I and VTV = I), and Σ = diag(σ1, σ2, σ3, . . . , σr) is a
diagonal matrix containing the singular values (SVs) of F, where SVs are arranged in the
descending order (σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σr > 0). The matrices Fi = uiσivT

i are called
elementary matrices: they have rank-1. The collection (ui, σi, vi) is called i-th eigentriple of
matrix F.

Stage 2: Reconstruction
Step 3: Eigentriple grouping
This step can be used to analyze and determine the physical behavior of each compo-

nent in the time series data. The purpose of the eigentriple grouping is to gather data based
on their common properties. The different matrices of rank-1 acquired from applying the
SVD of trajectory matrix F can be selected and gathered together. In that way, correctly
clustered groups reflect other original time series data criteria. The grouping procedure
separates the set of r eigentriples into m (m ≤ r) distinct subsets, and they are expressed as
FGj =

{
FG1 , FG2 , . . . , FGm

}
, where each FGj contains several Fi and presents as:

FGj =


f11,j f21,j f31,j . . . fL1,j
f12,j f22,j f32,j . . . fL2,j
f13,j f23,j f33,j . . . fL3,j

...
...

...
...

...
f1W,j f2(W+1),j f3(W+1),j . . . fLK,j

. (3)

The progress of selecting the sets FG1 , FG2 , FG3 , . . . , FGm is called eigentriple grouping.
Step 4: Diagonal averaging
The final step is to perform the diagonal averaging on the matrices FGj where j =

1, 2, 3, . . . , m. This step converts grouped matrices FGj into a one-dimensional original time
series via the diagonal averaging method. In particular, where FGj is a trajectory matrix

grouped in step 3, the element f̃kj, k = 1, 2, . . . , K of time series data Sj is computed as the
average of all elements on the minor diagonal kth of matrix FGj , which can be expressed as:

f̃kj =
1
k ∑

x + y = k + 1
1 ≤ x, y ≤ k

fxy,j, k = 1, 2, . . . , K. (4)
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The result of the reconstructed trajectory matrix along the diagonal averaging process
is time series data of length K represented by:

Sj =
{

f̃1j, f̃2j, f̃3j, . . . , f̃Kj

}
. (5)

3. Background Initialization Using Singular Spectrum Analysis

Generally, background–foreground separation can be regarded as a matrix separation
problem [16,36–40]. We can separate a video into two group components, one compo-
nent that contains stable information and the remaining component that holds dynamic
information. Constructing these components can be based on an eigentriple or a group of
eigentriples. The background data (almost stable and highly correlated between frames)
is contained in the static component, and the dynamic component usually represents the
foreground data (moving objects or noise). The matrix separation problem can unify in a
more general framework formulated as follows [16,36–40]:

X = S + εD, (6)

where X is the input video data information, matrix S indicates the stable component, and
εD represents the dynamic component, respectively. These components are achieved by
reconstructing one or a group of eigentriples of the trajectory matrix F. As a result, the
stable and dynamic components are calculated as:

S =
τ

∑
i=1

uiσivT
i , (7)

εD =
r

∑
j=τ+1

ujσjvT
j , (8)

where 1 ≤ τ ≤ r and r is the rank of F. In this study, video X is stored in three matrices
as spatio-temporal data M(C). Trajectory matrices F(C) are constructed based on these
spatio-temporal data matrices, where C ∈ {R, G, B} represents R, G, and B color channels.
More details on how to construct video X as spatio-temporal data used as the input data
for our background initialization system are introduced in the following subsections.

3.1. Storing a Video as Spatio-Temporal Data

A fundamental problem in mathematics is how to arrange data, through which they
reveal the most critical information. By organizing the correct given data, we can solve
our problem. In this section, we introduce a way of rearranging input video data to
solve the problem of separating the background and moving objects. Spatio-temporal
data [40] is a data type that contains both space and time characteristics of the original
data. Spatial refers to space and temporal relates to time. Spatio-temporal data analysis is
discovering patterns and knowledge from spatio-temporal data. A video can be considered
a dynamic system with evolving frames, where each frame presents the system’s state.
In this study, by flattening the color frames of a video as columns of matrices, we obtain
spatio-temporal data.

