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Abstract: The multi-disc wet clutch is widely used in transmission systems as it transfers the torque
and power between the gearbox and the driving engine. During service, the buckling of the friction
components in the wet clutch is inevitable, which can shorten the lifetime of the wet clutch and
decrease the vehicle performance. Therefore, fault diagnosis and online monitoring are required to
identify the buckling state of the friction components. However, unlike in other rotating machinery,
the time-domain features of the vibration signal lack efficiency in fault diagnosis for the wet clutch.
This paper aims to present a new fault diagnosis method based on multi-speed Hilbert spectrum
entropy to classify the buckling state of the wet clutch. Firstly, the wet clutch is classified depending on
the buckling degree of the disks, and then a bench test is conducted to obtain vibration signals of each
class at varying speeds. By comparing the accuracy of different classifiers with and without entropy,
Hilbert spectrum entropy shows higher efficiency than time-domain features for the wet clutch
diagnosis. Thus, the classification results based on multi-speed entropy achieve even better accuracy.

Keywords: wet clutch; buckling; entropy; fault diagnosis

1. Introduction

The wet clutch is widely used in automatic transmission systems and plays a vital role
in torque transfer [1]. As shown in Figure 1, a multi-disc wet clutch consists of friction disks
and separate disks. The friction disks are splined to the driving shaft by their inner splines,
while the separate disks are mounted to the cylinder liner. During the engagement process,
the separate disks (driven parts) and friction disks (driving parts) are pressed together by
the piston to synchronize the speed. Usually, the engagement process completes within a
second, so the friction between disks could generate tremendous heat in the system very
quickly, which could potentially cause the deformation of the disks [2]. The deformation or
buckling of the friction components is illustrated in Figure 2; the inner ring of the buckled
friction disk has an apparent gap from the ground, and the surface is curved.

Many researchers have studied the buckling problem in the wet clutch system. Za-
grodzki [3] solved temperature fields of clutch disks during wet clutch engagement using
numerical methods in the 1980s, and he pointed out a particular failure pattern of the disks
related to temperature field, namely dishing. This typical buckling is shown in Figure 2.
Zagrodzki and Truncone [4] presented the formation of hot spots on the disks due to
uneven contact. Li et al. [5] investigated buckling-induced thermoelastic instability (TEI)
via a bench test. They considered the impact of the spline teeth and built up a buckling
model. Zhao et al. [6] proposed a contact model to demonstrate the impact of the buckling
on the temperature field, and their study reveals the huge temperature variance between
contact and non-contact areas. Yu et al. [7] discussed the potential damage caused by
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the disk buckling, and they concluded that the deformation of disks would create not
only huge temperature variance but also considerable friction torque between contact and
non-contact areas, which will escalate the deformation in return. From the above studies, it
can be concluded that the buckling of the disks can affect the performance and impair the
life of the wet clutch, and the damage increases along with the buckling degree. Therefore,
it is reasonable to quantify the buckling level as a health indicator for the wet clutch system.

Figure 1. 3D sketch of the clutch system.

Figure 2. A typical disk buckling (dishing).

From the maintenance point of view, detecting the disk deformation in time is nec-
essary. Prognostics health management (PHM) for engineering equipment has been de-
veloping quickly in recent years, and many researchers have utilized artificial intelligence
(AI) techniques for fault diagnosis [8]. Anyi et al. [9] built up a PHM model based on
Cuckoo Search and a back-propagation network for a transformer system; the method is
efficient for real operation conditions. Barbieri et al. [10] analyzed different signals using
techniques based on wavelet transform, mathematical morphology, and energy entropy to
verify the presence of damage in the automobile gearbox. Nguyen et al. [11] constructed a
speed invariant, stacked, sparse, autoencoder deep neural network for the gearbox with
improved computational capabilities, and the results outperformed the conventional meth-
ods. Liu et al. [12] proposed an efficient approach to identify the real-time problem based
on multi-scale permutation entropy. Sun et al. [13] developed a deep neural network
for classification of induction motor faults, in which a sparse autoencoder is applied to
improve the robustness of feature representation. A novel fault diagnosis method for a
hydraulic pump based on a symbolic perceptually important point is discussed in [14],
and the method shows excellent results for machines in harsh conditions. Lu et al. [15]
investigated the effectiveness of the stacked denoising autoencoder (SDA) for health state
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identification of rotary machinery components. Antonio et al. [16] improved permutation
entropy interpretation by identifying artefact information and providing a proper linear fil-
ter framework. With the combination of wavelet transform, neural networks, and machine
learning techniques, Chen et al. [17] presented a comprehensive method and successfully
classified faults with very similar signal features via CNN and ELM. Yang et al. [18] used a
mutual information-sample entropy-based scheme to extract the weak fault of hoist bearing
in a strong noise environment. By extracting the feature vectors of thermal images taken
from devices, Glowacz [19] developed a diagnosis method using imaging processing and
identified faults effectively.

