
entropy

Article

Breaking Data Encryption Standard with a Reduced Number of
Rounds Using Metaheuristics Differential Cryptanalysis

Kamil Dworak * and Urszula Boryczka

����������
�������

Citation: Dworak, K.; Boryczka, U.

Breaking Data Encryption Standard

with a Reduced Number of Rounds

Using Metaheuristics Differential

Cryptanalysis. Entropy 2021, 23, 1697.

https://doi.org/10.3390/e23121697

Academic Editor: Masahito Hayashi

Received: 15 November 2021

Accepted: 15 December 2021

Published: 18 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Science and Technology, University of Silesia in Katowice, Będzińska 39, 41-200 Sosnowiec, Poland;
urszula.boryczka@us.edu.pl
* Correspondence: kamil.dworak@us.edu.pl

Abstract: This article presents the author’s own metaheuristic cryptanalytic attack based on the
use of differential cryptanalysis (DC) methods and memetic algorithms (MA) that improve the local
search process through simulated annealing (SA). The suggested attack will be verified on a set of
ciphertexts generated with the well-known DES (data encryption standard) reduced to six rounds.
The aim of the attack is to guess the last encryption subkey, for each of the two characteristics Ω.
Knowing the last subkey, it is possible to recreate the complete encryption key and thus decrypt the
cryptogram. The suggested approach makes it possible to automatically reject solutions (keys) that
represent the worst fitness function, owing to which we are able to significantly reduce the attack
search space. The memetic algorithm (MASA) created in such a way will be compared with other
metaheuristic techniques suggested in literature, in particular, with the genetic algorithm (NGA) and
the classical differential cryptanalysis attack, in terms of consumption of memory and time needed to
guess the key. The article also investigated the entropy of MASA and NGA attacks.

Keywords: differential cryptanalysis; metaheuristics; symmetric block ciphers; memetic algorithms;
DES; simulated annealing

1. Introduction

The growing popularity of computerisation, and at the same time the Internet itself,
results in a growing demand for more and more advanced security methods. Restrictions
such as individual user access control or basic authentication have become insufficient today.
For several decades, engineers concentrating on the topic of information security have
designed special cryptographic algorithms that meet the most important security aspects.

The main assumption of cryptography is not to hide the fact of the existence of
information, but to keep its real image secret. The message is transformed in such a way
that it is readable only to its author and the recipient it is dedicated to [1,2].

Contemporary symmetric block ciphers implement the process of transformation
of the plain text using the Feistel cipher and the generalized substitution-permutation
network [2]. In 1990, a completely new cryptanalytical method was made public, namely
differential cryptanalysis [3]. In the case of the most modern and advanced encryption
algorithms, the differential cryptanalysis itself turns out to be ineffective. In order to
improve the attack performance, it was proposed to combine metaheuristic algorithms
with the differential cryptanalysis algorithm.

In general, metaheuristic algorithms are used to obtain approximate solutions. In the
case of cryptanalysis, it is necessary to guess the ideal decryption key—an approximate
solution is unacceptable. Due to the avalanche effect present in every encryption algorithm
today, changing any bit at the input causes a complete mixing of all bits at the output,
which in fact results in the generation of a completely new ciphertext [1]. The developed
algorithm enables automatic sifting of the keys with the worst value of the fitness function,
owing to which the set of potential solutions will be significantly reduced.

Entropy 2021, 23, 1697. https://doi.org/10.3390/e23121697 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4459-5379
https://orcid.org/0000-0002-2698-6934
https://doi.org/10.3390/e23121697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121697
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121697?type=check_update&version=2

Entropy 2021, 23, 1697 2 of 21

Additional analytical properties of memetic algorithms improve the local search
process in such a way as to achieve the best solution in the shortest possible time.

Metaheuristic algorithms are more and more often used in computer science, and thus
in the domain of computer security. In the literature, we can find publications describing
all kinds of metaheuristic attacks targeting both classical ciphers, contemporary symmetric
block ciphers and stream ciphers. A literature review of publications is presented in Table 1.

Table 1. Literature review of researches on metaheuristics cryptanalysis.

Year Authors Algorithm Cipher

2007 Song et al. [4] GA Four-Round DES

2007 Tadros et al. [5] GA Four-Rounded DES

2009 Garg [6] GA and MA Simplified Data Encryption
Standard (SDES)

2010 Hu [7] GA Tiny Encryption Algorithm (TEA)

2011 Abd-Elmonim [8] PSO DES

2011 Vimalathithan and
Valarmathi [9]

GA, PSO and Genetic
Swarm Optimization
(GSO)

Simplified Data Encryption
Standard (SDES)

2012 Jadon et al. [10] Binary PSO DES

2012 Pandey and
Mishra [11] PSO DES

2013 Ali [12] Bees algorithm Substitution Ciphers

2014 Boryczka and
Dworak [13] EA Transposition Cipher

2014 Mekhaznia and
Menai [14] ACO and PSO Feistel, Vigenere, and substitution

ciphers

2015 Bhateja et al. [15] Cuckoo Search Vigenere cipher

2015 Jain et al. [16] Cuckoo Search Substitution Ciphers

2016 Amic et al. [17] Binary Firefly Algorithm DES

2016 Dworak et al. [18] GA and MA Simplified Data Encryption
Standard (SDES)

2016 Dworak and
Boryczka [19] EA Four-Rounded Fast Data

Encipherment Algorithm (FEAL)

2017 Amic et al. [20] Binary Cat Swarm
Optimization (BCSO) DES

2017 Jain et al. [21] Cuckoo Search Knapsack Cryptosystem

2017 Dworak and
Boryczka [22] GA Six-Rounded DES

2018 Polak and
Boryczka [23] Tabu Search RC4 and VMPC

2019 Amic et al. [20] Dolphin Swarm
Algorithm (DSA) DES

2019 Kamal et al. [24] Binary Cuckoo Search Simplified Data Encryption
Standard (SDES)

2019 Polak and
Boryczka [25] Tabu Search RC4+

2020 Sabonchi et al. [26] DE, GA and PSO Vigenere cipher

2021 Grari et al. [27] ACO Merkle-Hellman cipher

Entropy 2021, 23, 1697 3 of 21

In [4], the authors focused on evolutionary cryptanalysis using GA on DES4 ciphers
by comparing the same bits between original and encrypted ciphertexts. Tadros in [5]
presented another GA used to break FEAL8 and DES4 ciphers. Garg in [6] included a com-
parison between MA and GA during cryptanalysis of SDES encryption algorithm relying
on n-gram statistics and frequency analysis method. Another approach was present by
Hu in [7], quantum-inspired GA has been applied to break TEA. Abd-Elmonim described
another attack, based on the PSO algorithm, responsible to break the full 16-rounded DES
cipher in [8]. Vimalathithan and Valarmathi presented their researches about combining
the effectiveness of GA and PSO as a new Generic Swarm Optimization algorithm to attack
SDES cipher. In 2012, Jadon [10] and Pandey, with Mishra published interesting approaches
related to Binary PSO and original PSO algorithms used in cryptanalysis attacks dedicated
to DES cipher.

