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Abstract: We perform security analysis of a passive continuous-variable quantum key distribution
(CV-QKD) protocol by considering the finite-size effect. In the passive CV-QKD scheme, Alice utilizes
thermal sources to passively make preparation of quantum state without Gaussian modulations.
With this technique, the quantum states can be prepared precisely to match the high transmission
rate. Here, both asymptotic regime and finite-size regime are considered to make a comparison.
In the finite-size scenario, we illustrate the passive CV-QKD protocol against collective attacks.
Simulation results show that the performance of passive CV-QKD protocol in the finite-size case is
more pessimistic than that achieved in the asymptotic case, which indicates that the finite-size effect
has a great influence on the performance of the single-mode passive CV-QKD protocol. However, we
can still obtain a reasonable performance in the finite-size regime by enhancing the average photon
number of the thermal state.

Keywords: passive; continuous-variable quantum key distribution; finite-size effect

1. Introduction

Quantum key distribution (QKD) solves the problem of sharing secure keys between
two distant authenticated users (Alice and Bob). These two users can perform secure com-
munications when such keys are established [1–4]. QKD has been divided into two main
categories: one is discrete-variable (DV)QKD protocols [5,6], and the other is continuous-
variable (CV) QKD schemes [7–10]. CV-QKD takes advantage of the quadrature compo-
nents of the optical field to perform the key information distribution. Compared with
DV-QKD, CV-QKD has better compatibility with existing optical communication systems
and employs lower-cost light sources and detectors.

The Gaussian-modulated CV-QKD protocol making use of coherent states has at-
tracted much attention because of its theoretical security [11–18] and its practicality [19–22].
In this protocol, the quantum state is traditionally prepared in an active manner: Gaussian
distributed random numbers are firstly generated by Alice with the help of a true random
number generator, then Alice can perform preparation of a coherent state and transmit it to
Bob. The modulation method used in the Gaussian-modulated CV-QKD protocol is that
Alice modulates the output of a laser by taking advantage of high-speed amplitude and
phase modulators with requisite high extinction ratio. Because the modulation format of
the Gaussian-modulated CVQKD scheme is relatively complex and the tolerable modu-
lation error is small, it is necessary to make use of high extinction ratio modulators with
good stability in this protocol [23].

However, the use of high extinction ratio modulators may present evident enhance-
ment in cost, especially, creating an important challenge in the chip-integration in view of
cost-effective silicon photonics technology [24]. The authors of [25] demonstrated on-chip
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modulators with high extinction ratio over 65 dB. The high-speed on-chip modulators
needed in active QKD encoding schemes bring about significant cost, manufacturing time,
and complexity. Consequently, it is important to study the potential of removing the
modulators, which, when taken advantage of for encoding, may yield obvious reductions
in cost and manufacturing time.

Recently, a passive-state preparation scheme in view of single-mode thermal source
rather than high extinction ratio modulators has been proposed, whose aim is to sim-
plify the implementation of CV-QKD [26]. By assuming that Alice’s QKD transmitter is
trusted, it can take advantage of the well-established security proofs directly for Gaussian-
modulated CV-QKD into passive CV-QKD protocol. This passive-state preparation scheme
has been applied in CV quantum secret sharing [27] and measurement-device-independent
CV-QKD [28,29]. More recently, an experimental study of the passive-state preparation pro-
tocol [30] and the local-oscillator-based passive CV-QKD scheme [31] have been proposed,
which demonstrate the feasibility of passive CV-QKD in practical implementation. The
practical implementations of a thermal source can be realized by employing a broadband-
amplified spontaneous emission (ASE) source, which contains many spectral–temporal
modes of independent thermal states [30,31]. Compared to a direct Gaussian modula-
tion CV-QKD protocol, the passive CV-QKD scheme with practical implementations of
a thermal source has its own advantages, namely, this protocol waives the necessity of
utilizing high-extinction ratio amplitude and phase modulators, which may yield signifi-
cant reductions in cost. The interesting extension of this work may be found in quantum
algorithms [32,33], quantum computational speed [34], and quantum communication net-
works [35]. The security analysis of single-mode passive CV-QKD in asymptotic scenarios
has been presented [26]. Nevertheless, the utility of single-mode passive CV-QKD protocol
in finite-size regimes has never been analyzed.