Although the fault diagnosis methods for rotary machineries such as bearing, gearbox,
and wind turbines have made progress, relevant applications for wet clutch systems have
barely been studied. One obstacle to the fault diagnosis for the wet clutch system lies in
feature selection. Fault diagnosis methods for rotary machinery have some clear patterns,
for example, the bearing system can be classified based on bearing fault frequencies [20].
However, the operation states of the wet clutch are complex to formulate, and the instability
of the multi-disc wet clutch under high speed has not yet been clarified [21]. The coefficient
of friction (COF) has been adopted for clutch monitoring, but it is impossible to implement
in real-life applications [22]. In this paper, the authors adopt the rub impact phenomenon
of the disks in the wet clutch during the detached state as the intuition for fault diagnosis.
This phenomenon was studied by Hou et al. [23] via an open wet clutch test rig; their work
revealed the phenomenon of disk wobbling and confirmed the existence of mechanical
impact between the disks. Moreover, when the rotation speed increases, the wobbling and
impact became non-linear. Hu et al. [24] studied the rub impact in their research about
drag torque, and they found a strong correlation between the drag torque rise and the rub
impact effect of the disks at a high rotation speed.

This paper presents a fault diagnosis method for a multi-disc wet clutch based on
time-frequency entropy at varying speed. Some major contributions can be summarized
as follows: (1) The multi-disc wet clutch is crucial to transmission systems, but almost
zero attention has been paid to fault diagnosis methods for the wet clutch. The proposed
paper is a pioneer in developing fault diagnosis models and successfully classifying the
wet clutch fault. (2) As for feature selection, traditional time-domain features fail to classify
the fault of the wet clutch effectively due to the complexity of the clutch structure and
operation mechanism; this paper adopts Hilbert spectrum entropy to identify the tiny
differences caused by faults in the system. (3) Most fault diagnosis methods utilize the
signal features at the same speed. In the proposed methods, the dimension of the data is
the signal features at varying speeds rather than different features at the same speed, which
can take advantage of the fault-induced vibration varying along with rotation speed.

The rest of this paper is organized as follows. Section 2 starts with a brief introduction
to rub impact among clutch disks and how buckling can affect this phenomenon, and
then the experimental objects are classified into four groups based on the health states,
and a bench test is conducted to collect the vibration signal for all groups at varying
operation speed. Section 3 introduces how raw data are processed via Hilbert–Huang
transform to generate the Hilbert spectrum and corresponding time-frequency entropy.
Section 4 presents a fault diagnosis method for the multi-disc wet clutch system based on
Naïve Bayes and compares time-frequency entropy’s effectiveness with other time-domain
features as the input quantities. Conclusions and final remarks are given in Section 5.

2. Preliminaries and Bench Test
2.1. Wobbling and Rub Impact of the Disks in the Wet Clutch

This paper mainly adopts the wobble and rub impact of the clutch disks as the initial
criteria for distinguishing the signal with different buckling degrees. As shown in Figure 3,
during the disengagement state, instead of rotating at the same position on the Z-axis, the
separate disk and friction disk usually have other motions, such as translating along the
Z-axis, and oscillating around the X-axis and Y-axis [24].
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Figure 3. Potential motions of separate/friction disk.

