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1. Introduction

The present work is inspired by the current practices in Information Geometry [1–3]
where minimization of divergences is an important tool. In Statistical Physics a divergence
is called a relative entropy. Its importance was noted rather late in the twentieth century,
after the work of Jaynes on the maximal entropy principle [4]. Estimation in the presence
of hidden variables by minimizing a divergence function is briefly discussed in Chapter 8
of [2].

Assume now that some observation or experiment yields new statistical data. The
approach is then to look for a probability distribution that reproduces the newly observed
probabilities and that interpolates the data with missing information coming from a prior.

No further model assumptions are imposed. Hence, the statistical model under
consideration consists of all probability distributions that are consistent with the newly
obtained empirical data. Internal consistency of the empirical data ensures that the model
is not empty. The update is the model point that minimizes the chosen divergence function
from the prior to the manifold of the model.

In the context of Maximum Likelihood Estimation (MLE) one usually adopts a pa-
rameterized model. The dimension of the model can be kept low and properties of the
model can be used to ease the calculations. One assumes that the new data can lead to a
more accurate estimation of the limited number of model parameters. It can then happen
that the model is misspecified [5] and that the update is only a good approximation of the
empirical data.

Here, the model is dictated by the newly acquired empirical data and the update is
forced to reproduce the measured data. Finding the probability distribution is then an
underdetermined problem. Minimization of the divergence from the prior probability
distribution solves the underdetermination.

In Bayesian statistics, the update q(B) of the probability p(B) of an event B equals

q(B) = pemp(A) p(B|A) + pemp(Ac) p(B|Ac). (1)

The quantities pemp(A) and pemp(Ac) are the empirical probabilities obtained after repeated
measurement of event A and its complement Ac . Expression (1) has been called Jeffrey con-
ditioning [6]. It implies the sufficiency conditions q(B|A) = p(B|A) and q(B|Ac) = p(B|Ac).
It is an updating rule used in Radical Probabilism [7]. This expression is also obtained
when minimizing the Hellinger distance between the prior and the model manifold. A
proof of the latter follows later on in Section 4.
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The present approach is a special case of minimizing a divergence function in the
presence of linear constraints. See the introduction of [8] for an overview of early appli-
cations of this technique. Two classes of generalized distance functions satisfy a natural
set of axioms: the f-divergences of Csiszár and the generalized Bregman divergences. The
squared Hellinger distance belongs to the former class. The other divergence function
considered here is the square Bregman divergence. Both Hellinger and square Bregman
have special properties that make it easy to work with them.

A broad class of generalized Bregman divergences satisfies the Pythagorean equality [8,9].
Pythagorean inequalities hold for an even larger class [10]. The Pythagorean relations
derived in the present work make use of the specific properties of the Hellinger distance
and of the quadratic Bregman divergence. It is unclear how to prove them for more general
divergences.

One incentive for starting the present work is a paper of Banerjee, Guo, and Wang [11,12].
They consider the problem of predicting a random variable Z1 given observations of a
random variable Z2. It is well-known that the conditional expectation, as defined by
Kolmogorov, is the optimal predictor. They show that this statement remains true when
the metric distance is replaced by a Bregman divergence. It is shown in Theorem 2 below
that a proof in a more general context yields a deviating result.

The next Section fixes notations. Section 3 collects some results about the squared
Hellinger distance and the quadratic Bregman divergence. Section 4 discusses the optimal
choice and contains the Theorems 1 and 2. The proof of the theorems can be adapted to
cover the situation that a subsequent measurement also yields information on conditional
probabilities. This is shown in Section 4.3. Section 5 treats a simple example. A final section
summarizes the results of the paper.

2. Empirical Data

Consider a probability space Ω, µ. A measurable subset A of Ω is called an event. Its
probability is denoted p(A) and is given by

p(A) =
∫

Ω
IA(x)dµ(x),

where IA(x) equals 1 when x ∈ A and 0 otherwise. The conditional expectation of a
random variable f given an event A with non-vanishing probability p(A) is given by

Eµ f |A =
1

p(A)
Eµ f IA.