A grayscale video is three-dimensional (3D) input data, which is the frame height (m),
width (n), and time (k) with k frames of the video, as shown in Figure 3a. By reshaping each
frame into a column of size 1× a of a matrix of size k× a (where a = m× n), as shown in
Figure 3b, we obtain the spatio-temporal data matrix. In this matrix, the correlation between
pixels located at the same neighboring position between adjacent frames is preserved over
time. Additionally, the video is mapped from 3D space into two-dimensional (2D) space,
thereby reducing the complex computing.
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represents one frame of the original video.

Without loss of generality, X is assumed to be an original color video consisting of k
frames with a resolution of a. To display multichannel images in the RGB space, 24 bits
with 8 bits for each color channel is used. Firstly, each color frame is separated into three
color channels, namely R, G, and B. Secondly, we flatten each color channel frame to one
vector and arrange the vector side by side to form a spatio-temporal data matrix, called
the color channel spatio-temporal matrix. Finally, we obtain three spatio-temporal data
matrices corresponding to the three color channels. Based on the color frame, we construct
three spatio-temporal data matrices. The process to flatten video’s frames to the color
channel spatio-temporal data matrices is summarized in Algorithm 1, as follows:

Algorithm 1. Construct the Three-Color Channel Spatio-Temporal Data Matrices of the Video

Input: X is a color video consisting of k color frames, where each frame has a resolution of
a = m × n.
Output: Three color channel spatio-temporal data matrices, M(C), C ∈ {R, G, B}, of the video.

1. f 1, f 2, . . . , fk ← Extract k frames fi of the video X.
2. f (C)i

← Separate frame fi into RGB color channel images, i = 1, 2, 3,.., k.

3. m(C)
i

← flatten each f (C)i image into a vector column of size 1 × a.

4. M(C) ← Arrange the vector column m(C)
i side by side to form color

channel spatio-temporal data matrices.

3.2. Singular Spectrum Analysis for Background Initialization

This section presents the central part of our background initialization method using
SSA in detail. We introduce how to apply SSA for the background initialization task, given
that X is a color video sequence of k frames, where each frame has a resolution of a = m× n.
Firstly, by using Algorithm 1, as discussed in Section 3.1, we receive three color channel
spatio-temporal data matrices M(C) of size a× k, C ∈ {R, G, B} representing the R, G, or
B color channel used, which can be written as:

M(C) =



f (C)11 f (C)12 f (C)13 . . . f (C)1k
f (C)21 f (C)22 f (C)23 . . . f (C)2k
f (C)31 f (C)32 f (C)33 . . . f (C)3k

...
...

...
. . .

...
f (C)a1 f (C)a2 f (C)a3 . . . f (C)ak


a×k

. (9)
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Embedding: We construct the trajectory matrices F(C) based on color channel spatio-
temporal data matrices M(C) by embedding operator T . The dimensions of the matrices
F(C) are determined by two window lengths, Wa and Wk, where 1 ≤Wa ≤ a, 1 ≤Wk ≤ k,
and 1 < WaWk < ak, then La = (a−Wa + 1) and Lk = (k−Wk + 1). The input 2D matrix
M(C) is organized into the matrix F(C) of size (WaWk × LaLk) as follows:

T (M(C)) = F(C) =



T(C)
1 T(C)

2 T(C)
3 . . . T(C)

Lk

T(C)
2 T(C)

3 T(C)
4 . . . T(C)

Lk+1

T(C)
3 T(C)

4 T(C)
5 . . . T(C)

Lk+2
...

...
...

. . .
...