The wobble effect is explained in Figure 4, assuming the separate disk oscillates and
the adjacent friction disks remain vertical. When the angle reaches a certain amount, the
edge of the disk can impact another, and the disk could bounce back to hit another side, so
the separate disk is wobbling between friction disks. Hou [23] found out in an open bench
test that the intensity of the impact depends on the gap between the disks; the smaller
the gap is, the smaller the impact angle for collision, and the more evident the impact
phenomenon becomes. As for the buckled disk, compared with the healthy flat disk, the
buckling shortens the effective clearance between the disks and reduces the impact angle,
so more evident impact could happen to the buckled disks. Therefore, the wet clutch with
higher buckling degree is likely to generate more chaotic vibration signals.

Figure 4. Wobbling effects of flat/buckled disks.
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2.2. Health State Classification

Before the bench test, four pairs of separate disks and friction disks are selected
depending on their buckling degree. Then every single disk is set on a smooth surface (the
outer ring is contacting the surface) and scanned via HandyScan3D. After importing the
data into the computer, their surface topography can be read in Geomagic. The steps can
be seen in Figure 5. The scan result of one buckled separate disk is shown in Figure 5c; the
measured surface height increases from the outer to the inner ring while it merely changes
circumferentially. Because the buckling can lead to an increase in the height of the inner
ring, for each disk, the absolute heights of six red dots are measured and compared with
the thickness of the healthy flat disks. The more the disks buckled, the larger the value that
will be measured. The reference thickness of the separate disk is 2 mm and of the Cu-based
friction disk is 3 mm.

Figure 5. (a–c) Measured steps of the disk.

Four groups have been marked as A, B, C, and D based on their measured and
calculated average heights of the six points. The parameters are listed in Table 1. Class A
represents the healthy condition, where separate disk and friction disk are close to original
values. Classes B and C are in slight and medium buckling states, while Class D is severe
buckling. For comparison, the total occupation of Class D is 15 mm, nearly triple the space
of Class A.

Table 1. Buckling state of four conditions.

Health State Separate Disk (mm) Friction Disk (mm)

Class A
Normal condition

2.03 2.15 2.08 3.05 3.22 3.09
1.93 2.14 2.04 3.08 3.14 3.14

Average: 2.06 Average: 3.12

Class B
Slight buckling

3.31 3.39 3.41 4.03 3.98 4.05
3.33 3.48 3.36 3.95 4.01 3.97

Average: 3.37 Average: 4.02
Class C

Medium
buckling

4.17 4.21 4.20 4.57 5 4.75
4.2 4.1 4.15 4.7 4.5 4.63

Average: 4.17 Average: 4.69

Class D
Severe buckling

6.78 6.9 6.76 7.45 7.55 7.46
6.79 6.78 6.86 7.26 7.3 7.32

Average: 6.81 Average: 7.39

2.3. Bench Test

The arrangement of the test rig is shown in Figure 6. The rig involves a transmission
line and a signal collection system. The transmission system consists of an electromotor, a
speedometer, a clutch pack, a torque meter, flying wheels, and a braking system. During
the operation, the separate disks are held still to the right side of the clutch pack by the
braking platform, while the friction disks are driven and rotating as they are mounted on
the driving shaft by the inner spline. The motor is controlled by a PC. When the motor
starts, the rotation of the motor could simulate the speed variance between the friction
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disks and the separate disks during the disengagement stage. In the experiment, because
the disks near the piston are more likely to buckle than the distant disks [25], the position
of tested objects is set next to the circlip as circled in red in Figure 6, and the rest of the
disks are in healthy state. One thing to mention is that the disk pairs are taken from real
vehicles. The material of the separate disk is 65 Mn, and the friction disk is an iron core
disk coated with Cu.

Figure 6. Test bench and signal acquisition system.