In this paper, we perform security analysis of single-mode passive CV-QKD protocol
by considering finite-size effect. Here, only the reverse reconciliation scheme is taken
into consideration, since the direct reconciliation scheme can be analyzed in a similar
way. The numerical simulations of the scheme are conducted by employing block lengths
between 107 and 1011. When the amount of data samples taken advantage of to perform
parameter estimation is large, the performance of single-mode passive CV-QKD protocol
in a finite-size regime will approach that in the asymptotic scenario.

The paper is structured as follows. In Section 2, we introduce the main idea of the
single-mode passive CV-QKD protocol. In Section 3, we perform the security analysis with
numerical simulations by considering an asymptotic case and the finite-size effect. Finally,
conclusions are drawn in Section 4.

2. Passive CV-QKD Protocol

The setup of the passive CV-QKD is shown in Figure 1. This scheme makes use of
the intrinsic field fluctuations of a thermal source to generate a secure quantum key [26].
As illustrated in Figure 1, Alice makes use of a balanced beam splitter to split the output
of a thermal source into two spatial modes. One mode is locally measured by Alice with
the help of conjugate homodyne detection, then the other mode is transmitted to Bob
through an optical attenuator. In order to make an estimate of the quadrature values of
the outgoing mode, it is necessary to achieve the Gaussian-distributed random numbers
(xA, pA). Therefore, the local measurement owned by Alice is scaled down numerically
via a factor of λA, which can obtain Alice’s desired modulation variance value VA with a
proper combination of source intensity and optical attenuation. Besides, it has been proved
that the passive CV-QKD protocol is equivalent to the GMCS QKD protocol in terms of
security [26].



Entropy 2021, 23, 1698 3 of 12

TS

xA

pA

HD

HD

BS

xA

pA

xB

pB

Att.

Alice

to Bob

A

A

A

Figure 1. Single-mode passive CV-QKD protocol [26]. HD, homodyne detector; BS, beam splitter;
Att., optical attenuator. Here, we employ a beam splitter with a transmittance of ωM to model the
efficiency of the homodyne detector.

It is noteworthy that the excess noise caused by the quantum state preparation has an
important effect on the performance of the passive CV-QKD protocol; the mutual infor-
mation between Alice and Bob is associated with Alice’s uncertainties on the quadrature
of the outgoing mode. According to the uncertainty principle in quantum mechanics, the
minimum uncertainty on either quadrature value of the outgoing mode (equal to 1) can
be achieved by Alice. In the passive CV-QKD protocol (illustrated in Figure 1), Alice’s
uncertainty on the outgoing mode is given by [26]

ΛA =
2µA
ωM

(1− ωM
2

+ νel) + 1, (1)

where µA represents the transmittance of the optical attenuator, and ωM and νel stand for
the efficiency and noise variance of detector owned by Alice, respectively. According to
Equation (1), the excess noise caused by the passive state preparation can be calculated as

ξA = ΛA − 1 =
2µA
ωM

(1− ωM
2

+ νel). (2)

Making use of the relation VA = µAm0, Equation (2) is revised as

ξA =
2VA

ωMm0
(1− ωM

2
+ νel), (3)

where m0 represents an average photon number of a thermal source owned by Alice.
Considering the fact that the excess noise due to the passive state preparation ξA

always exists in the single-mode passive CV-QKD protocol, it is necessary to analyze the
excess noise ξA to achieve desired performance. The excess noise ξA as a function of
the average photon number m0 with different modulation variance values VA is shown
in Figure 2. One can find that the larger the average photon number m0 is, the smaller
the excess noise ξA is, especially for the low value of modulation variance. Besides, the
reduction of modulation variance VA can also effectively restrain the excess noise ξA.
According to [26], a typical value of VA=1 can be satisfied by a practical broadband thermal
source. Therefore, the modulation variance value of VA used in the following simulations
is set to VA=1.
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Figure 2. The excess noise ξA as a function of the average photon number m0 with different modula-
tion variance values VA. Simulation parameters are ωM = 0.5, νel = 0.1 [26].

It is necessary to point out that [30,31] employ broadband-amplified spontaneous
emission source, which contains many spectral–temporal modes of independent thermal
states, and is different from the single-mode thermal source. In [30,31], the excess noise
caused by the passive state preparation using multimode thermal source is related with the
mode-overlap coefficient. However, it is not necessary to consider the relationship between
the excess noise caused by the passive state preparation and the mode-overlap coefficient
with the use of single-mode thermal source shown in our protocol.

