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Abstract: In the paper, we provide sufficient conditions for the oscillatory and asymptotic behavior
of a new type of third-order nonlinear dynamic equations with mixed nonlinear neutral terms. Our
theorems not only improve and extend existing theorems in the literature but also provide a new
approach as far as the nonlinear neutral terms are concerned. The main results are illustrated by
some particular examples.
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1. Introduction

Let T be an arbitrary time scale with sup T = ∞ and T0 = [ς0, ∞) ∩ T . In the paper,
we consider the following third-order dynamic equation of the form(

a(ς)
[
y∆∆(ς)

]α)∆
+ q(ς)xγ(τ(ς)) = 0; ς ∈ T0, (1)

where
y(ς) = x(ς) + ωp(ς)xβ(δ(ς)) (2)

with ω = ±1. Throughout the paper, we assume that

(i) α, β and γ are the ratios of two positive odd integers with α ≥ 1;
(ii) a, p and q ∈ Crd(T0,R+);
(iii) τ, δ ∈ Crd(T0, T ) such that τ(ς), δ(ς) ≤ ς, and δ is invertible with δ(ς) → ∞ as

ς→ ∞;
(iv) h∗(δ−1(τ(ς)) ≤ ς and h∗ → ∞ as ς→ ∞.

Let
lim
ς→∞

A(ς, ς0) = ∞, (3)

where
A(u, v) :=

∫ u

v
a−1/α(s)∆s.

We define the solution x of Equation (1) as a continuous function on [Tx, ∞) which
satisfies Equation (1) on [Tx, ∞), Tx ≥ ς0. We only consider those solutions x of Equa-
tion (1) satisfying

sup{|x(ς)| : ς ≥ T} > 0 for all T ≥ Tx.

A solution x of Equation (1) is said to be oscillatory if there exists a sequence {ξn}
such that x(ξn) = 0 with limn→∞ ξn = 0, and otherwise it is non-oscillatory. If all solutions
of Equation (1) are oscillatory, then it is said to be oscillatory.
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The oscillatory behavior of dynamic equations on time scales has become a very
popular subject for many researchers, and thus it has been widely developed. For recent
investigations regarding the systematic treatments of oscillations of solutions for second-
order dynamic equations, we refer to [1–4] and the references cited therein. On the other
hand, it has been realized that the oscillations of nonlinear third-order neutral equations
contribute to many disciplines, including mechanical oscillation, earthquake structures,
clinical applications, frequency measurements and harmonic oscillators that involve sym-
metrical properties; see, for instance, the pioneering monographs of [5,6]. Inspired by these
extensive applications, many authors have paid more attention to studying the oscillatory
behavior of third-order difference and differential equations. We review some relevant
results for the sake of completeness.

In [7], the authors studied asymptotic properties of the third-order neutral differential
equation of the form[

a(ς)
(
[x(ς)± p(ς)x(δ(ς))]′′

)γ]′
+ q(ς)xγ(τ(ς)) = 0; ς ≥ ς0, (4)

where a, q, p are positive functions, γ > 0 is a quotient of odd positive integers and τ(ς) ≤
ς, δ(ς) ≤ ς. Sufficient conditions are established which ensure that all nonoscillatory
solutions of Equation (4) converge to zero. Very recently in [8], the following third-order
nonlinear neutral differential equation was considered.[

a(ς)(z′′(ς))γ
]′
+ q(ς) f (x(τ(ς))) = 0; ς ≥ ς0 > 0, (5)

where z(ς) = x(ς) + p(ς)x(δ(ς)) and γ is a ratio of odd positive integers. New os-
cillation criteria have been introduced under the two cases

∫ ∞
ς0

a−1/γ(s)ds < ∞ and∫ ∞
ς0

a−1/γ(s)ds = ∞. For more significant results, the reader can consult the papers [6,9–13].
After exploring the above-mentioned literature and to the best of authors’ knowledge,

there have been no results published with regard to the oscillation and asymptotic behavior
of third-order, nonlinear neutral differential equations as far as the nonlinear neutral terms
are concerned. In this paper, we recover this case and obtain some sufficient conditions
which assure that Equation (1) is either oscillatory or any of its solutions converge to zero.
Evidently, it is shown that the existing literature does not guarantee such behavior for
the solutions of Equation (1). Several examples are presented to validate and support the
proposed suppositions.