The signal collection system used in the experiment is provided by the B&K company,
including a transducer, a signal pre-processing acceptor, and a PC. The transducer is a
B&K 4518-03 accelerometer mounted axially to the transmission system outside the clutch
box. The data are collected at a rate of 64 kHz and processed via B&K PULSE software.
During the experiment, the lubrication oil (Automatic Transmission Fluid, ATF) is set to
be at ambient temperature. Data are recorded with an increment of 100 rpm ranging from
500 rpm to 1100 rpm (7 different rotation speeds), and each rotating speed lasts 5 s. The
experimental parameters are listed in Table 2.

Table 2. Experimental parameters.

Friction
Component

Item Outer Radius Inner Radius Healthy Thickness Density

Separate Disk 0.129 m 0.081 m 0.002 m 7800 kg/m3

Friction Disk 0.125 m 0.086 m 0.003 m 5500 kg/m3

Operation
parameter

ATF temperature Rotation speed (rpm) Sampling frequency/time

30 ◦C 500 600 700 800 900 1000 1100 64 kHz/
5 s per run

3. Signal Processing: Hilbert Spectrum and Time-Frequency Entropy
3.1. Hilbert–Huang Transform and Hilbert Spectrum

The vibration signal of each fault type at 700 rpm is plotted simply in Figure 7. As can
be seen, it is impossible to figure out specific patterns and differences between each type
from the time domain. Since the signal of the wet clutch is more chaotic than other rotating
machinery [23], the Hilbert–Huang transform is introduced here for signal processing
because it has excellent characteristics to analyze non-stationary and non-linear signals [26].
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This technique was improved by Huang, who introduced empirical mode decomposition
(EMD) before the signal undergoes Hilbert transform [27]. The flow chart of the Hilbert–
Huang transform is shown in Figure 8.

Figure 7. Original signal of four classes.

Figure 8. Flow chart of Hilbert–Huang transform.

Before applying the Hilbert transform, the whole signal needs to be decomposed
into several IMFs (intrinsic mode oscillations); this is the empirical mode decomposition
(EMD). The IMFs need to meet several requirements: they are defined as functions having
the same (or differing at most by one) numbers of zero-crossing and extrema, and also
having symmetric envelopes (with respect to the time axis) defined by the local maxima
and minima, respectively. After EMD, a signal x(t) can be expressed as:

x(t) =
n

∑
j=1

Ij + rn (1)
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in which Ij is the jth decomposed IMF of the original signal x(t), rn is the residual signal
which can be a constant or the mean trend of the signal. Then, the Hilbert spectrum can
be expressed:

H(ω, t) = Re
n

∑
i=1

ai(t)ej
∫

ωi(t)dt (2)

Re is the operator of the real part, and ai(t) and ωi represent the amplitude and
instantaneous frequency, respectively. Note that the residual term rn is neglected as it only
represents very little energy. Taking the signal of Class A at the speed of 700 rpm as an
example, the process of generating the Hilbert spectrum is shown in Figure 9. By doing so,
the time domain signals are transferred to spectra that contain energy information.

Figure 9. Hilbert–Huang transform flow chart for Class A at 700 rpm.

Figure 10 shows the Hilbert spectrum of four classes at 700 rpm. In the figures, all
the spectra are at the same energy scale, the X-axis represents the time, and the Y-axis
represents the frequency. The local color represents the power intensity of the vibration
at a specific time and frequency. From the figure, the energy density of the four appears
different. For example, the intensity of the bright dot in Classes B, C, and D is greater than
that of Class A, which indicates that at 700 rpm, the signal is more chaotic as the buckling
degree increases. One thing that should be mentioned is that because the wet clutch is a
complex assembly with many other parts and ATF cooling inside, the vibration variance
of the four classes may not be entirely related to the rub impact of the clutch disks, but it
is clear that the buckling variance has increased the vibration variance on the spectrum
plots. To continue, although the spectra of different categories show a little difference, each
spectrum needs to be assigned an identical value for further classification.
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Figure 10. (a–d) Hilbert spectra of four groups at 700 rpm.