The probability space Ω, µ reflects the prior knowledge of the system at hand. When
new data become available an update procedure is used to select the posterior probability
space. The latter is denoted Ω, ν in what follows. The corresponding probability of an
event A is denoted q(A).

The outcome of repeated experiments is the empirical probability distribution of the
events, denoted pemp(A). The question at hand is then to establish a criterion for finding the
update ν of the probability distribution µ that is as close as possible to µ while reproducing
the empirical results.

The event A defines a partition A, Ac of the probability space Ω, µ. As before Ac

denotes the complement of A in Ω. In what follows a slightly more general situation is
considered in which the event A is replaced by a partition (Oi)

n
i=1 of the measure space

Ω, µ into subsets with non-vanishing probability. The notations pi and µi are used, with

pi = p(Oi) and dµi(x) =
1
pi
IOi (x)dµ(x). (2)
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Introduce the random variable g defined by g(x) = i when x ∈ Oi. Repeated measure-
ment of the random variable g yields the empirical probabilities

pemp

i = Emp Prob {x : g(x) = i}.

They may deviate from the prior probabilities pi. In some cases one also measures the
conditional probabilities

pemp(B|Oi) = Emp Prob of B given that g(x) = i

of some other event B.

3. A Geometric Approach

In this section two divergences are reviewed, the squared Hellinger distance and the
quadratic Bregman divergence.

3.1. Squared Hellinger Distance

For simplicity the present section is restricted to the case that the sample space Ω is
the real line.

Given two probability measures µ and σ, both absolutely continuous w.r.t. the Lebesgue
measure, the squared Hellinger distance is the divergence D2(σ||µ) defined by

D2(σ||µ) =
1
2

∫
R

(√
dσ

dx
−
√

dµ

dx

)2

dx.

It satisfies

D2(σ||µ) = 1−
∫
R

√
dσ

dx
dµ

dx
dx.

Let (Oi)i be a partition of Ω, µ and let g(x) = i when x belongs to Oi, as before. Let pi
and µi be defined by (2). Consider the following functions of i, with i in {1, . . . , n},

τ(1)(i) = µ, independent of i,
τ(2)(i) = µi,
τ(3)(i) = σi,

where each of the σi is a probability distribution with support in Oi. The empirical expecta-
tion of a function f (i) is given by Eemp f = ∑i pemp

i f (i).

Proposition 1. If pemp

i > 0 for all i and ∑i pemp

i = 1 then one has

EempD2(τ
(1)||τ(3)) ≥ EempD2(τ

(1)||τ(2))

with equality if and only if σi = µi for all i.

First prove the following two lemmas.

Lemma 1. Assume that the probability measure νi is absolutely continuous w.r.t. the measure µi,
with Radon-Nikodym derivative given by dνi(x) = fi(x)dµi. Then one has

D2(µ||σi)− D2(µ||νi) =
√

pi[D2(µi||σi)− D2(µi||νi)]

and

D2(µi||νi) = 1−
∫

Oi

√
fi(x)dµi(x).
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Proof. One calculates

D2(µ||σi)− D2(µ||νi) =
∫
R

√
dµ

dx

[√
dνi
dx
−
√

dσi
dx

]
dx

=
√

pi

∫
Oi

√
dµi
dx

[√
dνi
dx
−
√

dσi
dx

]
dx

=
√

pi

[∫
Oi

√
fi(x)dµi(x)−

∫
Oi

[
dµi
dx

dσi
dx

]1/2
dx

]
=
√

pi

[∫
Oi

√
fi(x)dµi(x)− 1 + D2(µi||σi)

]
.

Now take σi = νi to obtain the desired results.