In the following years, Ali [12], Mekhaznia and Menai [14], Bhateja [15], Jain [16,21],
and Sabonchi [26] focused on cryptanalysis of classical ciphers such as substitution, trans-
position, and Vigenere ciphers using many popular metaheuristics like Bees, EA, ACO,
PSO and Cuckoo Search algorithms.

Amic in [17,20,28] presented Binary Firefly, Binary Cat Swarm Optimisation (BCSO),
and Dolphin Swarm (DSA) algorithm—all directed against DES cipher. In [24] Kamal de-
scribed the Binary Cuckoo Search algorithm used on ciphertext generated by SDES cipher.

Polak and Boryczka presented new cryptanalysis attacks dedicated to another subset
of encryption algorithms—stream ciphers (RC4, VMPC, and RC4+), using Tabu Search
in [23,25]. In 2021, Grari [27] published ACO algorithm dedicated Markle-Hellman cipher.

The next chapter is dedicated to a brief introduction to symmetric block ciphers and the
DES cipher. The third chapter presents the basic assumptions of differential cryptanalysis,
which were used and which constituted a basis for the design work on the MASA algorithm.
Chapter four contains a detailed description of the developed metaheuristic attack carried
out with the use of MA. The next chapter focuses on describing the runtime environment,
including presenting all the parameters selected for each attack. This chapter also presents
the results of the experiments, including the entropy studies for the MASA and NGA
algorithms. The second to last chapter presents a detailed analysis of the effectiveness of
the attacks presented, both in terms of the number of proven solutions and the time of
decryption of the cryptogram. The article is concluded with a brief summary of the various
stages of the research. This chapter also suggests further research directions. Appendix A
is attached to this article, detailing the results for the Ω2 characteristic.

2. Symmetric Block Ciphers

Symmetric ciphers are still one of the most popular encryption algorithms. In this type
of ciphers, only one main key is used, which simultaneously takes on a role of an encryption
and decryption key, which can be written as KE = KD. In the case of block ciphers, each
message is divided into a finite number of blocks of the same length—for example, 64-bit
blocks. Then they are transferred to the appropriate encryption function. Exactly one block
of the ciphertext is generated from one block of plain text. If the message cannot be divided
into even blocks, an additional block is created to store the last, incomplete, fragment of
data. Then, for consistency, it is supplemented with default values or zeros.

These algorithms are perfect for encrypting larger volumes of data stored, that is, in
all kinds of warehouses, wholesalers or databases. The most popular block cipher schemes
include ciphers such as: DES and AES.

Data Encryption Standard

The DES cipher has been designed in such a way that the avalanche effect occurs from
the very beginning of the algorithm [1]. Changing any input bit forces us to change at least
half, and sometimes even all, of the output bits. The state of each bit at the output depends
on each bit specified at the input [29].

Entropy 2021, 23, 1697 4 of 21

The basic version of the cipher converts 64-bit plain text blocks into 64-bit ciphertext
blocks, using a 64-bit encryption key K [2,30]. After running the algorithm, the primary key
is reduced to 56 bits by removing every eighth parity bit. K is then subjected to breaking
into six 48-bit subkeys, used in each of the cipher rounds, K1, ..., K6—A description of the
primary key distribution process is presented in detail in [1,2,29–32]. Figure 1 shows a
6-round DES algorithm.

ffff

b

Ciphertext

K1

b

ffff

K6

b
Plaintext

IP−1IP

R0

L0

R1

L1 L5 R6

R5 L6
...

...

32

32

32

32

32

32

48

32

3248
64

64

Figure 1. Simplified diagram of the six-rounded Data Encryption Standard DES algorithm.

The plain text block is passed to the initial IP permutation. Then, the generated block
is divided into two regular 32-bit parts, R and L. In the next steps, six identical encryption
cycles will be run, in which the right part of the Ri is passed to the f -round function along
with the corresponding subkey Ki. Then, the generated data block is subjected to the
exclusive disjunction operation with the left part of the Li, resulting in a new right part of
the Ri+1. The new left part of the Li+1 is copied from the right part of the previous Ri cycle.

After all the cipher rounds have been completed, parts of the L6 and R6 are com-
bined into a 64-bit block, which will undergo the last transformation by the IP−1 inverse
permutation function. The result of transposition of individual bits will be a 64-bit cryp-
togram block.

The f round function has been visualized in Figure 2. As an input parameter, a 32-bit
data block is given, which at the very beginning will be extended via permutation E. The
aim of this transformation is to align the length of the transferred block with the size of the
subkey by duplicating the selected bits. By allowing one bit to influence two substitutions,
the avalanche effect is increased [1]. The generated sequence is modulo two sum with
subkey bits and then divided into eight 6-bit B1–B8 blocks.

Figure 2. The f round function of the Data Encryption Standard DES algorithm. The only one,
nonlinear, element of the DES cipher.

Each of the Bj blocks will be transferred to the so-called substitution matrix called
S-blocks Sj. The main aim of this transform is to compress the input data. 6-bit data
blocks will be converted into 4-bit blocks. Sj consist of integers between 0 and 15, stored
in matrices of sixteen columns and four rows. The first and last bits of a 6-bit sequence Bj
determine the line number. The remaining four bits represent the number of the column
from which the return value will be selected [1,2,30].

Entropy 2021, 23, 1697 5 of 21

Sj are the only nonlinear element of the DES standard. Changing one bit in an input
sequence can lead to a complete mixing of all generated bits at the output. Modifications
carried out in them have a significant impact on the level of complexity of cryptanalysis of
the entire cipher. At the end of the f function, the generated sequences are combined into
one 32-bit block, which will be passed to the permutation P—aimed at mapping each of
the input bits to exactly one output bit without duplicating or omitting any of them [1].

3. Differential Cryptanalysis

The suggested algorithm is based on an attack with selected plain text. At the begin-
ning, it should be assumed that the cryptanalyst has continuous access to the encryption
algorithm, which allows him to select a pair of plain texts and analyse the generated
ciphertexts. It is important that the tested pairs must differ from each other in a certain
way. Most symmetric block ciphers determine this difference on the basis of a simple
symmetric difference operation, which is written as P′ = P⊕ P∗, where P and P∗ are two
crafted plain texts. Pairs may be generated in a pseudorandom way, although the most
important condition is the difference P′, which must follow the established process. Next,
the cryptanalyst checks how the determined difference changes in the subsequent phases of
the cipher. Using the difference between the texts in individual iterations of the cipher, for a
sufficiently large number of pairs, it is possible to assign different probabilities, suggesting
the correctness of some subkeys [3]. When analyzing subsequent pairs of plain texts and
ciphertexts, it turns out that one key may be more probable than the others.