3.2. Time-Frequency Entropy

In order to quantify the signal variance caused by the buckling of friction components,
spectrum entropy is introduced and calculated here. The block diagram is presented in
Figure 11 to illustrate the process. After Hilbert transform, the spectra are transformed into
gray-scale images for calculation convenience. In this paper, the authors have filtered out
the signal below 1 kHz (the main noise with large power in the gearbox is below 1 kHz [28])
and above 3 kHz (“blank space” with no power starts to dominate over 3 kHz). So, the
spectrum entropy of 1 kHz to 3 kHz is used in this paper.
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Figure 11. Determination of the spectrum entropy.

As illustrated in Figure 11, once the gray-scale image is obtained, the entropy can be
determined. Firstly, the spectrum is equally divided into N small blocks, and the energy
of each block can be calculated depending on its gray value (the value ranges 0–255 from
black to white) and marked as Wi(i = 1, 2 . . . N). Then, the total energy of the spectrum
plane can be calculated as A. The energy for all blocks is normalized, and the normalized
value for each block is written as:

qi =
Wi
A

(3)
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Finally, the total time-frequency entropy of the vibration signal can be expressed as:

s(q) = −
N

∑
i=1

qiln qi (4)

where ∑N
i=1 qi = 1, which satisfies the original normalization criterion of information

entropy calculation; N = 256 in the present work, which means for each signal piece, the
Hilbert spectrum is equally divided into 256 blocks for entropy estimation. The larger
the value of s(q), the more the energy due to vibration and the greater the probability of
rub impact.

The present work has calculated the Hilbert spectrum entropy of each group from
500 rpm to 1100 rpm, and plotted the fitted curves as shown in Figure 12. From the figure,
the entropy shows some vibration characteristics of the system. Class B has larger response
entropy amplitudes at 700 rpm, while Class C takes over at 800 rpm. Another thing that can
be utilized for further machine classification is that despite some values being very close,
the class with higher buckling degree generally shows higher Hilbert spectrum entropy.
For instance, the entropy in Class D is larger than Class A at almost any rotation speed.

Figure 12. The entropy distribution vs. RPM of the four classes.

4. Entropy-Based Fault Diagnosis Method

The framework of the fault diagnosis method is depicted in Figure 13. The first two
parts of the framework have been demonstrated in Sections 2 and 3, respectively. Since
the key point of this work is to develop a fault diagnosis system for the wet clutch based
on time-frequency entropy rather than developing machine learning or feature selection
techniques, in this paper, Naïve Bayes, KNN, and SVM algorithms are simply chosen
as the classification methods. Meanwhile, some commonly used time-domain features
are selected as model inputs. Firstly, the inputs are the features at the same speed, and
the accuracies with and without entropy are compared. Then, diagnosis models with
entropy at different rotating speeds are proposed, and the results are discussed at the end
of this section.
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Figure 13. Framework of the entropy-based fault diagnosis method.

4.1. Classifiers
4.1.1. Naïve Bayes Classifier

The Naïve Bayes method is a well-known classifier based on Bayes’ theorem and condi-
tional independence assumption. For a given data set T = {(x1, y1), (x2, y2), . . . , (xn, yn)},
X = {x1, x2, . . . , xn} defines the attributes and Y = {y1, y2, . . . , yn} defines the label. The
general form of conditional independence assumption if X contains n attributes is writ-
ten below:

P(X1, X2, . . . Xn|Y) =
n

∏
i=1

P(Xi|Y) (5)

Notice that when Y and Xi are Boolean variables, we need only 2 n parameters to
define P

(
Xi = Xik

∣∣Y = Xj
)

or the necessary i,j,k. This is a dramatic reduction compared
with the 2(2n − 1) parameters needed to characterize P(X|Y) if we make no conditional in-
dependence assumption. Assuming Y is any discrete value and the attributes X1, X2, . . . Xn
are any discrete or real values, the goal of the classifier is to output the probability distribu-
tion Y for each given instance X. Assuming that XI are conditionally independent given Y,
the expression for the probability that Y will take on its kth possible value, according to
Bayes’ rule, is:

P(Y = Yk|X1, X2, . . . Xn) =
P(Y = Yk)∏i=1 P(Xi|Y = Yk)