Lemma 2. (Pythagorean relation) For any i is

D2(µ||σi) = D2(µ||µi) +
√

piD2(µi||σi).

Proof. The proof follows by taking νi = µi in the previous lemma.

Proof. (Proposition 1)
From the previous lemma it follows that D2(τ

(1)||τ(3)) ≥ D2(τ
(1)||τ(2)). Note that

σi = µi implies that τ(3) = τ(2) and hence D2(τ
(1)||τ(3)) = D2(τ

(1)||τ(2)). Conversely, if

EempD2(τ
(1)||τ(3)) = EempD2(τ

(1)||τ(2))

then it follows from the previous lemma that EempD2(τ
(2)||τ(3)) = 0. If in addition pemp

i > 0
for all i then it follows that for all i

0 = D2
(
τ(2)(i)||τ(3)(i)

)
.

Because the squared Hellinger distance is a divergence, this implies that τ(2)(i) = τ(3)(i),
which is equivalent with µi = σi.

3.2. Bregman Divergence

In the present section the squared Hellinger distance, which is an f-divergence, is
replaced by a divergence of the Bregman type. In addition let Ω be a finite set equipped
with the counting measure ρ. It assigns to each subset A of Ω the number of elements in A.
This number is denoted |A|. The expectation value Eµ f of a random variable f w.r.t. the
probability measure µ is given by

Eµ f = ∑
k∈Ω

µ(k) f (k).

Given a partition of Ω into sets Oi one can define conditional probability measures
with probability mass function ρi given by

ρi(k) =
1
|Oi|

if k ∈ Oi,

= 0 otherwise. (3)

Similarly, conditional probability measures with probability mass function µi are given by

µi(k) =
µ(k)

µ(Oi)
if k ∈ Oi,

= 0 otherwise. (4)



Entropy 2021, 23, 1668 5 of 12

Fix a strictly convex function φ : R 7→ R. The Bregman divergence of the probability
measures σ and µ is defined by

Dφ(σ||µ) = F(σ)− F(µ)− 〈∇F, σ− µ〉

with

F(σ) = ∑
k

φ(σ(k)) and ∇kF(σ) = φ′(σ(k)).

In the case that φ(x) = x2/2, which is used below, it becomes

Dφ(σ||µ) =
1
2 ∑

k
[σ(k)− µ(k)]2. (5)

For convenience, this case is referred to as the quadratic Bregman divergence.
The following result, obtained with the quadratic Bregman divergence, is more elegant

than the result of Lemma 2.

Proposition 2. Consider the quadratic Bregman divergence Dφ as given by (5). Let νi = piµi +
(1− pi)ρi. Let σi be any probability measure with support in Oi. Then the following Pythagorean
relation holds.

Dφ(µ||σi) = Dφ(µ||νi) + Dφ(νi||σi).

Proof. One calculates

Dφ(µ||σi)− Dφ(µ||νi) = Dφ(νi||σi) + ∑
x
[µ(x)− νi(x)]

[
φ′(νi(x))− φ′(σi(x))

]
= Dφ(νi||σi) + ∑

x∈Oi

[piµi(x)− νi(x)]
[
φ′(νi(x))− φ′(σi(x))

]
= Dφ(νi||σi)− (1− pi)

1
|Oi| ∑

x∈Oi

[
φ′(νi(x))− φ′(σi(x))

]
.

Use now that φ′(u) = u and the normalization of the probability measures νi and σi to find
the desired result.

4. The Optimal Choice
4.1. Updated Probabilities

The following result proves that the standard Kolmogorovian definition of the condi-
tional probability minimizes the Hellinger distance between the prior probability measure
µ and the updated probability measure ν. The optimal choice of the updated probability
measure ν is given by corresponding probabilities q(B). They satisfy

q(B) =
n

∑
i=1

pemp

i p(B|Oi) for any event B.