2. Main Results

We state the following handy definition.

Definition 1. [9] Taylor monomials are the functions hn : T × T → R, n ∈ N0 = {0, 1, 2, . . .},
which are recursively defined as

h0(µ, s) := 1

and
hn+1(µ, s) =

∫ µ

s
hn(τ, s)4τ (n ∈ N0)

for µ, s ∈ T . It follows that h1(µ, s) = µ− s on any time scale.

One should observe that finding hn for n ≥ 2 is not an easy task in general. For a
particular time scale such as T = R or T = Z, we can easily find the functions hn. Indeed,
we have

hn(µ, s) =
(µ− s)n

n!
(µ, s ∈ R) and hn(µ, s) =

(µ− s)n̄

n!
(µ, s ∈ Z), (6)
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where

µn̄ :=
n−1

∏
j=0

(µ + j).

We present the main results of this paper in four parts.

2.1. Equation (1) When ω = 1 and β ≤ 1

The following result deals with the oscillation and asymptotic behavior of (1) with a
sub-linear neutral term.

Theorem 1. Let conditions (i)–(iv), and (3) hold and assume that

lim
ς→∞

p(ς) = 0. (7)

If

lim sup
ς→∞

∫ ς

τ(ς)
q(u)

(∫ τ(u)

ς1

A(s, ς1)∆s
)γ

∆u = ∞ (γ ≤ α) (8)

for ς1 ∈ [ς0, ∞), then Equation (1) is oscillatory or every solution of it converges to zero.

Proof. Assume that x(ς) > 0 is a (i.e., non-oscillatory) solution of Equation (1) and that

lim
ς→∞

x(ς) 6= 0,

x(τ(ς)) > 0, and x(δ(ς)) > 0 for ς ≥ ς1 ≥ ς0. Equation (1) implies that(
a(ς)

[
y∆∆(ς)

]α)∆
= −q(ς)xγ(τ(ς)). (9)

Hence a(ς)
[
y∆∆(ς)

]α is non-increasing for ς ∈ [ς1, ∞)T and thus is of one sign. We
claim that there exists a ς2 ≥ ς1 such that y∆∆(ς) > 0 for ς ≥ ς2. Let the contrary hold.
Then, we have

a(ς)
[
y∆∆(ς)

]α
≤ −b

for ς ≥ ς2 and for some positive constant b. Integrating this inequality from ς2 to ς and
using condition (3) we obtain

y∆(ς) ≤ y∆(ς2)− b
∫ ς

ς2

a−1/α(s)∆s→ −∞ as ς→ ∞,

which is a contradiction, hence we have y∆∆(ς) > 0 for ς ≥ ς2.
To this end, we shall distinguish the following two cases for ς ≥ ς2:

I. y(ς) > 0 and y∆(ς) > 0;
II. y(ς) > 0 and y∆(ς) < 0.

Case I. (2) implies that

x(ς) = y(ς)− p(ς)xβ(δ(ς)) ≥ y(ς)
(

1− p(ς)
y1−β(ς)

)
.

Since y(ς) is non-decreasing, we have

x(ς) ≥
[
1− p(ς)cβ−1

∗
]
y(ς)

for some positive constant c∗ > 0 such that y ≥ c∗. This implies that there exists a constant
c ∈ (0, 1) such that

x(ς) ≥ cy(ς). (10)
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Thus, we have (
a(ς)

[
y∆∆(ς)

]α)∆
≤ −cγq(ς)yγ(τ(ς)). (11)

Since a(ς)
[
y∆∆(ς)

]α is a non-increasing function, we conclude that y∆∆(ς) > 0 and
y∆(ς) > 0 for ς ≥ ς2. It is clear to see that

y∆(ς) ≥ A−1/α(ς, ς1)a1/α(ς)y∆∆(ς).

Integration of both sides of the inequality above from ς1 to ς gives

y(ς) ≥ a1/α(ς)y∆∆(ς)
∫ ς

ς1

A(s, ς1)∆s.