T(C)
Wk

T(C)
Wk+1

T(C)
Wk+2

. . . T(C)
k


W(C)

a W(C)
k ×L(C)

a L(C)
k

, (10)

where each T(C)
i is a trajectory matrix of size W(C)

a × L(C)
a composed from the color channel

spatio-temporal data matrix M(C), such as:

T(C)
i =



f (C)1i f (C)2i f (C)3i . . . f (C)Lai

f (C)2i f (C)3i f (C)4i . . . f (C)La+1i

f (C)3i f (C)4i f (C)5i . . . f (C)La+2i
...

...
...

. . .
...

f (C)Wai f (C)Wa+1i f (C)Wa+2i . . . f (C)ai


W(C)

a ×L(C)
a

. (11)

Decomposition: We perform SVD on the trajectory matrices F(C) to obtain sets of the
rank-1 matrices.

F(C) = U(C)Σ(C)V
T
(C) =

r(C)

∑
i=1

u(C)
i σ

(C)
i (v(C)i )

T
, (12)

where U(C) = [u(C)
1 , u(C)

2 , . . . , u(C)
r(C) ] and V(C) = [v(C)1 , v(C)2 , . . . , v(C)r(C) ] are orthogonal matri-

ces containing singular vectors, Σ(C) = diag
(

σ
(C)
1 , σ

(C)
2 , . . . , σ

(C)
r(C)

)
contains sorted SVs in a

non-increasing order, and r(C) is the rank of F(C).
Grouping: The rank-one matrices are merged following general criteria; the aggregate

of the rank-one matrices acquire the grouped matrices in N (N ≤ r) groups.

F(C) = FG1
(C) + FG2

(C) + . . . + FGN
(C), (13)

where F(C)
Gm

=
N
∑

m=1
u(C)

m σ
(C)
m (v(C)m )

T
.

Return to the object decomposition: The grouped matrices are transformed to the
form of the input object by performing T −1 based on the diagonal averaging method, as
described in Equation (4):

F̃(C)
Gm

= T −1
(

F(C)
Gm

)
, (14)

where m = 1, 2, 3, . . . , N.

3.3. Grouping of Eigentriples

This section analyzes and determines the specific meaning of an eigentriple or a group
of eigentriples in video data. The first step is to set a window length. The algorithm
proposed in this study separates the set of eigentriples into two groups, as described in
Equation (6). Both groups reconstruct output data, resulting in two reconstructed output
component data for given input data, so we set all window lengths to 2 in this study.
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We selected video sequences, namely Board, CaVignal, and IBMtest2, for analysis
and observation. This experiment considers window length sizes 2, 4, and 10, respectively.
Figure 4 presents the eigenvectors plot from trajectory matrices of the three videos, as we
analyzed the data with different window length sizes. As shown in Figure 4, from top
to bottom, the blue line represents the first component, and other color lines indicate the
remaining components. We can see that the first eigenvector is always a constant over
time. The eigenvalue represents the magnitude of the data, and the eigenvector indicates
the direction of the data. Therefore, the first eigenvector represents the unchanged data
component over time. Those are referred to as stable components (S), representing the back-
ground in the video. Because of that reason, we reconstructed the background in this first
eigentriple-based video and dynamic component (εD) obtained by remaining eigentriples.
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In summary, we split the set of indices {1, 2, . . . , r} into two groups, namely a stable
component and a dynamic component. The result of the step is the representation:

S = u1σ1vT
1 , (15)
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εD =
r

∑
i=2

uiσivT
i , (16)

where r is the rank of trajectory matrix.

3.4. Proposed Method

From the arguments presented above, by using the first eigentriple of color channel
spatio-temporal data matrices, we can construct the most effective background image of
the given video. The remaining eigentriples are used to construct the foreground. The
implementation of the main part of BISSA method can be summarized in Algorithm 2
as follows:

Algorithm 2. Initialize Background Using SSA

Input: Color channel spatio-temporal data matrices M(C) of video X.
Output: Obtain background and foreground images corresponding to each input color frame.