∑j P
(
Y = Yj

)
∏i=1 P(Xi

∣∣∣Y = Yk)
(6)
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Y ← argmax
Yk

P(Y = Yk)∏
i=1

P(Xi|Y = Yk) (7)

4.1.2. k-Nearest Neighbor

KNN is an instance-based learning algorithm, which searches for the most similar
eigenvectors of the instance in the database [29]. For a training sample (x, y), the KNN
algorithm searches for the k nearest instances to x based on a setting distance. The neigh-
borhood containing these k instances is represented by Nk(x). Then, the label of test sample
x can be calculated based on decision rules:

Y = argmax
Cj

∑
xi=Nk(x)

I
(
yj = cj

)
i = 1, 2, . . . , N; j = 1, 2, . . . , K (8)

where xi is the feature vector of the unlabeled instance, I is the indicator function, and
yj = c1, c1, . . . , cK, is the label. Compared with other algorithms, KNN is simple to apply.

4.1.3. Support Vector Machine

SVM is a computational learning method for classification of small samples [30]. SVM
works very well if feature vectors are linearly separable. Algorithmically, it separates the
data samples through the hyperplane with the greatest margin, and the hyperplane f (x) is:

y = f (x) = WT x + b =
N

∑
i=1

Wixi + b (9)

where W is an N-dimensional vector, and b is a scalar. SVM does not work well for many
overlapping classes and signals with high noise.

4.2. Features in the Time Domain

Many researchers have taken the time-domain features as the input for fault diagnosis
methods of rotation machinery [31,32]. Similarly, the present work also selects some time-
domain features for fault diagnosis, namely, mean root square, peak value, crest factor,
kurtosis, and skewness, and they are listed in Table 3.

Table 3. Time-domain features used in machine learning.

Time Domain Feature Expression

Root mean square Xrms =

√
1
N

N
∑

i=1
(xi − x)2

The peak value Xpeak = max(xi)

The crest factor Xp =
Xpeak
Xrms

Kurtosis Xk =
1
N ∑N

i=1 (xi−x)4

X4
rms

Skewness Xs =
1
N ∑N

i=1 (xi−x)3

X3
rms

In the table, the root mean square (Xrms) value reflects the mean energy of the signal.
The peak value is the largest measured amplitude in a signal. The crest factor or peak-to-
average ratio (PAR) is calculated from the peak amplitude of the waveform divided by
the RMS value. Kurtosis is the statistical moment of the probability density function. The
skewness value represents the measure of the degree of asymmetry of distribution; it may
be positive, or negative, or zero.

4.3. Results and Discussion

Data are labeled as A, B, C, and D for different buckling degrees. Firstly, all signal clips
are split into 40 smaller pieces (7 different speeds, so each group has 40× 7 = 280 pieces;
each piece has around 8000 sampling points) for machine learning usage. Then, the feature
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values (time-domain and entropy) of the signal pieces are calculated. Firstly, the inputs are
the features at the same speed, and the accuracies with and without entropy are compared.
Then, the diagnosis models with entropy at different rotating speeds are presented and
analyzed. A k-folds approach for training and testing is used with k = 5.

After the testing process, validation of the classification is done, and the efficiencies
of the classifiers for different features are obtained and compared. Table 4 provides the
overall accuracy of three different classifiers with the same rotation-speed input features,
and the better classification accuracy is marked in a bold font. Without a doubt, the model
with entropy input overwhelmed the models that only have time-domain inputs. It also
can be seen that none of the accuracies with time-domain features is greater than 70%,
which suggests that time-domain features have limited success in identifying the wet clutch
system. In particular, the entropy improves the accuracy at 500 rpm and 700 rpm drastically;
it improves the testing accuracy by nearly 20% and 10% compared with the system without
entropy, respectively. Additionally, for any classifier, the accuracy at 600 rpm is relatively
low, while 1100 rpm has overall better performance.

Table 4. Classifier accuracy with and without Hilbert spectrum entropy at different rotating speeds.