Theorem 1. Let be given a partition (Oi)
n
i=1 of the probability space Ω, µ with Ω = R. Let µi be

given by (2). Let pi = p(Oi) > 0 denote the probability of the event Oi and let be given strictly
positive empirical probabilities pemp

i , i = 1, . . . , n. The squared Hellinger distance D2(σ||µ) as a
function of σ is minimal if and only if σi = µi for all i. Here, σ is any probability measure on Ω
satisfying

σ =
n

∑
i=1

pemp

i σi,

and each of the σi is a probability measure with support in Oi and absolutely continuous w.r.t. µi.
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Note that the probability measure ν given by

ν(x) =
n

∑
i=1

pemp

i µi(x)

uses the Kolmogorovian conditional probability as the predictor because the probabilities de-
termined by the µi are obtained from the prior probability distribution µ by pi(x) = p(x|Oi).
By the above theorem this predictor is the optimal one w.r.t. the squared Hellinger distance.

Proof. With the notations of the previous section is

D2(σ||µ) = EempD2(τ
(1)||τ(3)).

Proposition 1 shows that it is minimal if and only if σi = µi for all i.

Next, consider the use of the quadratic Bregman divergence in the context of a finite
probability space.

Theorem 2. Let be given a partition (Oi)
n
i=1 of the finite probability space Ω, µ. Let ρi be the

counting measure on Oi defined by (3). Let µi be given by (2). Let pi = p(Oi) > 0 denote the
probability of the event Oi and let be given strictly positive empirical probabilities pemp

i , i = 1, . . . , n
summing up to 1. Assume that

pemp

i ≥ pi[1− |Oi|µi(x)] for all x ∈ Oi and for i = 1, . . . , n. (6)

Then the following hold.

(a) A probability distribution ν is defined by ν = ∑i pemp

i νi with

νi =

(
1− pi

pemp

i

)
ρi +

pi
pemp

i
µi. (7)

(b) Let σ be any probability measure on Ω satisfying σ = ∑n
i=1 pemp

i σi, where each of the σi is a
probability distribution with support in Oi. Then the quadratic Bregman divergence satisfies
the Pythagorean relation

Dφ(σ||µ) = Dφ(ν||µ) +
n

∑
i=1

(pemp

i )2Dφ(σi||νi). (8)

(c) The quadratic Bregman divergence Dφ(σ||µ) is minimal if and only if σ = ν.

Proof.

(a)

The assumption (6) guarantees that the νi(x) are probabilities.

(b)

One calculates

Dφ(σ||µ)− Dφ(ν||µ) =
1
2 ∑

x
[σ(x)− ν(x)] [σ(x) + ν(x)− 2µ(x)]

=
n

∑
i=1

pemp

i
1
2 ∑

x∈Oi

[σi(x)− νi(x)]

×
[
pemp

i σi(x) + pemp

i νi(x)− 2piµi(x)
]

=
n

∑
i=1

(pemp

i )2 1
2 ∑

x∈Oi

[σi(x)− νi(x)]2
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+
n

∑
i=1

pemp

i ∑
x∈Oi

[σi(x)− νi(x)](pemp

i − pi)ρi(x)

=
n

∑
i=1

(pemp

i )2Dφ(σi||νi).

In the above calculation the third line is obtained by eliminating piµi using the definition
of νi. This gives

pemp

i σi(x) + pemp

i νi(x)− 2piµi(x)

= pemp

i σi(x) + pemp

i νi(x)− 2pemp

i

[
νi(x)−

(
1− pi

pemp

i

)
ρi(x)

]
= pemp

i [σi(x)− νi(x)] + 2(pemp

i − pi)ρi(x).

The term

n

∑
i=1

pemp

i ∑
x∈Oi

[σi(x)− νi(x)](pemp

i − pi)ρi(x)

vanishes because ρi(x) is constant on the set Oi and the probability measures νi and σi have
support in Oi.