Using the last inequality, (11) turns out to be

−W∆(ς) ≥ cγq(ς)Wγ/α(τ(ς))

(∫ τ(ς)

ς1

A(s, ς1)∆s
)γ

, (12)

where W(ς) = a(ς)
[
y∆∆(ς)

]α. Now, integration of both sides of inequality (12) from τ(ς)
to ς gives

W(τ(ς)) ≥ −W(ς) + W(τ(ς))

≥ cγWγ/α(τ(ς))
∫ ς

τ(ς)
q(u)

(∫ τ(u)

ς1

A(s, ς1)∆s
)γ

∆u.

Through multiplying both sides of the resulting inequality by W−γ/α(τ(ς)), we obtain

W1−γ/α(τ(ς)) ≥ cγ
∫ ς

τ(ς)
q(u)

(∫ τ(u)

ς1

A(s, ς1)∆s
)γ

∆u. (13)

By taking the limit supremum of both sides of (13) as ς→ ∞, we get

lim sup
ς→∞

∫ ς

τ(ς)
q(u)

(∫ τ(u)

ς1

A(s, ς1)∆s
)γ

∆u < ∞,

which contradicts with condition (8) of the theorem.
Case II. By condition (7), it is easy to see that any solution converges to zero. This

completes the proof.

We present the following illustrative example.

Example 1. Let T = R and consider the neutral functional differential equation:(
ς3[y′′(ς)]3)′ + x(ς/2) = 0, (14)

where
y(ς) = x(ς) + ς−1x1/3(ς/2).

Here we have a(ς) = ς3, p(ς) = 1/ς, α = 3, τ(ς) = δ(ς) = ς/2. It is easy to check that the
conditions of Theorem 1 are satisfied, and hence every solution of Equation (14) is either oscillatory
or converges to zero.

2.2. Equation (1) When ω = 1 and β ≥ 1

The following result is related to the oscillatory and asymptotic behavior of (1) with a
super-linear neutral term.
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Theorem 2. Let conditions (i)–(iv), and (3) hold and assume that

lim
ς→∞

p(ς)
{

h1(ς, ς1)A(ς, ς1)
}β−1

= 0. (15)

If condition (8) holds for ς1 ∈ [ς0, ∞)T , then Equation (1) is either oscillatory or every solution of
it converges to zero.

Proof. Let x(ς) > 0 be a (i.e., non-oscillatory) solution of Equation (1) and

lim
ς→∞

x(ς) 6= 0,

x(τ(ς)) > 0, and x(δ(ς)) > 0 for ς ≥ ς1 ≥ ς0. As in the proof of Theorem 1, we see that
there exists a ς2 ≥ ς1 such that y∆∆(ς) > 0. We shall distinguish the following two cases
for ς ≥ ς2:

I. y(ς) > 0 and y∆(ς) > 0;
II. y(ς) > 0 and y∆(ς) < 0.

Case I: Since a(ς)
[
y∆∆(ς)

]α is a non-increasing function, a(ς)
[
y∆∆(ς)

]α ≤ d1 for some
positive constant d1 > 0, and hence we have y∆(ς) ≤ d2 A(ς, ς2) for any d2 > 0. Since
A(ς, ς1) is an increasing function in ς, we see that there exists a constant d > 0 such that
y(ς) ≤ dh1(ς, ς2)A(ς, ς1) for ς ≥ ς2 (ς2 ≥ ς1). Using (2), we have

x(ς) = y(ς)− p(ς)xβ(δ(ς)) ≥ y(ς)
(

1− p(ς){dh1(ς, ς2)A(ς, ς1)}β−1
)

for ς ≥ ς2. By condition (15), we have x(ς) ≥ cy(ς) for some constant c ∈ (0, 1). The rest
of the proof is left to the reader since it is analogous to that of Theorem 1.

Example 2. Consider the difference equation (i.e., T = Z)

∆
(

n3
[
∆2y(n)

]3
)
+ x(n/2) = 0, (16)

where
y(n) = x(n) + n−3x3(n/2).

Here we have a(n) = n3, p(n) = n−3, α = 3 and τ(n) = δ(n) = n/2. It can be verified that
the conditions of Theorem 2 are satisfied. Thus we conclude that Equation (16) is either oscillatory
or every solution of it converges to zero.