3. Security Analysis

In this section, we perform security analysis of passive CV-QKD protocol by taking
both asymptotic case [15] and finite-size regime [16] into consideration.

3.1. Asymptotic Security of Passive CV-QKD Protocol

Here, we calculate the asymptotic secure key rate of the passive CV-QKD protocol
with reverse reconciliation, which is given by [13,36]

Kasy = βI(A : B)− χ(E), (4)

where β represents the reconciliation efficiency, I(A : B) represents the Shannon mutual
information between Alice and Bob, and χ(E) represents the Holevo bound of the informa-
tion owned by Eve. Here, channel losses is assumed as α = 0.2 dB/km. The transmittance
is given by

T = 10
−αL
10 , (5)

where L represents the fiber length in kilometers.
We now calculate the noise added by Bob’s detector for conjugate homodyne detection,

which is expressed as [36]

χhet = [1 + (1−ωM) + 2νel ]/ωM, (6)

where we have made an assumption that the performance of Bob’s detector is the same as
that of Alice’s.

For the channel-added noise referred to the channel input, it can be calculated as

χline =
1
T
− 1 + ξA + ξ0, (7)



Entropy 2021, 23, 1698 5 of 12

where ξA stands for the excess noise caused by Alice’s passive state preparation (shown in
Equation (3)). ξ0 stands for other sources of untrusted noise.

Based on the above analysis, we can present the overall noise referred to the channel
input, which is given by

χtot = χline +
χhet

T
. (8)

Considering that both quadratures can be taken advantage of to make the generation
of the secure key, we can thus determine the mutual information between Alice and Bob,
which is given by

I(A : B) = log2
V + χtot

1 + χtot
, (9)

where V = VA + 1.
Since we adopt a reverse reconciliation scheme to calculate the secret key rate of the

passive CV-QKD protocol, the parameter χ(E) = χ(B : E). Here, χ(B : E) stands for the
Holevo bound between Eve and Bob. In order to make an estimation of parameter χ(B : E),
the realistic noise mode shown in [10] was adopted, which has been utilized widely in
CV-QKD experiments [10,13,19,37,38]. Based on this model, we can calculate the parameter
χ(B : E) as

χ(B : E) =
2

∑
i=1

G(
ρi − 1

2
)−

5

∑
i=3

G(
ρi − 1

2
), (10)

where G(x) = (x + 1)log2(x + 1)− xlog2x.

ρ2
1,2 =

1
2
(∆±

√
∆2 − 4D), (11)

where
∆ = V2(1− 2T) + 2T + T2(V + χline)

2, (12)

D = T2(Vχline + 1)2. (13)

ρ2
3,4 =

1
2
(A±

√
A2 − 4B), (14)

where

A =
1

[T(V + χtot)]2
{∆χ2

het + D + 1 + 2χhet[V
√

D + T(V + χline)] + 2T(V2 − 1)}, (15)

B = [
V +
√

Dχhet
T(V + χtot)

]2, (16)

ρ5 = 1. (17)

In the following, we illustrate the relationship between the asymptotic secret key
rate and the transmission distance under four different average photon numbers m0 = 70,
m0 = 100, m0 = 150, and m0 = 200. The Pirandola–Laurenza–Ottaviani–Banchi (PLOB)
bound is also plotted in Figure 3, which illustrates the ultimate limit of repeaterless quan-
tum communication [39]. From Figure 3, we can observe that the performance of the
passive CV-QKD protocol in terms of asymptotic secret key rate and transmission distance
is enhanced by increasing the average output photon number m0. As a matter of course, the
performance of the single-mode passive CV-QKD protocol becomes more and more close to the
PLOB bound with the increase of m0. We can find the reason from Equation (3), namely, with a
desired VA, the larger average output photon number m0, the smaller the excess noise ξA
introduced by Alice. In addition, one can find that the maximum transmission distance is
over 100 km when m0 = 100. That is to say, we can perform efficient implementation of the
passive CV-QKD protocol with m0 above 100.
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Figure 3. The relationship between the asymptotic secret key rate and the distance under four
different average photon numbers: m0 = 70, m0 = 100, m0 = 150, and m0 = 200. Simulation parameters
are VA = 1, ξ0 = 0.01, ωM = 0.5, νel = 0.1, and reconciliation efficiency β = 0.95 [26].