(c)

From (b) it follows that Dφ(σ||µ) ≥ Dφ(ν||µ), with equality when σ = ν.
Conversely, when Dφ(σ||µ) = Dφ(ν||µ) then (8) implies that

n

∑
i=1

(pemp

i )2Dφ(σi||νi) = 0.

The empirical probabilities are strictly positive by assumption. Hence, it follows that
Dφ(µ||σi) = Dφ(µ||νi) for all i and hence, that σi = νi for all i. The latter implies σ = ν.

The optimal update ν can be written as

ν = ∑
i

[
(pemp

i − pi)ρi + piµi
]
= µ + ∑

i
(pemp

i − pi)ρi.

This result is in general quite different from the update proposed by Theorem 1, which is

ν = ∑
i

pemp

i µi.

The updates proposed by the two theorems coincide only in the special cases that either
pemp

i = pi for all i or that µi = ρi for all i. In the latter case the prior distribution µ = ∑i piρi
is replaced by the update ν = ∑i pemp

i ρi.
The entropy of the update when event Oi is observed, according to Theorem 1, equals

S(νi) = S(µi). According to Theorem 2 it equals

S(νi) = S
([

1− pi
pemp

i

]
ρi +

pi
pemp

i
µi

)
.

If pi ≤ pemp

i then it follows that

S(νi) ≥
[

1− pi
pemp

i

]
S(ρi) +

pi
pemp

i
S(µi)

≥ S(µi).
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The former inequality follows because the entropy is a concave function. The latter follows
because entropy is maximal for the uniform distribution ρi. On the other hand, if pi > pemp

i
then one has

S(µi) = S
([

1−
pemp

i
pi

]
ρi +

pemp

i
pi

νi

)
≥

[
1−

pemp

i
pi

]
S(ρi) +

pemp

i
pi

S(νi)

≥ S(νi).

In the latter case the decrease of the entropy is stronger than in the case of the update based
on the squared Hellinger distance. In conclusion, the update relying on the quadratic Breg-
man divergence looses details of the prior distribution by making a convex combination
with a uniform distribution weighed with the probabilities of the observation. It does
this moreso for the events with observed probability larger than predicted; this is when
pemp

i > pi.
Note that Theorem 2 cannot always be applied because it contains restrictions on the

empirical probabilities. In particular, if the prior probability µ(x) of some point x in Ω
vanishes then the condition (6) requires that the empirical probability pemp

i of the partition
Oi to which the point x belongs is larger than or equal to the prior probability pi.

4.2. Update of Conditional Probabilities

The two previous theorems assume that no empirical information is available about
conditional probabilities. If such information is present then an optimal choice should
make use of it. In one case the solution of the problem is straightforward. If the proba-
bilities pemp

i are available together with all conditional probabilities pemp(B|Oi) and there
exists an update ν which reproduces these results then it is unique. Two cases remain:
(1) The information about the conditional probabilities is incomplete; (2) the information is
internally inconsistent – no update exists which reproduces the data.

Let us tackle the problem by considering the case that the only information that is
available besides the probabilities pemp

i is the vector of conditional probabilities pemp(B|Oi)
of a fixed event B, given the outcome of the measurement of the random variable g as
introduced in Section 2.

The following result is independent of the choice of divergence function.

Proposition 3. Fix an event B in Ω. Assume that the conditional probabilities p(B|Oi), i = 1, . . . , n,
are strictly positive and strictly less than 1. Assume in addition that pemp

i pemp(B|Oi) ≤ 1 for all i.
Then there exists an update ν with corresponding probabilities q(·) such that q(Oi) = pemp

i and
q(B|Oi) = pemp(B|Oi), i = 1, . . . , n.