For convenience, we let

B(ς) =
1

p(δ−1(ς))

[
1− c

{
p(δ−1(δ−1(ς)))

}−1/β
]
≥ 0

for any constant c > 0 and ς ∈ [ς0, ∞)T . Further, we assume

(iii)∗ τ, δ ∈ Crd(T0, T ) such that ξ(ς) = δ−1(τ((ς))) ≤ ς, δ(ς) ≥ ς, δ(ς) is non-decreasing
and invertible, ξ(ς) is non-decreasing and

lim
ς→∞

ξ(ς) = ∞.

Theorem 3. Let conditions (i), (ii), (iii)∗ and (3) hold. If

lim sup
ς→∞

∫ ς

ξ(ς)
q(u)[B(τ(u))]γ/β

(∫ ξ(u)

ς1

A(ξ(s), ς1)∆s
)γ/β

∆u = ∞ (γ ≤ αβ) (17)

for ς1 ∈ [ς0, ∞)T , then Equation (1) is either oscillatory or every solution of it converges to zero.
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Proof. Let x(ς) > 0 be a (non-oscillatory) solution of Equation (1) and

lim
ς→∞

x(ς) 6= 0,

x(τ(ς)) > 0 and x(δ(ς)) > 0 for ς ≥ ς1 and ς1 ∈ [ς0, ∞)T . Equation (1) implies that(
a(ς)

[
y∆∆(ς)

]α)∆
= −q(ς)xγ(τ(ς)) ≤ 0. (18)

As in the proof of Theorem 1, we see that there exists a ς2 ≥ ς1 such that

(I.) a(ς)
[
y∆∆(ς)

]α
> 0;

(II.) a(ς)
[
y∆∆(ς)

]α
< 0 and y∆(ς) > 0 for ς ≥ ς2.

For cases (I) and (II), we have y∆(ς) > 0 for ς ≥ ς2. Thus, there exists a positive
constant c1 > 0 and a ς3 ≥ ς2 such that y(δ−1(ς)) ≥ c1 and

0 < y1/α−1(δ−1(ς)) ≤ c1/α−1
1 := c.

Clearly, we have y(ς) ≥ x(ς) and

xβ(δ(ς)) =
1

p(ς)
[y(ς)− x(ς)] ≤ y(ς)

p(ς)
.

It is easy to see that

x(δ−1(ς)) ≤ [p(δ−1(δ−1(ς)))]−1/β[y(δ−1(δ−1(ς)))]1/β

and

xβ(ς) =
1

p(δ−1(ς))

[
y(δ−1(ς))− x(δ−1(ς))

]
≥ 1

p(δ−1(ς))

{
y(δ−1(ς))− [p(δ−1(δ−1(ς)))]−1/β[y(δ−1(δ−1(ς)))]1/β

}
.

Using the facts that y is non-decreasing, δ(ς) ≥ ς and δ−1(δ−1(ς)) ≤ δ−1(ς), we have

[y(δ−1(δ−1(ς)))]1/β ≤ [y(δ−1(ς))]1/β

and

xβ(ς) ≥ 1
p(δ−1(ς))

{
1−

[
y(δ−1(ς))

]1/α−1

[p(δ−1(δ−1(ς)))]
1/α

}
y(δ−1(ς))

≥ 1
p(δ−1(ς))

{
1− c

[
p(δ−1(δ−1(ς)))

]−1/α
}

y(δ−1(ς))

≥ B(ς)y(δ−1(ς))

which implies
xβ(τ(ς)) ≥ B(τ(ς))y(δ−1(τ(ς))) = B(τ(ς))y(ξ(ς)).

Using (9) and (10) turns out to be(
a(ς)

[
y∆∆(ς)

]α)∆
≤ −q(ς)[B(τ(ς))]γ/β[y(ξ(ς))]γ/β.

The rest of the proof is left to the reader, since it is similar to that of the above case.