Every modern cipher is non-linear—it means that it is not possible to find any pattern
or rule by which to determine the value of a function for the next argument [3]. This nonlin-
earity is obtained via the round f function. Each of all possible differences is characterized
by a certain probability, which determines how often the f function returns the expected
value [3]. These differences are called characteristics Ω. All possible characteristics can be
determined by means of an additional matrix, where the rows correspond to all possible
symmetric differences of the input blocks, and the columns to all possible symmetric
differences of the output blocks [1]. Each of the elements will determine how many times
the sum of the output bits occurs for the selected sum of the input bits.

By analysing the diagram shown in Figure 2, the input symmetric difference B′ can be
determined assuming that E = E(Ri−1):

B′ =
8n

j=1

Bj ⊕ B∗j =
8n

j=1

(Ej(Ri)⊕ Ki)⊕ (Ej(R∗i)⊕ Ki) =
8n

j=1

Ej ⊕ E∗j , (1)

where symbol
f

stands for the concatenation of the successive data blocks. From the
expression above, it can be seen that B′ has nothing to do with the subkey. When the value
of each B′j is known, the set of all ordered pairs (Bj, B∗j) can be determined for the input
symmetric difference as suggested in [31]:

∆(B′j) = {(Bj, Bj ⊕ B′j) : Bj ∈ (Z2)
6}. (2)

Knowing the output difference C′j = Sj(Bj)⊕ Sj(B∗j), it becomes possible to generate
the distribution of all possible input differences to all output differences according to the
theorem described in [31]:

INj(B′j, C′j) = {Bj ∈ (Z2)
6 : Sj(Bj)⊕ Sj(Bj ⊕ B′j) = C′j}. (3)

Most often, this distribution will be steady. The cryptanalyst’s task is to find distribu-
tions that are as unsteady as possible. Based on the expression (3), an additional test set
can be determined using the following formula [31]:

testj(Ej, E∗j , C′j) = {Bj ⊕ Ej : Bj ∈ INj(E′j, C′j)}. (4)

Entropy 2021, 23, 1697 6 of 21

If the number of elements in testj is equal to the power of INj set, then the set must
contain bits of the Kij subkey [31].

This method makes it possible to restore the correct decryption key using 247 selected
plain texts and the corresponding ciphertexts.

4. Metaheuristics Differential Cryptanalysis

From the point of view of the developed attack, the IP and IP−1 permutations may be
omitted. The algorithm begins by selecting the two most probable 3-round characteristics
Ω1

P and Ω2
P mentioned in [31,32], which are presented in Figure 3, where P denotes

characteristics for plaintext and C for ciphertexts.

Ω1
P

= 0x4008000004000000

0x040000000x40080000
f

0x000000000x00000000
f

0x040000000x40080000
f

Ω1
C

= 0x4008000004000000

Ω2
P

= 0x0020000800000400

0x000004000x00200008
f

0x000000000x00000000
f

0x000004000x00200008
f

Ω2
C

= 0x0020000800000400

p=1
4

p=1
4

p=1

Figure 3. The two the most probable 3-round characteristics Ω1
P and Ω2

P for six rounded cipher
DES [31,32].

The probability of each characteristic is exactly PΩ = 1
16 in the fourth round of the

encryption algorithm S-Blocks S2, S5, S6, S7, S8 for Ω1
P and S1, S2, S4, S5, S6 for Ω2

P for some
input symmetric difference B′j return an output symmetric difference C′j equal to zero.

Owing to this, it becomes possible to determine the sets I1 = {2, 5, 6, 7, 8} for Ω1
P and

I2 = {1, 2, 4, 5, 6} for Ω2
P. The further description of the attack is identical for each of

the characteristics Ω so it was decided to generalize it by introducing one generic I set
consisting of elements of sets I1 and I2.

The next step will be to generate a set of plain text pairs, along with a set of correspond-
ing cryptograms, where the symmetrical difference will correspond to the characteristics
Ω1 and Ω2. The number of pairs needed is calculated using the signal-to-noise ratio [3]:

S/N =
m · p

m · α · β/2k =
2k · p
α · β =

230 · 1/16

45 = 216, (5)

where:

• m—the number of pairs generated, having no effect on S/N;
• p—the probability of the selected characteristic Ω;
• k—number of bits of the subkey;
• α—the average number of subkeys, suggested by one pair;
• β—the ratio of the analysed pairs to all possible ones.

As suggested in [3], for S/N = 216, 7–8 correct pairs are needed for each of the
characteristics. Due to the probability of PΩ, a minimum of 150–200 pairs of plain text
should be generated [3].

Additionally, the testj test set is determined, owing to which it will be possible to
partially filter pairs from the set. If the power of the test set for at least one element from
set I is equal to 0, the pair may be rejected:

Entropy 2021, 23, 1697 7 of 21

∧
j∈I
|testj| > 0. (6)

The aim of the suggested attack is to guess the last K6 encryption subkey. If the
difference of C′ and part of R5 is known, it becomes possible to analyze the various subkeys
closely by comparing all bits of the output of the S-blocks with C′. A brute-force attack
would need to check all 230 solutions. MA can be used as an optimization tool that finds
the correct solution in much shorter time.

Each individual is represented by a 30-bit Kj subkey. The fitness function is defined
with the following formula:

Ff =
n

∑
i=0

L−∑
j∈I

H((Sj(Bj)⊕ Sj(B∗j)), P−1(R′6 ⊕ L′3)), (7)

where:

• H—is the Hamming distance;
• L—the length of the subkey.

Owing to the knowledge of the probability of PΩ, it is possible to estimate the value
of L′3, while R′6 can be obtained by analyzing a pair of generated ciphertexts. Ff counts
the number of overlapping bits between the difference obtained from the S-blocks and the
C′ difference.

The algorithm uses standard one-point crossover. The locus is selected pseudoran-
domly from 1 to 30. The newly created subkeys can be modified with the use of a mutation
operator—which consists in replacing two pseudorandomly selected bits. The algorithm
selects individuals using tournament selection. A leader is elected from the set of all
subkeys and it is passed to the crossover operator.

There is an additional local search process in the algorithm—it is performed using the
simulated annealing algorithm. The MASA attack pseudocode for the ΩP characteristic
is shown below. Due to the complexity of this algorithm, it was decided to divide it into
two parts:

• the first one, Algorithm 1—responsible for generating a set of filtered pairs of plain
text, ciphertexts and determining the testj test set for each of the indexes;

• the second one, presented in Algorithm 2—describing the memetic algorithm, along
with the processes of selection, crossing, mutation and exploitation, taking into account
the pseudocode of the basic simulated annealing algorithm.