1.

Construct trajectory matrix F(C) :

F(C) ← Equation(10)(M(C))

2.

Decompose the trajectory matrix F(C) into a sum of one-rank elementary matrices:

F(C) = U(C)Σ(C)V
T
(C) =

r(C)

∑
i=1

u(C)
i σ

(C)
i (v(C)i )

T
,

where r(C) = rank(F(C)).

3.

Construct background component S(C) based on the first eigentriple group (i = 1) :

S(C) = u(C)
1 σ

(C)
1

(
v(C)1

)T

4.

Construct the foreground component ε
(C)
D based on remaining eigentriple groups:

ε
(C)
D =

r(C)

∑
i=2

u(C)
i σ

(C)
i

(
v(C)i

)T

5.

Perform the diagonal averaging S(C) :

S̃(C) ← Equation 14
(

S(C)
)

6.

Perform the diagonal averaging ε
(C)
D :

ε̃
(C)
D ← Equation 14

(
ε
(C)
D

)

7.

Reshape the first column of S̃(C) to matrices sized m × n:

S̃(C) = reshape
(

S̃(C), m, n
)

8.

Reshape the columns of ε̃
(C)
D to matrices sized m × n:

ε̃
(C)
D,i = reshape

(
ε̃
(C)
D,i , m, n

)
,

where i = {1, 2, 3, . . . , k}.
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9.

Merge three colors channels of S̃(C) to receive the background image of the video:

Sbg = merge
(

S̃(C)
)

10.

Merge three colors channels of ε̃
(C)
D to receive the foreground image εbg, i

corresponding to ith frame:

εbg, i = merge
(

ε̃
(C)
D,i

)

Given X is a video consisting of k color frames, where each frame has a resolution
of a = m× n, after applying Algorithm 1, the three color channel spatio-temporal data
matrices corresponding to three color channels are obtained. Each color channel spatio-
temporal data matrix contains k columns and a rows. Each column corresponds to one
frame, and each row contains k pixel values of the same pixel position in the video. By
applying Algorithm 2 on the three color channel spatio-temporal data matrices separately,
we process and find the relevance of all frames over time. In our proposed method, we
use the eigentriples of the color channel spatio-temporal data matrix to construct two
groups of matrices. The first group is constructed by using only the first eigentriple, which
contains the background information of the video. The second group is built by using the
remaining eigentriples, which include the foreground information. To receive the desired
background images, we reshape each column with the first reconstruction matrix to a
matrix of size m× n to obtain the chosen background images. The color background image
is obtained by merging the three color channels. Moreover, k-achieved color background
images are the same; thereby, only the first column of the first matrix is used to reconstruct
the background image to save processing time. Experimental results that support our
arguments are discussed in more detail in the next section.

4. Experimental Results and Discussion

In this section, to indicate the effectiveness of our proposed method, experiments
for the background initialization problem are conducted on the most popular benchmark
database named the SBI [6] database. We also compare our background initialization per-
formance with some state-of-art background initialization, such as median [7], RPCA [13],
dynamic mode decomposition (DMD) [20], non-negative matrix factorization (NMF) [21],
and background estimation by WiSARD (Wilkes, Stonham and Aleksander Recognition
Device) [27]. Finally, to assess the accuracy of the obtained background images against the
ground truth images, we use several measurement metrics, such as structural similarity
index (SSIM) [41], feature similarity index for image quality assessment (FSIM) [42], peak-
signal-to-noise ratio (PSNR) [43], average gray-level error (AGE), and percentage of error
pixels (pEPs) [44].