Classifier Entropy On/Off
Accuracy (%) with Features at Different Operating Speeds

(rpm)

500 600 700 800 900 1000 1100

Naïve Bayes With entropy 86.3 50 83.1 65.0 55.0 63.1 80.6
Without entropy 66.3 48.8 68.1 53.1 50.6 49.4 68.8

KNN
With entropy 81.3 45.6 58.8 48.1 51.9 51.9 76.9

Without entropy 66.3 43.1 54.4 42.5 47.5 41.9 57.5

SVM
With entropy 82.5 51.2 83.1 67.5 62.5 61.9 81.9

Without entropy 64.4 48.8 63.7 55.6 62.5 46.9 72.5

Since the Hilbert spectrum entropy can better reflect the system characteristics, it
positively influences the classification accuracy. This paper tests the methods using the
entropy at different speeds as the inputs, and the test results are shown in Table 5. All
three classifiers achieve nearly 90% accuracy, outperforming any model using time-domain
features. SVM has the best performance of 92.5%.

Table 5. Classifier accuracy with multi-speed entropy.

Classifier Accuracy (%)

Naïve Bayes 90.6
KNN 89.4
SVM 92.5

The confusion matrices for the multi-speed entropy methods of the three classifiers
are shown in Figure 14. Based on time-frequency entropy, all three methods are able to
distinguish Class A with a true positive rate of 100%, bearing in mind that Class A is the
only healthy group, which means when the inputs are multi-speed entropy, all methods
can effectively distinguish the healthy state and will not misdiagnose the healthy state into
any other buckling states. On the contrary, Class D has the lowest diagnostic accuracy
in all three systems (75% for Naïve Bayes, 80% for KNN, and 82.5% for SVM); 12.5% of
Class D are considered group C and 5% group B for both Naïve Bayes and KNN. This
may be due to the similarity of the time-frequency entropy of buckling disks under some
rotating speeds. The results of Classes B and C are relatively ideal. The mistakes made by
different classifiers are quite similar. SVM outperforms the other two methods because it
makes zero mistakes to classify Classes B, C, and D into Class A. From Class A to Class
D, the prediction accuracy decreases as the buckling degree increases. Class C has more
false predictions than Class B since the model misclassified more Class C into Class D. In
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addition, SVM has better performance than KNN and Naïve Bayes; it misclassified less
Class D into other groups. On the whole, the decline in diagnostic accuracy indicates that a
signal with a greater buckling degree is more challenging to identify. From the perspective
of engineering applications, it is worthwhile to try to overcome this because people are
looking for a method that alerts about faults. The more serious the fault, the more accurate
the prediction results required. This limitation will be a focus of our future work.

Figure 14. (A–C) Confusion matrices of entropy-based Naïve Bayes.
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5. Conclusions

This paper provides a fault diagnosis method for the wet clutch buckling problem
based on Hilbert spectrum entropy. The rub impact and wobble effect of the clutch disk are
introduced as an intuition to demonstrate the potential difference caused by buckling. Then,
a multi-speed bench test is conducted, and the tested objects are divided into four classes
based on buckling degree. Then, the data are processed via Hilbert–Huang transform to
obtain the Hilbert spectrum. After converting the spectrum into gray-scale images, the
entropy of the spectrum is calculated and stored as the input features. Finally, Naïve Bayes,
KNN, and SVM are used to verify the efficiency of the entropy-based method compared
with other time-domain features.

Hilbert spectrum entropy has a positive impact on the accuracy of fault diagnosis
methods. From the results, compared with other time-domain features, the proposed
entropy-based method drastically increases the accuracy. Meanwhile, entropy-based SVM
has the best effectiveness to classify the clutch with different buckling degrees, especially
in identifying Class A among other fault classes.

Also, the computation of the entropy suggests that the buckling of the disk could lead
to an increase in vibration energy in the clutch pack. This provides valuable information
for trend analysis in clutch buckling monitoring. One limitation of the classification model
is that the accuracy in identifying a higher buckling degree of the system needs to be
improved. Therefore, recognizing the fault frequency more effectively will be a focus of
our future work.
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