Algorithm 1: The pseudocode of the set of pairs preparation process for the
MASA attack.
1 ΩP := find_most_probabilistic_characteristic()
2 I := determine_set_of_indexes()
3 set_o f _pairs := generate_set_of_plaintext_and_ciphertext_pairs()
4 for i := 0 to size(set_of_pairs) do
5 pair := set_o f _pairs[i]
6 foreach j ∈ I do
7 testj := determine_test_set(pair)
8 if |testj| == 0 then
9 filter_invalid_pair(set_o f _pairs, pair)

10 break
11 end
12 end
13 end

Entropy 2021, 23, 1697 8 of 21

Running the MASA algorithm for Ω1
P will make it possible to guess 30 out of 48 bits

of the K6 subkey. Re-running the algorithm, this time for Ω2
P, allows us to find an extra

12 bits. In order to obtain the remaining 6 bits of the last K6 subkey—coming from the
S-block S3, we can use the brute-force method. Having the K6 subkey, it is possible to
recover 48 out of 56 bits of the decryption key by reversing the key decomposition process.
The remaining 8 bits can be guessed using the brute-force method once again—for example,
a brute force attack.

Algorithm 2: MASA attack pseudocode.

1 P(0) := create_initial_population()
2 for i := 0 to number_of_iterations do
3 calculate_fitness_function_value_for_each_individual()
4 for j := 0 to population_size do
5 parentA := tourney_selection()
6 parentB := tourney_selection()
7 o f f spring := [parentA, parentB]
8 if random(0, 1) ≥ crossover_probability then
9 childA, childB := crossover(parentA, parentB)

10 if random(0, 1) ≥ mutation_probability then
11 childA := mutation(childA)
12 end
13

14 if random(0, 1) ≥ mutation_probability then
15 childB := mutation(childB)
16 end
17 o f f spring := [childA, childB]
18 end
19

20 foreach child ∈ offspring do
21 T = T0
22 while T ≥ TMIN do
23 new_child := change_random_bit(child)
24 di f f erence := new_child. f itness - child. f itness
25 if di f f erence > 0 or
26 probability_ f un(di f f erence, T) > random(0, 1) then
27 child := new_child
28 end
29 T = T · α
30 end
31 end
32 end
33 end

5. Experimental Results

This chapter describes the analysis of the proposed memetic attack MASA and NGA
in terms of the quality and number of solutions obtained [22]. It was important to check
whether the suggested algorithms make it possible to improve the time of finding the correct
subkey. Another important aspect was to check whether the MASA memetic algorithm
enables a more effective, and therefore more successful, differential cryptanalysis.

Entropy 2021, 23, 1697 9 of 21

5.1. Selecting Parameters

As part of the experiments, the impact of the parameters listed below for each of
the attacks on the convergence of the algorithm and the quality of the obtained solutions
was examined:

• number of iterations for the MASA and NGA algorithms;
• population size for the MASA i NGA algorithms;
• number of plaintext and ciphertext pairs γ for the MASA and NGA algorithms;
• probability of the heuristic negation Pn for the NGA algorithm.

In the conducted experiments, the parameter values were used in various combi-
nations and for the subsequent experiments, potentially the best values in terms of the
running time of the algorithm were established. For the MASA memetic algorithm, the
parameters were set according to Table 2 below:

Table 2. Parameters of the MASA algorithm.

Id Parameter Symbol Value

1 Maximum number of iterations ItMAX 100
2 Population size N 10
3 Number of plaintext pairs γ 200
4 Tourney size TSIZE 10
5 Crossover probability Pc 0.9
6 Mutation probability Pm 0.02
7 Initial temperature T0 1
8 Minimal temperature TMIN 0.1
9 Cooling rate α 0.9

The description of the NGA algorithm parameters has been described in detail in the
publication [19]. Table 3 presents the most important parameters of the NGA algorithm:

Table 3. Parameters of the NGA algorithm.

Id Nazwa Symbol Value

1 Maximum number of iterations ItMAX 100
2 Population size N 10
3 Number of plaintext pairs γ 200
4 Tourney size TSIZE 10
5 Crossover probability Pc 0.9
6 Mutation probability Pm 0.02
7 Heuristic operator probability Pn 0.25

As was mentioned before, for the purposes of the tests, a simplified version of the
DES cipher was used, in which the number of rounds was limited from 16 to 6. All other
processes in the encryption algorithm, such as subkey generation and S-block compression,
remained unchanged.

5.2. Comparative Study

Each of the algorithms was tested 30 times for each of the characteristics Ω. Table 4
below shows the value of the Ff fitness function for the MASA and NGA algorithms for
the first characteristic Ω1. The remaining results—for the characteristic Ω2 are given in
Appendix A in the Table A1.

Entropy 2021, 23, 1697 10 of 21

Table 4. Fitness function values for MASA and NGA algorithms for characteristic Ω1
P.

ID

MASA NGA

Min Med Avg Max Std.
Dev. Min Med Avg Max Std.

Dev.

1 885 953 95.5 1014 39.9 982 993 994.7 1014 11.5
2 929 997 989.2 1014 30.8 899 947 960.3 1012 40.3
3 888 935 948.7 1012 49.2 916 992 977.4 1014 37.8
4 978 1010 1003.9 1014 12.3 886 945 943.0 997 33.5
5 910 950 960.9 1014 38.9 922 978 982.3 1014 25.5
6 915 971 971.6 1014 35.1 871 978 960.1 1014 53.2
7 877 925 953.7 1014 52.6 928 998 990.1 1014 30.3
8 920 982 983.6 1014 31.1 900 960 958.9 1012 36.2
9 895 997 978.6 1014 35.2 943 980 981.3 1012 20.7

10 949 957 981.0 1014 30.1 863 934 945.9 1014 50.5
11 938 1014 996.8 1014 25.5 921 974 973.0 997 27.6
12 947 995 988.6 1014 22.1 899 975 965.1 1014 42.1
13 903 936 952.0 1014 36.9 891 978 962.3 1014 48.7
14 886 997 975.5 1014 46.6 855 991 958.0 1014 55.8
15 960 990 992.3 1014 20.0 881 920 951.3 1014 52.3
16 892 996 970.6 1014 42.3 884 998 978.0 1014 45.4
17 880 984 960.8 1014 50.1 911 954 962.5 1012 29.2
18 983 1014 1008.8 1014 10.0 865 978 958.1 1014 54.5
19 893 992 975.8 1014 38.1 878 951 951.3 998 44.0
20 956 1010 1003.3 1014 17.7 922 990 977.3 1014 34.1
21 892 979 965.9 998 38.3 875 929 945.5 1010 45.3
22 962 1009 1003.6 1014 15.1 909 1014 990.2 1014 38.2
23 885 939 960.7 1014 41.2 940 981 978.3 1010 23.2
24 901 970 962.2 1014 40.6 872 935 936.3 988 41.9
25 864 949 949.9 1014 50.3 890 954 944.9 988 34.9
26 958 992 991.8 1014 15.9 931 955 972.2 1014 28.4
27 899 920 949.2 1014 44.8 888 965 964.5 1014 43.2
28 902 966 965.4 1014 40.2 893 957 959.4 1014 40.6
29 971 997 999.2 1014 13.0 912 980 973.1 1014 37.2
30 922 997 977.2 1014 36.0 953 976 987.7 1014 21.2

Experiments in which the correct decryption key could not be guessed were marked
in bold in the table above.