4.1. SBI Database

This database was introduced by L. Maddalena at the workshop on scene back-
ground modeling and initialization in 2016. The SBI database [6] consists of 14 different
image sequences, namely Board, Candela_m1.10, CAVIAR1, CAVIAR2, CaVignal, Foliage,
Hall&Monitor, HighwayI, HighwayII, HumanBody2, IBMtest2, People&Foliage, Snellen, and
Toscana, as shown in Figure 5a. These sequences are composed of 6 to 740 frames, and their
dimensions vary from 144× 144 to 800× 600. Each image sequence is accompanied by
a ground truth background image, as shown in Figure 5b. SBI was designed to evaluate
existing and future background initialization algorithms. The image sequences in the SBI
database are intended for different challenges in background initialization tasks, such as
camera jitter and shadows challenge, intermittent motion challenge, clutter challenge, very
short challenge, etc.
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Figure 5. Fourteen different image sequences in the SBI dataset, namely Board, Candela_m1.10, CAVIAR1, CAVIAR2, CaVignal,
Foliage, Hall&Monitor, HighwayI, HighwayII, HumanBody2, IBMtest2, People&Foliage, Snellen, and Toscana (from left to right):
(a) the frames of image sequences and (b) the ground truth background images of image sequences, respectively.

In the SBI database, the first one is the clutter challenge, where the objects appear
almost to cover the entire background, such as the Board, People&Foliage, Foliage, and Snellen
sequences. The HighwayI and HighwayII sequences have many cars that are constantly
moving. These sequences include challenges, such as shadows and camera jitter. The
Candela_m1.10 sequence presents a scenario where a man appears with his bag and leaves
the scene with nothing. The CaVignal sequence is challenging because the man appears and
retains position in more than 60% of the frames before leaving. Some sequences include the
challenges of intermittent motion, such as Candela_m1.10, CAVIAR1, CAVIAR2, CaVignal,
Hall&Monitor, and People&Foliage. The other sequences, HumanBody2 and IBMtest2, contain
basic challenges. Finally, the Toscana sequence consists of only 6 frames, which presents a
short video challenge. Our goal is to propose a background estimation method to obtain
the factual background of a given video.

4.2. Evaluation and Result

Our paper proposes an efficient method for the background initialization task. As
discussed in Section 3, given X is a color video sequence of k frames fi, i = 1, 2, . . . , k with
a resolution of a = m× n, the background initialization algorithm based on SSA is proposed.
Firstly, color frames are split into three color channels, f (C)i , C ∈ {R, G, B} representing
the R, G, or B color channels, then flattened to a vector column of color channel spatio-
temporal data matrices M(C). These matrices contain both space and time characteristic
information of the original video. In M(C) matrices, the correlation between pixels located
at the same position between adjacent frames is preserved over time. Next, M(C) matrices
are decomposed by SSA to find the eigentriples for constructing the stable and dynamic
components. The stable component containing the background information is computed
by grouping the first eigentriple, and the remaining eigentriples construct the dynamic
component. Finally, by reshaping an arbitrary column of S̃(C) to matrices of size m× n,
then merging the three color channels, we receive a corresponded background image of the
video. Similarly, by reshaping the columns of ε̃

(C)
D to matrices of size m× n, then merging

the three color channels, we obtain a sequence of foreground images corresponding to each
video frame.

Figure 6 displays achieved background and foreground images corresponding to the
frames in HighwayI, IBMtest2, CAVIAR2, and HighwayII sequences by using our proposed
method. The background images presented in the second row and the foreground images
corresponding to the frames are illustrated in the third row. These videos contain several
challenges, such as intermittent motion, shadows, camera jitter, and basic. Using our
proposed method, for each video containing k frames, we can obtain k background image
and k foreground image. This study focused on the background initialization task; however,
we also obtained impressive foreground results, as shown in the third row of Figure 6. As
can be seen, all moving objects are eliminated from the original frame’s image. However,
all the background images are the same, as shown in the second row of Figure 6. Therefore,
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we only need to construct a video’s background image by reshaping one column of the
stable component to an image to reduce processing time.
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Our proposed algorithm can obtain background and foreground images of a video.
However, we focus on handling the background initialization in this paper. To show the
greater effectiveness of BISSA, we compare the proposed method with several existing
methods, such as median [7], RPCA [13], DMD [20], NMF [21], and BEWiS [27].