Figure 4 illustrates the asymptotic secret key rate as a function of average photon
number m0 under different distances. From Figure 4, one can observe that the asymptotic
secret key rate of the single-mode passive CV-QKD protocol grows fast in the interval
[60, 200]; nevertheless, it enhances slowly in the interval [200, 500]. This indicates that when
the average photon number m0 reaches a certain value, the performance improvement is
inapparent with continuing increase of average photon number m0.
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Figure 4. The asymptotic secret key rate as a function of average photon number m0 under different
distances. Simulation parameters are VA = 1, ξ0 = 0.01, ωM = 0.5, νel = 0.1, reconciliation efficiency
β = 0.95 [26].

3.2. Security of Passive CV-QKD in Finite-Size Scenario

In the above analysis, we show the calculation of the asymptotic secret key rate of the
passive CV-QKD protocol based on an assumption that Alice and Bob can take advantage
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of infinitely many signals to make the exchange. Nevertheless, it is impossible to achieve
in practice, as the length of the practical secure key is limited. Consequently, it is necessary
to perform security analysis of the passive CV-QKD scheme by considering the finite-size
effect. The finite-size secret key rate of the single-mode passive CV-QKD protocol with
reverse reconciliation is given by [16]

K f ini =
f
F
[βI(A : B)− χεPE(B : E)− ∆( f )], (18)

where the meanings of β and I(A : B) are shown above. F represents the total exchanged
signals and f is the number of signals which are used to generate secure key, and the
leftover signal P = F − f is taken advantage of to perform parameter estimation. εPE
stands for the failure probability of parameter estimation, and ∆( f ) is associated with the
security of the privacy amplification, which is given by

∆( f ) = (2dimΨB + 3)

√
log2(2/ε̄)

f
+

2
f

log2(1/εPB), (19)

where ε̄ is assumed to be the smoothing parameter, εPB represents the failure probability
that exists in the privacy amplification procedure, and ΨB stands for the Hilbert space
corresponding to the raw key owned by Bob. Here, dimΨB = 2 because the raw key is
encoded on binary bits.

In order to perform the security analysis of the single-mode passive CV-QKD protocol
in a finite-size regime, it is important to make calculation of χεPE(B : E) by employing a
covariance matrix assumed as ΥεPE , which makes the secret key rate of the single-mode
passive CV-QKD protocol minimum exist under a probability of 1− εPE. Through using
P couples of correlated variables (xi, yi)i=1,2,···,P, we can achieve the covariance matrix
ΥεPE . To perform analysis of these correlated variables, we adopt a normal model, which is
shown as follows:

y = tx + z, (20)

where t =
√

T and z follow a centered normal distribution with variance ϑ2 = 1+ T(ξA + ξ0).
According to Equation (20), the data owned by Alice and Bob can be connected. The
covariance matrix ΥεPE is given by

ΥεPE =

(
(VA + 1)I2 tminZσz

tminZσz (t2
minVA + ϑ2

max)I2

)
, (21)

where tmin and ϑ2
max stand for the minimum of t and maximum of ϑ2 compatible with

sampled couples, except with probability εPE/2, and Z =
√

V2
A + 2VA. After that, we can

obtain the maximum-likelihood estimators t̂ and ϑ̂2, which are calculated as

t̂ = ∑P
i=1 xiyi

∑P
i=1 x2

i
and ϑ̂2 =

1
P

P

∑
i=1

(yi − t̂xi)
2. (22)

Distributions followed by the maximum-likelihood estimators t̂ and ϑ̂2 are, respec-
tively, given by

t̂ ∼ N(t,
ϑ2

∑P
i=1 x2

i
) and

Pϑ̂2

ϑ2 ∼ χ2(P− 1), (23)

which indicate that t̂ and ϑ̂2 are independent for each other. In view of [16], we respectively
show the expressions of tmin and ϑ2

max, which are given by
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tmin ≈ t̂− zεPE/2

√
ϑ̂2

PVA
,

ϑ2
max ≈ ϑ̂2 + zεPE/2

√
2ϑ̂2
√

P
,

(24)

where zεPE/2 is such that 1 − erf(zεPE/2/
√

2)/2 = εPE/2, and erf represents the error
function defined as erf(x) = 2√

π

∫ x
0 e−t2

dt. Making use of the expected values of t̂ and ϑ̂2,

which are E[t̂] =
√

T and E[ϑ̂2] = 1 + T(ξA + ξ0), one can perform calculation of tmin and
ϑ2

max as

tmin ≈
√

T − zεPE/2

√
1 + T(ξA + ξ0)

PVA
,

ϑ2
max ≈ 1 + T(ξA + ξ0) + zεPE/2

√
2[1 + T(ξA + ξ0)]√

P
.