Proof. An obvious choice is to take ν of the form ν = ∑i pemp

i νi with νi of the form

dνi(x) =
[
aiIB∩Oi (x) + biIBc∩Oi (x)

]
dµ(x),

with ai ≥ 0 and bi ≥ 0. Normalization of the νi gives the conditions

1 = ai p(B ∩Oi) + bi p(Bc ∩Oi). (9)

Reproduction of the conditional probabilities gives the conditions

pemp(B|Oi) =
q(B ∩Oi)

q(Oi)
= ai

p(B ∩Oi)

pemp

i
.

The latter gives

ai =
pemp

i
pi

pemp(B|Oi)

p(B|Oi)
.
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The normalization condition (9) becomes

1 = pemp

i pemp(B|Oi) + bi p(Bc ∩Oi).

It has a positive solution for bi because pemp

i pemp(B|Oi) ≤ 1 and p(Bc ∩Oi) > 0.

4.3. The Hellinger Case

The optimal updates can be derived easily from Theorem 1. Double the partition by
introduction of the following sets

O+
i = B ∩Oi and O−i = Bc ∩Oi.

They have prior probabilities p±i = p(O±i ). Corresponding prior measures µ±i are de-
fined by

dµ±i (x) =
1

p±i
IO±i

(x)dµ(x).

The empirical probability of the set O+
i is taken equal to pemp

i pemp(B|Oi), that of O−i
equals pemp

i [1− pemp(B|Oi)]. The optimal update ν follows from Theorem 1 and is given by

dν(x) = ∑
i

pemp

i pemp(B|Oi) dµ+
i (x) + ∑

i
pemp

i [1− pemp(B|Oi)] dµ−i (x). (10)

By construction it is

q(O+
i ) = pemp

i pemp(B|Oi) and q(O−i ) = pemp

i [1− pemp(B|Oi)].

One now verifies that q(Oi) = pemp

i and q(B|Oi) = pemp(B|Oi), which is the intended result.

4.4. The Bregman Case

Next consider the optimization with the quadratic Bregman divergence. Probability
distributions ρ±i are defined by

ρ±i (x) =
1
|O±i |

IO±i
(x).

Introduce the notations

r+i =
p+i

pemp

i pemp(B|Oi)
,

r−i =
p−i

pemp

i [1− pemp(B|Oi)]
,

ν±i (x) = (1− r±i )ρ±i + r±i µ±i (x).

Then the condition for Theorem 2 to hold is that ν±i (x) ≥ 0 for all x, i. The optimal
probability distribution ν is given by

ν(x) = ∑
i

pemp

i pemp(B|Oi)ν
+
i (x) + ∑

i
pemp

i [1− pemp(B|Oi)]ν
−
i (x)

= ∑
i

[
pemp

i pemp(B|Oi)− p+i
]
ρ+i + ∑

i
p+i µ+

i

+∑
i

[
pemp

i [1− pemp(B|Oi)]− p−i
]
ρ−i + ∑

i
p−i µ−i

= ∑
i

pemp

i pemp(B|Oi)
[
ρ+i − ρ−i

]
−∑

i
p+i ρ+i + ∑

i
[pemp

i − p−i ]ρ
−
i

+µ.
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5. Example

Assume that the prior probability distribution is binomial with parameters n, λ, where
n is known with certainty. The probability mass function is given by

µ(k) = Prob (X = k) =

(
n
k

)
λk(1− λ)n−k k = 0, 1, 2, . . . , n.

The probability distribution and the value of the parameter λ are for instance the result
of theoretical modeling of the experiment. Or they are obtained from a different kind
of experiment.

The experiment under consideration yields accurate values for the probability pemp

of the two events X = 1 and X = 2. The problem at hand is to predict by extrapolation
the probability of the event X = k for other values of k. A fit of the data with a binomial
distribution is likely to fail because two accurate data points are given to determine a single
parameter λ. The binomial model can be misspecified.

The geometric approach followed in the present paper yields an update from the
binomial distribution to another distribution, one which is reproducing the data. The
update is conducted in an unbiased manner. Quite often one is tempted to replace the
model, in the case of the binomial model, by a model with one extra free parameter.