Figure 7 shows the ground truth background images and obtained background images
using different methods of 14 different video sequences in the SBI dataset. The Toscana
sequence in the SBI database includes only six frames that represent the challenge of very
short videos. Therefore the convergence criterion of the Toscana sequence is not met in
RPCA, which means we cannot compute the matrix that contains the weighting of each
pixel in the training data. Figure 7a presents ground truth background images of 14 video
sequences in the SBI dataset. Figure 7b–g illustrate the background images obtained by
using BEWiS, median, RPCA, DMD, NMF, and our proposed method, respectively. As seen,
our proposed method obtains a clear background image in most cases, such as the Board,
Candela_m1.10, CAVIAR1, CAVIAR2, Hall&Monitor, HighwayI, HighwayII, HumanBody2,
IBMtest2, and Snellen image sequences. For the CaVignal image sequence, the obtained
background image is not as expected because the man appears and retains position in
more than 60% of the frames before leaving, much like the People&Foliage video sequence,
in which the result is not expected because the people and trees appear in 338 out of
341 frames. For the Toscana video sequence, the results are not as good as expected due to
too few frames (only six frames) and the object appears to occupy the majority of the video.
In summary, our proposal achieves positive results on the basic challenge, intermittent
motion challenge, camera jitter challenge, and shadows challenge, but struggles a little in
handling clutter video and a very short video sequence. However, the obtained results are
still really good when compared to other methods, such as RPCA, DMD, and NMF.
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Figure 7. The ground truth background images and obtained background images by using different methods of 14 different
image sequences in the SBI dataset, namely Board, Candela_m1.10, CAVIAR1, CAVIAR2, CaVignal, Foliage, Hall&Monitor,
HighwayI, HighwayII, HumanBody2, IBMtest2, People&Foliage, Snellen, and Toscana (from left to right): (a) ground truth
background images, (b) BEWiS, (c) median, (d) RPCA, (e) DMD, (f) NMF, and (g) BISSA.

To assess the accuracy of the obtained background images against the ground truth
images, we use five measurement metrics: SSIM [41], FSIM [42], PSNR [43], AGE, and
pEPs [44], to measure the similarity between the two images. These measurement metrics
are image-to-image metrics measuring the visual correctness of an estimated background
image against a ground truth background image. These methods exploit different aspects of
image quality evaluation, thus leading to an extensive comprehensive evaluation of the ob-
tained result. Table 1 summarizes the rank of values and preference of these measurement
metrics. As can be seen in Table 1, for the SSIM, FSIM, and PSNR measurement metrics,
the higher obtained values demonstrate a higher similarity between the two images. On
the contrary, for the AGE and pEPs measurement metrics, the lower of the obtained values
show a higher similarity between the obtained backgrounds and ground truth images. A
summary is presented in Table 1.

Table 1. Evaluation metrics.

Eval. Met. Name Range of Value Preference

SSIM [41] Structural similarity index [0–1] higher

FSIM [42] Feature similarity index for
image quality assessment [0–1] higher

PSNR [43] Peak-signal-to-noise ratio [0–infinity] higher

AGE [44] Average gray-level error [0–255] lower

pEPs [44] Percentage of error pixels [0–1] lower

A summary is presented in Table 2 that highlights the best values of the corresponding
metrics in bold. As shown in Table 2, the BISSA method gets high performance in most
videos when we use the SSIM, FSIM, and PSNR metrics to evaluate. With the pEPs metric,
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our proposed method gets high performance in most videos except the Board, CaVignal, and
Snellen sequences. BEWiS is the best performer in the Foliage, but BISSA is still better than
the RPCA, DMD, median, and NMF methods. With the AGE metric, our proposed method
gets high performance in most videos except Canlenda_m1.10, CAVIAR1, and HumanBody2.
However, the BISSA is still better than the remaining methods. When using the PSNR
metric to evaluate results, our proposed method also gets high performance in most videos
except Canlenda_m1.10 and Snellen. In most videos, the backgrounds obtained by our
proposed method are very similar to the ground truths.