The probability of each of the characteristics for this cipher is not 100%. It means that
despite striving for the maximum value of the fitness function, it will never be achieved.
The inability to obtain the maximum value means that we are not able to terminate the
running of the algorithm earlier than after the completion of all predetermined iterations.

Figures 4 and 5 present a list of all correctly guessed bits of the K6 subkey for the
MASA and NGA algorithms for the Ω1 characteristic. The remaining results—for the Ω2
characteristic are present in Appendix A in the Figures A1 and A2.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Test's number

0

25

50

75

100

Ite
ra

tio
ns

Figure 4. List of correctly guessed bits of MASA attack for the Ω1 characteristic.

In a large number of cases, the MASA attack finds the correct subkey in the first
25 iterations. In approximately 6–7 cases, the algorithm found a solution using half of the

Entropy 2021, 23, 1697 11 of 21

available iterations, while in the other two cases (tests #3 and #21, marked as red on the
figure) the attack failed to cope with the given ciphertext. The algorithm found the correct
decryption subkey in 93% of the cases - markes as green on the figure.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Test's number

0

25

50

75

100

Ite
ra

tio
ns

Figure 5. List of correctly guessed bits of NGA attack for the Ω1 characteristic.

In the case of the NGA algorithm, the cipher was not cracked 11 times—which is over
37% of all possible approaches—red bars on the figure. During the remaining 63% of the
tests, it was possible to crack the cipher with the decryption algorithm—green color. In
most cases, it was possible to guess the correct subkey using only 30–40 iterations. The
tests with identifiers #1 and #26 also deserve special attention. They show a very large
number of iterations (over 80), which means that the NGA algorithm found the correct
solution at the very end of its running.

On the presented bar plots we can notice the MASA algorithm is much effective
because it successfully found the correct subkey in almost every test when NGA attack
has worked in only 63% of experiments. Simulated annealing, used as an additional
exploitation step of the MA, is more effective than the heuristic negation operator used in
the NGA attack.

The next stage of the experiments was to analyze the course of the fitness function
value using the convergence diagrams, which were presented successively, for the MASA
attack and Ω1 in Figures 6 and 7, for the NGA algorithm. Convergence diagrams for the
Ω2 were present in Appendix A in the Figure A3, for the MASA algorithm, and Figure A4
for the NGA attack.

0 20 40 60 80 100
Iteration (ID: 3)

860

880

900

920

940

960

980

1000

1020

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

0 20 40 60 80 100
Iteration (ID: 4)

850

875

900

925

950

975

1000

1025

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

Figure 6. The MASA fitness function Ff convergence diagrams for Ω1 (tests #3 and #4).

The above graph shows tests #3 and #4 with minimum, maximum, medians and
averages—and average values increased and decreased by the standard deviation of the
fitness function. The tests were selected in such a way as to visualize both a positive
case—when it was possible to guess the correct subkey, and a negative one.

In the case of both tests of the MASA algorithm, a rapid increase in the maximum
value of Ff can be noticed at the very beginning of the algorithm’s running. In further
iterations, there are single drops of this value, after which the maximum value is stabilized

Entropy 2021, 23, 1697 12 of 21

and then increased again. The median for 60% of the algorithm’s running time remains
similar, only at the very end of its running we can notice its decrease. When analyzing
the case #4 diagram, already in the first iterations of the algorithm, a rapid increase in
the median value can be observed—the majority of individuals in the population have a
similar value of the fitness function. This may be related to the algorithm falling into the
local extreme, which it has not managed to leave.

0 20 40 60 80 100
Iteration (ID: 1)

850

875

900

925

950

975

1000

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

0 20 40 60 80 100
Iteration (ID: 2)

825

850

875

900

925

950

975

1000

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

Figure 7. The NGA fitness function Ff convergence diagrams for Ω1 (tests #1 and #2).

The next stage of the tests was to review the distribution of the fitness function values
in the last iteration of each attack—the distribution is presented in Figure 8 for the MASA
algorithm, and Figure 9 in the case of an NGA attack. Boxplots for the Ω2 characteristic
were present in Appendix A in the Figure A5, for the MASA algorithm, and Figure A6 for
the NGA attack.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

860

880

900

920

940

960

980

1000

1020

Fi
tn

es
s f

un
ct

io
n'

s d
ist

rib
ut

io
n

Figure 8. The distribution of the fitness function Ff values in the last iteration for the MASA algorithm and Ω1 characteristic.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

860

880

900

920

940

960

980

1000

1020

Fi
tn

es
s f

un
ct

io
n'

s d
ist

rib
ut

io
n

Figure 9. The distribution of the fitness function Ff values in the last iteration for the NGA algorithm and Ω1 characteristic.

Entropy 2021, 23, 1697 13 of 21

In the case of the MASA algorithm, some of the tests—for example, #18, #20 or #22—
are characterized by a high degree of homogeneity, which means that the population is
characterized by a low diversity of individuals. When analyzing each of the attacks, a large
degree of variability between individuals can be observed, which is undoubtedly indicated
by the median value, changing its position between the first and the third quartiles. In the
case of the NGA algorithm, in some experimentes, an unexpected increase of the value
of the fitness function can be observed at the very end of the algorithm’s running—it is
evidenced by the presence of the outlier of the maximum value.

The MASA and NGA attacks are characterized by a certain degree of pseudo-randomness.
In order to perform statistical verification of the algorithms, a non-parametric Wilcoxon’s
test was used to compare the results. The hypothesis H0, specifying no difference when
comparing the samples, and the hypothesis H1, assuming a difference between the two
samples, were set. The following criteria were used to perform the test:

• value of the fitness function—performed for the best quality subkeys found for
each run;

• number of subkeys checked.

The weight of each criterion was expressed at the same value, set to 0.5. For the
analyses performed, hypothesis H0 was rejected at p < 0.05—thus indicating the statistically
important differences between the best results retrieved. The results obtained through the
MASA algorithm are significantly better than the NGA attack.

5.3. Entropy Study

The possibility to maintain a highly diverse population may improve the algorithm’s
ability not to fall into local extremes. In order to estimate the size of the disorder in the
system, the entropy was used:

H(X) =
n

∑
i=1

p(xi)log2
1

p(xi)
= −

n

∑
i=1

p(xi)log2 p(xi). (8)

The entropy was computed by comparing the respective bits of each subkey with
the corresponding bits of the best-adapted individual. An example for the population
P = {11101, 10101, 11011, 11110}, where the last individual 11110 is the leader, is pre-
sented below (Table 5):

Table 5. Example scenario of the entropy calculation.