Let us see what are the results of minimizing divergence functions. The proba-
bility space Ω is the set of integers 0, 1, 2, . . . , n equipped with the uniform measure.
Choose events

O1 = {1}, O2 = {2}, O3 = Ω \ (O1 ∪O2).

This gives for pi := Prob (X ∈ Oi)

p1 = µ(1) = n λ(1− λ)n−1, p2 = µ(2) =
1
2

n(n− 1) λ2(1− λ)n−2, p3 = 1− p2 − p3.

The optimal update according to Theorem 1, minimizing the Hellinger distance, is
given by the probabilities

ν(B) = ∑
i

pemp

i µ(B|Oi).

In particular, the probability mass function ν(k) := ν({k}) becomes

ν(1) = pemp

1 ,
ν(2) = pemp

2 ,

ν(k) =
pemp

3
p3

µ(k) otherwise.

The optimal update according to Theorem 2, minimizing the quadratic Bregman
divergence, is given by (7). The auxiliary measures µi, ρi, and νi have probability mass
functions given by

µi(k) = ρi(k) = νi = δk,i for i = 1, 2,

and

µ3(k) = (1− δk,1)(1− δk,2)
µ(k)

p3
,

ρ3(k) = (1− δk,1)(1− δk,2)
1

n− 2

ν3(k) = (1− δk,1)(1− δk,2)

[
(1− p3

pemp

3
)

1
n− 2

+
µ(k)
pemp

3

]
.
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The probability mass function ν(k) := ν({k}) becomes

ν(k) = pemp

1 ν1(k) + pemp

2 ν2(k) + pemp

3 ν3(k)
= pemp

1 if k = 1,
= pemp

2 if k = 2,

=
pemp

3 − p3

n− 2
+ µ(k) otherwise.

The condition (6) is the requirement that all ν(k) are non-negative. Because the probabilities
µ(k) can become very small this essentially means that pemp

3 should be larger than p3.
The amount of probability missing in the empirical probabilities pemp

1 and pemp

2 is equally
distributed over the remaining n− 1 points of Ω. On the other hand, when minimizing the
Hellinger distance the excess or shortage of probability is compensated by multiplying all
remaining probabilities by a constant factor.

A numerical comparison with n = 20 and λ = 1/8 is found in Figure 1. The empirical
values are pemp

1 = 0.15 and pemp

2 = 0.25. The difference with the prior values p1 ' 0.19774
and p2 ' 0.26836 is made large enough to amplify the effects of the update.

Figure 1. Probability as a function of the integer k running from 0 to 20, showing different updates of
the binomial distribution with parameters n = 20 and λ = 1/8. The squares represent the binomial,
the diamonds the update with the Hellinger distance, and the triangles the update with the square
Bregman divergence. The empirical values are pemp

1 = 0.15 and pemp
2 = 0.25.

6. Summary

It is well known that the use of unmodified prior conditional probabilities is the
optimal way for updating a probability distribution after new data become available. The
update procedure minimizes the Hellinger distance between prior and posterior probability
distributions. For the sake of completeness a proof is given in Theorem 1.

Alternatively, one can minimize the quadratic Bregman divergence instead of the
Hellinger distance. The result is given in Theorem 2. The conservation of probability is
handled in a different way in the two cases, either by multiplying prior probabilities with a
suitable factor or by adding an appropriate term.

The example of Section 5 shows that the two update procedures have different effects
and that neither of them may be satisfactory. This raises the question whether the present
approach should be improved by choosing divergences other than Hellinger or Bregman.

In the present research, the work of Banerjee, Guo, and Wang [11] was considered as
well. They prove that minimization of the Hellinger distance can be replaced by minimiza-
tion of a Bregman divergence, without modifying the outcome. It is shown in Theorem 2
that, in a different context, the use of the Bregman divergence yields results quite distinct
from those obtained by minimizing the Hellinger distance.
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