Table 2. Average results of the various methods in the SBI database.

Method SSIM ↑ FSIM ↑ AGE ↓ pEPs ↓ PSNR ↑

Bo
ar

d

BISSA 0.73 0.83 30.00 0.53 16.5

RPCA 0.63 0.77 40.46 0.64 13.4

NMF 0.66 0.83 34.88 0.60 15.2

DMD 0.59 0.74 39.29 0.38 12.3

BEWiS 0.72 0.82 18.66 0.28 16.5

Median 0.71 0.80 21.74 0.25 16.4

C
an

de
la

_m
1.

10

BISSA 0.95 0.93 6.12 0.03 25.76

RPCA 0.94 0.94 4.92 0.03 27.2

NMF 0.94 0.95 4.64 0.04 27.6

DMD 0.94 0.94 4.63 0.04 24.8

BEWiS 0.95 0.96 3.67 0.03 28.66

Median 0.92 0.93 5.32 0.04 25.78

C
A

V
IA

R
1

BISSA 0.96 0.97 6.36 0.07 27.8

RPCA 0.91 0.94 12.64 0.12 21.3

NMF 0.92 0.96 16.70 0.27 22.1

DMD - - 131.85 0.93 -

BEWiS 0.97 0.97 3.85 0.45 27.27

Median 0.90 0.93 9.18 0.08 17.8

C
A

V
IA

R
2

BISSA 0.95 0.99 3.20 0.01 32.9

RPCA 0.96 0.98 12.87 0.08 24.8

NMF 0.96 0.98 13.84 0.11 24.5

DMD 0.97 0.97 2.49 0.01 30.1

BEWiS 0.98 0.99 0.78 0.04 47.61

Median 0.96 0.96 3.40 0.02 25.08

C
aV

ig
na

l

BISSA 0.88 0.88 12.14 0.10 20.04

RPCA 0.74 0.79 26.78 0.36 15.3

NMF 0.85 0.90 14.89 0.14 19.1

DMD 0.77 0.84 14.5 0.14 16.5

BEWiS 0.96 0.98 12.76 0.10 20.01

Median 0.83 0.87 12.9 0.10 16.90



Entropy 2021, 23, 1644 16 of 19

Table 2. Cont.