Subkey Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

A 1 1 1 0 1
B 1 0 1 0 1
C 1 1 0 1 1

Leader 1 1 1 1 0

p(x1) 1 0.75 0.75 0.50 0.25
p(x2) 0 0.25 0.25 0.50 0.75
H(x1) 4 · log2(1) 3 · 3

4 log2(
3
4) 3 · 3

4 log2(
3
4) 2 · 1

2 log2(
1
2)

1
4 log2(

1
4)

H(x2) 0 1
4 log2(

1
4)

1
4 log2(

1
4) 2 · 1

2 log2(
1
2) 3 · 3

4 log2(
3
4)

where:

• p(x1)—the probability of an identical bit occurring in a given position between indi-
viduals and the leader;

• p(x2)—the probability of a different bit occurring in a given position between individ-
uals and the leader;

• H(x1)—entropy values for the probability p(x1), at a given position;
• H(x2)—entropy values for the probability p(x2), at a given position.

Entropy 2021, 23, 1697 14 of 21

Based on the example listed in Table 5, the entropy value of the entire system can be
computed as follows:

H = −(0 + 0− 0.93− 0.5− 0.93− 0.5− 1− 1− 0.5− 0.93) = 6.29. (9)

Entropy for the MASA and NGA algorithms was visualized respectively in
Figures 10 and 11. The charts show the maximum, minimum and average values. More-
over, it was decided to visualize the average value of entropy for both attacks on one graph,
which is presented in Figure 12. The remaining results—for the characteristic Ω2 are given
in Appendix A in Figures A7–A9.

0 20 40 60 80 100
Iterations

10

15

20

25

30

En
tro

py

Min
Max
Avg

Figure 10. Minimum, maximum and average entropy, during all iterations, for MASA algorithm and
Ω1 characteristic.

0 20 40 60 80 100
Iterations

10

15

20

25

30

En
tro

py

Min
Max
Avg

Figure 11. Minimum, maximum and average entropy, during all iterations, for NGA algorithm and
Ω1 characteristic.

Entropy 2021, 23, 1697 15 of 21

0 20 40 60 80 100
Iterations

14

16

18

20

22

24

26

28

En
tro

py

MASA
NGA

Figure 12. The comparison of the entropy of the MASA and NGA algorithms for the Ω1 characteristic.

The entropy value was computed during each iteration and 30 launches of MASA
and NGA attacks. During all the conducted tests, identical pairs of plain text and the
corresponding ciphertexts were used, as well as the same encryption key—owing to which
it was possible to make the most reliable comparison.

When analyzing the graphs presented above (Figures 10 and 11), a decrease in the
entropy value can be noticed from the very beginning of the running of each of the
algorithms. In the last iterations, a gradual stabilization of the system becomes visible,
which would most probably be more noticeable after increasing the number of iterations.
Comparing the average courses, it can be noticed in Figure 12 that the entropy value for
the MASA attack is lower from the very beginning. Only from about the thirtieth iteration,
the NGA algorithm obtains a similar value, and sometimes even lower, in relation to the
MASA attack. Eventually, the entropy values for the NGA algorithm begin to stabilize at
around the sixtieth iteration, while in the case of the MASA attack it continues to decrease.
At the end of the algorithms’ running, the difference in entropy value between attacks
becomes visible.

The experiments carried out and described above clearly confirm the effectiveness
of the suggested MASA attack, based on the use of memetic algorithms and simulated
annealing. This information may be important during the running of the algorithm, since
the probability of leaving the local extremum will be higher, and thus the quality of the
final results will be better.

6. Conclusions

The article presents the results for the NGA genetic algorithm enriched with an
additional heuristic negation operator and the MASA memetic algorithm that performs the
local search process through simulated annealing. Both algorithms undoubtedly improve
the process of an attack of differential cryptanalysis against the ciphertexts generated with
the DES standard. An important aspect is the attempt to minimize the number of verified
subkeys, which is presented in the table below:

The developed algorithms improve the effectiveness and efficiency of the attack, which
is extremely important from the point of view of a cryptanalyst. Presented metaheuristics
cryptanalysis, based on the differential cryptanalysis approach, can be helpful to raise
the security level in already implemented IT systems. It can also be used to improve the
complexity of ciphers at the design level. Proposed attacks, verified on the DES cipher, can
be tested on more complicated modern encryption algorithms like AES or GOST ciphers.

Entropy 2021, 23, 1697 16 of 21

Based on the tests presented in the previous section and Table 6, it is possible to
clearly state the superiority of the MASA attack and the NGA algorithm over the classic
differential cryptanalysis attack, due to the frequency of correctly guessed subkey and the
number of proven solutions.

Table 6. Comparison of checked subkeys between MASA, NGA and differential cryptanalysis attacks.

Attack Total Number
of Checked Subkeys

Average Number
of Checked Subkeys

MASA algorithm
Ω1 687,752 22,925.1
Ω2 687,788 22,926.3

∑ 1,375,540 45,851.3

NGA algorithm
Ω1 252,456 8415.2
Ω2 252,899 8430.0

∑ 505,355 16,845.2

Differential Cryptanalysis
Ω1 30 · (6 · 230 + 1024) 6 · 230 + 1024
Ω2 30 · (6 · 230 + 1024) 6 · 230 + 1024

∑ 30 · (12 · 230 + 1024) 12 · 230 + 1024

There are many parameters that influence the quality of offered solutions. Analyzing
the importance of individual parameters, we intend in the future to conduct an analysis
based on removing some of them or replacing them with a simplified version, without
losing the quality of the offered solutions. Such approach (an ablation study) is very
common when estimating costs of deep learning solutions and we hope that it will also be
very effective here.

Work is currently underway on modifications of the developed attack, which would
enable an even faster exploration of the solution space. In the future, an adaptive ver-
sion of the memetic algorithm is expected to be developed to automatically adjust the
attack parameters. A parallel implementation is also planned, which should be much
more effective.

Simplified and the original DES encryption algorithms are commonly used by many
cryptanalysts as a starting point to perform research and experimental studies in this
discipline of science. It can be found in the literature review, presented in Table 1, in the
introduction section. The authors of this article decided to use a reduced DES cipher for
the purposes of developing new metaheuristic attacks described in the paper. Starting
experiments from modern ciphers could be too complicated and significantly extend the
research process. At the current state, we can test the proposed algorithms against more
advanced symmetric block ciphers such as Twofish, AES, or GOST, which will definitely
be the next step in future works.

Author Contributions: Conceptualization, K.D. and U.B.; formal analysis, K.D and U.B.; investi-
gation, K.D. and U.B.; methodology, K.D and U.B.; project administration, K.D.; resources, K.D.;
software, K.D.; supervision, K.D.; validation, K.D. and U.B.; visualization, K.D.; writing, original
draft, K.D. and U.B.; writing, review and editing, K.D. and U.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Entropy 2021, 23, 1697 17 of 21

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this paper:

ACO Ant Colony Optimization
BCSO Binary Cat Swarm Optimization
DC Differential Cryptanalysis
DES Data Encryption Standard
DSA Dolphin Swarm Algorithm
EA Evolutionary Algorithms
FEAL Fast Data Encipherment Algorithm
GSO Genetic Swarm Optimization
MA Memetic Algorithms
MASA Memetic Algorithm Simmulated Annealing
NGA Negation Genetic Algorithms
PSO Particle Swarm Optimization
RC4 Rivest Cipher 4
SDES Simplified Data Encryption Standard
TEA Tiny Encryption Algorithm
VMPC Variably Modified Permutation Composition

Appendix A. The Comparative and Entropy Studies for the Ω2 Characteristic

Table A1. Fitness function values for MASA and NGA algorithms for characteristic Ω2
P.