(25)

It is noteworthy that the error probabilities shown above are set to [16]

ε̄ = εPE = εPB = 10−10. (26)

Making use of the derived bound tmin and ϑ2
max, the finite-size secret key rate of

single-mode passive CV-QKD protocol can be calculated.
Figure 5 illustrates the relationship between the finite-size secret key rate and the trans-

mission distance under four different average photon numbers m0. It is worth mentioning
that the average output photon number m0 we set in Figure 5a–d are 70, 100, 150, and 200.
From left to right, the lines shown in Figure 5 correspond to block lengths of 107, 108, 109,
1010, and the asymptotic case. Here, we plot the PLOB bound in all four subgraphs to make
a detailed comparison. As shown in Figure 5, one can observe that the performance of the
single-mode passive CV-QKD protocol in the finite-size regime is more pessimistic than
that obtained in the asymptotic limit. This is in line with our expectations because a part of
the exchanged signals needs to be made use of to perform parameter estimation instead
of generating the secure key in the finite-size regime. Nevertheless, the performance of
passive CV-QKD protocol in terms of secret key rate and maximum transmission distance
in the finite-size regime becomes more and more close to that in the asymptotic case and
the PLOB bound with the increase of the number of total exchanged signals. In addition,
we can still achieve a reasonable performance in the finite-size scenario by improving the
average photon number of the thermal state.

The relationship between the finite-size secret key rate and the average photon number
m0 with different distances is shown in Figure 6. Here, the block size F = 109 is used as
an example to perform analysis since other block size cases can be analyzed in the same
way. It can be seen that the finite-size secret key rate of the single-mode passive CV-QKD
protocol grows fast in the interval [30, 200]; however, it increases slowly in the interval
[200, 500]. The results make it clear that when the average photon number m0 reaches a
certain value, the finite-size secret key rate enhancement is inapparent with continuing
increase of the average photon number m0.

The plot of Figure 7 shows the relations of the finite-size secret key rate and the
reconciliation efficiency. Similar to Figure 6, here, we take the block size F = 109 as an
example to perform analysis since other block size cases can be analyzed in the same way.
It can be seen that the usable range of the reconciliation efficiency β of the passive CV-QKD
protocol in the finite-size regime expands with the enhancement of the average photon
number m0. For example, when m0 = 70, the usable range of β is [0.96, 1]. However, when
m0 = 100, the usable range of β is [0.88, 1].
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Figure 5. The relationship between the finite-size secret key rate of single-mode passive CV-QKD
protocol and the distance: (a) m0 = 70; (b) m0 = 100; (c) m0 = 150; (d) m0 = 200. From left to right, the
lines correspond to block lengths of F = 107, 108, 109, 1010, and 1011. Other parameters are set to be
the same as Figure 3.
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Figure 6. The relationship between the finite-size secret key rate and the average photon number m0

with different distances. The block size is set to F = 109. Other parameters are set to be the same as
Figure 4.
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Figure 7. The relationship between the finite-size secret key rate of single-mode passive CV-QKD
protocol and the reconciliation efficiency β. The block size is set to F = 109. Other parameters are set
to be the same as Figure 3.

4. Conclusions

We performed the security analysis of single-mode passive CV-QKD protocol by
considering the finite-size effect under collective attack. By taking advantage of the single-
mode passive CV-QKD protocol in the finite-size regime of the secret key rate formula for
numerical simulation, one can find the secret key rate and maximum transmission distance
under the influence of the finite-size effect. Therefore, the performance of the single-mode
passive CV-QKD protocol in a finite-size regime is more pessimistic than those achieved
in asymptotic case. However, with the enhancement of the number of total exchanged
signals, the secret key rate and maximum transmission distance in the finite-size regime
becomes more and more close to those in asymptotic case and the PLOB bound. Our
work focuses on the influence of the finite-size effect on the single-mode passive CV-QKD
protocol, which shows more practical results than those achieved in asymptotic case.
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