Method SSIM ↑ FSIM ↑ AGE ↓ pEPs ↓ PSNR ↑

Fo
lia

ge

BISSA 0.57 0.72 36.46 0.70 15.63

RPCA 0.57 0.74 41.81 0.56 14.1

NMF 0.69 0.81 35.96 0.60 15.4

DMD 0.34 0.63 50.95 0.64 11.6

BEWiS 0.87 0.91 11.8 0.17 15.38

Median 0.60 0.72 32.30 0.54 23.75

H
al

l_
m

on
ito

r

BISSA 0.94 0.93 6.70 0.03 28.3

RPCA 0.91 0.94 8.06 0.06 25.1

NMF 0.93 0.95 4.68 0.03 28.1

DMD 0.89 0.93 6.03 0.04 23.2

BEWiS 0.92 0.93 3.62 1.43 27.17

Median 0.90 0.93 2.7 0.99 26.46

H
ig

hw
ay

I

BISSA 0.95 0.95 7.7 0.02 29.08

RPCA 0.83 0.90 46.68 0.94 14.3

NMF 0.85 0.92 42.83 0.98 15.1

DMD 0.66 0.76 18.39 0.29 18.9

BEWiS 0.94 0.95 2.10 0.46 54.49

Median 0.89 0.93 1.42 0.15 40.14

H
ig

hw
ay

II

BISSA 0.94 0.97 4.5 0.003 33.32

RPCA 0.93 0.96 4.30 0.01 30.5

NMF 0.94 0.97 3.57 0.005 33.3

DMD 0.81 0.89 9.76 0.11 22.4

BEWiS 0.94 0.96 2.19 0.41 34.62

Median 0.91 0.91 1.72 0.31 34.66

H
um

an
Bo

dy
2

BISSA 0.95 0.96 9.71 0.12 24.22

RPCA 0.92 0.94 9.51 0.08 22.5

NMF 0.95 0.96 8.05 0.08 25.9

DMD 0.85 0.89 13.0 0.13 18.8

BEWiS 0.95 0.98 4.26 1.50 27.97

Median 0.95 0.97 4.55 0.01 31.96

Pe
op

le
&

Fo
lia

ge

BISSA 0.74 0.84 8.58 0.68 14.02

RPCA 0.62 0.77 7.93 0.06 12.2

NMF 0.67 0.82 7.22 0.07 13.0

DMD 0.46 0.69 10.1 0.07 10.2

BEWiS 0.66 0.78 34.57 0.40 12.45

Median 0.66 0.78 31.36 0.38 13.60
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Table 2. Cont.

Method SSIM ↑ FSIM ↑ AGE ↓ pEPs ↓ PSNR ↑

IB
M

te
st

2

BISSA 0.95 0.97 41.65 0.11 25.5

RPCA 0.91 0.94 41.76 0.47 27.02

NMF 0.90 0.94 42.48 0.61 26.8

DMD 0.88 0.92 53.96 0.57 21.4

BEWiS 0.94 0.96 43.98 1.50 25.65

Median 0.86 0.91 48.91 0.15 22.14

Sn
el

le
n

BISSA 0.77 0.87 53 0.83 13

RPCA 0.70 0.82 50.74 0.82 12.9

NMF 0.76 0.86 39.92 0.75 15.0

DMD 0.57 0.76 61.4 0.73 10.9

BEWiS 0.76 0.80 54.63 0.52 25.75

Median 0.69 0.72 62.20 0.62 13.65

To
sc

an
a

BISSA 0.87 0.93 16.18 0.27 21.23

RPCA - - - - -

NMF 0.30 0.77 70.03 0.94 10.3

DMD 0.76 0.86 22.58 0.28 16.82

BEWiS 0.85 0.92 10.37 0.12 20.87

Median 0.86 0.94 8.71 0.13 20.67

5. Conclusions

This study proposes an effective background initialization algorithm for image se-
quences. By storing color frame sequences of the video into color channel spatio-temporal
data matrices, we can preserve the correlation between pixels located at the same position
between adjacent frames over time. Next, the SSA method was applied to these spatio-
temporal data. Then, the stable component is constructed by using the first eigentriple,
which is the component that holds the color background image. In addition, encouraging
results of the foreground component were obtained based on the remaining eigentriples.
The experiment results on the most popular public scene background initialization database
demonstrate our proposed method’s effectiveness. The obtained background image is
compared to the ground truth background image by the five most common metrics: SSIM,
FSIM, PSNR, AGE, and pEPs. The results proved that our study achieved some positive
results, especially in dealing with basic challenges, cluster challenges, intermittent motion
challenges, camera jitter challenges, and intense shadow challenges. In addition, the re-
sults also show that our proposed method achieves a good color background image when
compared with state-of-the-art techniques, such as BEWiS, median, RPCA, DMD, and
NMF. However, videos recorded with few frames (less than 20 frames) and intermittent
object motion challenges (such as CaVignal sequence) remain open challenges. Moreover,
computing the background from the first eigentriple only obtains a good estimation of the
background, but is not optimal to get a reasonable estimate of the foreground. In the future,
we will continue to improve our method to achieve better background and accurately
detect moving objects in video.
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