ID

MASA NGA

Min Med Avg Max Std.
Dev. Min Med Avg Max Std.

Dev.

1 906 984 1002.6 1095 57.1 987 1027 1041.5 1095 38.0
2 967 1059 1043.0 1095 42.6 1008 1034 1043.3 1074 21.3
3 946 973 997.8 1095 50.7 993 1010 1025.2 1075 29.2
4 1008 1041 1048.5 1095 29.2 968 1047 1046.8 1074 31.5
5 1008 1044 1045.6 1095 20.2 922 1021 1024.3 1095 52.7
6 943 989 1018.7 1095 60.7 964 1044 1043.5 1074 35.4
7 959 1041 1038.8 1095 40.0 888 957 994.0 1095 72.2
8 940 1011 1020.6 1095 44.0 953 1059 1036.3 1095 49.8
9 928 1028 1029.0 1095 56.6 958 1030 1031.6 1095 39.1

10 953 1011 1019.9 1095 47.3 895 1059 1017.1 1074 64.7
11 941 1041 1022.8 1095 50.8 958 1059 1043.7 1095 44.2
12 993 1033 1045.5 1095 30.0 1006 1021 1036.7 1075 26.7
13 955 1060 1039.2 1095 50.0 959 1053 1049.5 1095 38.1
14 946 1006 1012.2 1095 49.0 927 1027 1022.9 1095 59.4
15 949 1021 1019.4 1053 27.0 916 1034 1028.2 1095 56.3
16 891 979 992.2 1075 58.3 995 1068 1054.6 1095 32.5
17 897 1002 1004.4 1095 55.4 958 1054 1045.2 1095 46.4
18 902 952 974.1 1075 53.2 939 963 989.1 1074 47.4
19 969 1025 1033.3 1095 45.5 884 989 990.6 1074 62.6
20 950 1023 1037.6 1095 52.0 985 1027 1039.0 1095 35.3
21 899 1036 1026.9 1095 57.7 940 977 992.1 1075 44.3
22 1016 1032 1043.9 1095 27.2 957 1007 1021.2 1095 49.1
23 947 1036 1027.0 1095 56.6 902 1021 1007.4 1039 38.0
24 977 1068 1053.6 1095 39.7 913 1013 1016.1 1074 48.6
25 945 1021 1031.1 1095 42.9 905 1028 1024.2 1075 53.2
26 1011 1041 1043.7 1095 25.1 952 1031 1036.4 1095 50.1
27 937 1013 1010.0 1095 45.0 961 996 1013.6 1095 49.9
28 971 1002 1027.2 1095 52.1 936 1017 1023.8 1074 46.6
29 907 1038 1027.5 1095 64.6 949 1018 1018.6 1075 32.0
30 950 1018 1016.0 1095 50.4 949 1065 1054.8 1095 41.8

Entropy 2021, 23, 1697 18 of 21

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Test's number

0

25

50

75

100

Ite
ra

tio
ns

Figure A1. List of correctly guessed bits of MASA attack for the Ω2.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Test's number

0

25

50

75

100

Ite
ra

tio
ns

Figure A2. List of correctly guessed bits of NGA attack for the Ω2.

Where the red color indicates experiments when the algorithm wasn’t able to find the
correct subkey and the green bars indicate are tests when the subkey was
successfully guessed.

0 20 40 60 80 100
Iteration (ID: 14)

900

950

1000

1050

1100

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

0 20 40 60 80 100
Iteration (ID: 15)

875

900

925

950

975

1000

1025

1050

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

Figure A3. The MASA fitness function Ff convergence diagrams for Ω2 (tests #14 and #15).

0 20 40 60 80 100
Iteration (ID: 1)

850

900

950

1000

1050

1100

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

0 20 40 60 80 100
Iteration (ID: 2)

850

900

950

1000

1050

Fi
tn

es
s

Med
Avg
Avg-
Avg+
Max

Figure A4. The NGA fitness function Ff convergence diagrams for Ω2 (tests #1 and #2).

Entropy 2021, 23, 1697 19 of 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

900

925

950

975

1000

1025

1050

1075

1100

Fi
tn

es
s f

un
ct

io
n'

s d
ist

rib
ut

io
n

Figure A5. The distribution of the fitness function Ff values in the last iteration for the MASA algorithm and Ω2 character-
istic.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Iterations

900

950

1000

1050

1100

Fi
tn

es
s f

un
ct

io
n'

s d
ist

rib
ut

io
n

Figure A6. The distribution of the fitness function Ff values in the last iteration for the NGA algorithm and Ω2 characteristic.

0 20 40 60 80 100
Iterations

6

8

10

12

14

16

18

20

En
tro

py

Min
Max
Avg

Figure A7. Minimum, maximum and average entropy, during all iterations, for MASA algorithm
and Ω2 characteristic.

Entropy 2021, 23, 1697 20 of 21

0 20 40 60 80 100
Iterations

6

8

10

12

14

16

18

20

En
tro

py

Min
Max
Avg

Figure A8. Minimum, maximum and average entropy, during all iterations, for NGA algorithm and
Ω2 characteristic.

0 20 40 60 80 100
Iterations

10

12

14

16

18

En
tro

py

MASA
NGA

Figure A9. The comparsion of the entropy of the MASA and NGA algorithms for the Ω2 characteristic.

References
1. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; Wiley: Hoboken, NJ, USA, 1996.
2. Menezes, A.J.; Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 1997.
3. Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72. [CrossRef]
4. Song, J.; Zhang, H.; Meng, Q.; Zhangyi, W. Cryptanalysis of Four-Round DES Based on Genetic Algorithm. Wirel. Commun. Netw.

Mob. Comput. IEEE 2007, 10, 2326–2329.
5. Tadros, T.; Hegazy, A.; Badr, A. Genetic Algorithm for DES Cryptanalysis. Int. J. Comput. Sci. Netw. Secur. 2007, 10, 5–11.
6. Garg, P. A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption

Standard algorithm. Int. J. Netw. Secur. Its Appl. (IJNSA) 2009, 1, 34–42.
7. Hu, W. Cryptanalysis of TEA using quantum-inspired genetic algorithms. J. Softw. Eng. Appl. 2010, 3, 50–57. [CrossRef]

http://doi.org/10.1007/BF00630563
http://dx.doi.org/10.4236/jsea.2010.31006

Entropy 2021, 23, 1697 21 of 21

8. Abd-Elmonim, W.G.; Ghali, N.I.; Hassanien, A.E.; Abraham, A. Known-Plaintext Attack of DES16 Using Particle Swarm
Optimization. In Proceedings of the Third IEEE World Congress on Nature and Biologically Inspired Computing, Salamanca,
Spain, 19–21 October 2011; pp. 12–16.

9. Vimalathithan, R.; Valarmathi, M.L. Cryptanalysis of simplified-DES using computational intelligence. WSEAS Trans. Comput.
2011, 10, 210–219.

10. Jadon, S.S.; Sharma, H.; Kumar, E.; Bansal, J.C. Application of binary particle swarm optimization in cryptanalysis of DES. In
Proceedings of the International Conference on Soft Computing for Problem Solving; Deep, K., Nagar, A., Pant, M., Bansal, J., Eds.;
Advances in Intelligent and Soft Computing; Springer: New Delhi, India, 2012; Volume 130, pp. 1061–1071.

11. Pandey, S.; Mishra, M. Particle swarm optimization in cryptanalysis of DES. Int. J. Adv. Res. Comput. Eng. Technol. 2012, 4,
379–381.

12. Ali, I.K. Cryptanalysis of simple substitution ciphers using bees algorithm. J. Baghdad Coll. Econ. Sci. Univ. 2013, 36, 373–382.
13. Boryczka, U.; Dworak, K. Cryptanalysis of Transposition Cipher Using Evolutionary Algorithms. In Computational Collective

Intelligence. Technologies and Applications; Hwang, D., Jung, J.J., Nguyen, N.T., Eds.; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2014; Volume 8733, pp. 623–632.

14. Mekhaznia, T.; Menai, M.E.B. Cryptanalysis of classical ciphers with ant algorithms. Int. J. Metaheuristics 2014, 3, 175–198.
[CrossRef]

15. Bhateja, A.K.; Bhateja, A.; Chaudhury, S.; Saxena, P.K. Cryptanalysis of vigenere cipher using cuckoo search. Appl. Soft Comput.
2015, 26, 315–324. [CrossRef]

16. Jain, A.; Chaudhari, N.S. A New Heuristic Based on the Cuckoo Search for Cryptanalysis of Substitution Ciphers. In Proceedings
of the International Conference on Neural Information Processing, Istanbul, Turkey, 9–12 November 2015; Sabri, A., Tingwen, H.,
Weng, K.L., Qingshan, L., Eds.; Volume 9490, pp. 206–215.

17. Amic, S.; Soyjaudah, K.S.; Mohabeer, H.; Ramsawock, G. Cryptanalysis of DES16 using binary firefly algorithm. In Proceedings
of the 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of
Societies, Balaclava, Mauritius, 3–6 August 2016; IEEE: Balaclava, Mauritius, 2016; pp. 94–99.

18. Dworak, K.; Nalepa, J.; Boryczka, U.; Kawulok, M. Cryptanalysis of SDES using genetic and memetic algorithms. In Recent
Developments in Intelligent Information and Database Systems; Król, D., Madeyski, L., Nguyen, N.T., Eds.; Springer International
Publishing: Da Nang, Vietnam, 2016; pp. 3–14.

19. Dworak, K.; Boryczka, U. Differential Cryptanalysis of FEAL4 using Evolutionary Algorithm. In Computational Collective
Intelligence; Nguyen, N.T., Iliadis, L., Manolopoulos, Y., Trawiński, B., Eds.; Springer International Publishing: Halkidiki, Greece,
2016; Volume 9876, pp. 102–112.

20. Amic, S.; Soyjaudah, K.S.; Ramsawock, G. Dolphin swarm algorithm for cryptanalysis. In Information Systems Design and Intelligent
Applications; Satapathy, S., Bhateja, V., Somanah, R., Yang, X.S., Senkerik, R., Eds.; Advances in Intelligent Systems and Computing;
Springer: Singapore, 2019; Volume 863, pp. 149–163.

21. Jain, A.; Chaudhari, N.S. A novel cuckoo search strategy for automated cryptanalysis: A case study on the reduced complex
knapsack cryptosystem. Int. J. Syst. Assur. Eng. Manag. 2017, 9, 942–961. [CrossRef]

22. Dworak, K.; Boryczka, U. Genetic Algorithm as Optimization Tool for Differential Cryptanalysis of DES6. In Computational
Collective Intelligence; Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G., Eds.; Springer International
Publishing: Nicosia, Cyprus, 2017; Volume 10449, pp. 107–116.

23. Polak, I.; Boryczka, M. Tabu search against permutation based stream ciphers. Int. J. Electron. Telecommun. 2018, 64, 137–145.
24. Kamal, R.; Bag, M.; Kule, M. On the cryptanalysis of SDES using binary cuckoo search algorithm. In Computational Intelligence

in Pattern Recognition; Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D., Eds.; Advances in Intelligent Systems and Computing;
Springer: Singapore, 2019; Volume 999, pp. 23–32.

25. Polak, I.; Boryczka, M. Tabu Search in revealing the internal state of RC4+ cipher. Appl. Soft Comput. 2019, 77, 509–519. [CrossRef]
26. Sabonchi, A.K.S.; Akay, B. Cryptanalysis of Polyalphabetic Cipher Using Differential Evolution Algorithm. Tehnički Vjesnik 2020,

27, 1101–1107.
27. Grari, H.; Lamzabi, S.; Azouaoui, A.; Zine-Dine, K. Cryptanalysis of Merkle-Hellman cipher using ant colony optimization. IAES

Int. J. Artif. Intell. 2021, 10, 490–500. [CrossRef]
28. Amic, S.; Soyjaudah, K.S.; Ramsawock, G. Binary cat swarm optimization for cryptanalysis. In Proceedings of the 2017

IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Bhubaneswar, India,
17–20 December 2017; IEEE: Bhubaneswar, India, 2017; pp. 1–6.

29. Pieprzyk, J.; Hardjono, T.; Seberry, J. Fundamentals of Computer Security; CRC Press: Boca Raton, FL, USA, 2003.
30. Stallings, W. Cryptography and Network Security: Principles and Practice; Pearson: London, UK, 2011.
31. Stinson, D.R. Cryptography: Theory and Practice; CRC Press: Boca Raton, FL, USA, 1995.
32. Stamp, M.; Low, R.M. Applied Cryptanalysis. Breaking Ciphers in the Real World; Wiley-Interscience: Hoboken, NJ, USA, 2007.

http://dx.doi.org/10.1504/IJMHEUR.2014.065159
http://dx.doi.org/10.1016/j.asoc.2014.10.004
http://dx.doi.org/10.1007/s13198-017-0690-9
http://dx.doi.org/10.1016/j.asoc.2019.01.039
http://dx.doi.org/10.11591/ijai.v10.i2.pp490-500

	Introduction
	Symmetric Block Ciphers
	Differential Cryptanalysis
	Metaheuristics Differential Cryptanalysis
	Experimental Results
	Selecting Parameters
	Comparative Study
	Entropy Study

	Conclusions
	The Comparative and Entropy Studies for the 2 Characteristic
	References