We have the following example.
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Example 3. Let T = R and consider the functional neutral differential equations(
ς−6[y′′(ς)]3)′ + ς−10x3(τ(ς)) = 0 (19)

and (
eς
[
y′′(ς)

]3)′
+ eςx3(τ(ς)) = 0, (20)

where y(ς) = x(ς) + tx3(2ς). Choose τ(ς) = 3ς/2, τ(ς) = ς or τ(ς) = 2ς/3; that is,
Equations (19) or (20) is either advanced, ordinary or retarded. Since δ(ς) = 2ς, we have
ξ(ς) = 3ς/4, ξ(ς) = ς/2 or ξ(ς) = ς/3, respectively. Clearly

B(ς) = 2(ς1/3 − 41/3)ς−4/3 ≥ 0

for ς ≥ 4. It can be simply seen that condition (17) is satisfied, and hence we conclude that
Equations (19) and (20) are either oscillatory or every solution of them tends to zero.

2.3. Equation (1) When p(ς) = 0

In this subsection, we obtain a new oscillation criterion for the equation(
a(ς)

[
x∆∆(ς)

]α)∆
+ q(ς)xγ(τ(ς)) = 0. (21)

Theorem 4. Let conditions (i)–(iv) and (3) hold. If

lim sup
ς→∞

∫ ς

τ(ς)
q(u)

(∫ τ(u)

ς1

A(s, ς1)∆s
)γ

∆u = ∞ (γ ≤ α) (22)

for ς1 ∈ [ς0, ∞)T and we assume that there exists a non-decreasing function ζ(ς) ∈ Crd(T0, T )
such that ζ > ς, η(ς) := ζ(ζ(ς)) > ς, η(τ(ς)) ≤ ς and

lim
ς→∞

η(τ(ς)) = ∞,

and that

lim sup
ς→∞

∫ ς

η(τ(ς))
q(u)

(∫ ζ(τ(u))

u
a−1/α(s)h1(ζ(s), s)∆s

)γ

∆u >

{
1 if γ = α
0 if γ < α

, (23)

then Equation (21) is oscillatory.

Proof. Let x(ς) > 0 be a (i.e., non-oscillatory) solution of Equation (21) and x(τ(ς)) > 0
for ς ≥ ς1 ≥ ς0. As in the proof of Theorem 1, we see that there exists a ς2 ≥ ς1 such that
x∆∆(ς) > 0 for ς ≥ ς2.

We shall examine the situation under two cases.

(I.) x(ς) > 0 and x∆(ς) > 0;
(II.) x(ς) > 0 and x∆(ς) < 0 for ς ≥ ς2.

By following the analogous steps as in the proof of Theorem 1 for case (I), we get a
contradiction.

Case (II): It is easy to see that

−x∆(ς) ≥ x∆(ζ(ς))− x∆(ς)

=
∫ ζ(ς)

ς
x∆∆(s)∆s

≥ a−1/α(ς)h1(ζ(ς), ς)a1/α(ζ(ς))x∆∆(ζ(ς)).
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Integrating the last inequality, we get

x(ς) ≥ a1/α(η(ς))x∆∆(η(ς))
∫ ζ(ς)

ς
a−1/α(s)h1(ζ(s), s)∆s

or

x(τ(ς)) ≥ [a(η(τ(ς)))]1/αx∆∆(η(τ(ς)))
∫ ζ(τ(ς))

ς
a−1/α(s)h1(ζ(s), s)∆s.

Using the inequality above in Equation (21), we have(
a(ς)

[
x∆∆(ς)

]α)∆
+ q(ς)

{
[a(η(τ(ς)))]1/αx∆∆(η(τ(ς)))

}γ

×
(∫ ζ(τ(ς))

ς
a−1/α(s)h1(ζ(s), s)∆s

)γ

≤ 0

or

X∆(ς) + q(ς)[X(η(τ(ς)))]γ/α

(∫ ζ(τ(ς))

ς
a−1/α(s)h1(ζ(s), s)∆s

)γ

≤ 0,

where X(ς) = a(ς)
[
x∆∆(ς)

]α. The rest of the proof is omitted since it is similar to that of
Theorem 1.

Example 4. Let T = R and consider the equation(
ς
[
x′′(ς)

]3)′
+ x(4ς/9) = 0. (24)

Here we have a(ς) = ς, α = 3, τ(ς) = 4ς/9. Let $(ς) = 3ς/2, η(ς) = 9ς/4 and so
η(τ(ς)) = ς/2. It can be simply verified that the conditions of Theorem 4 are satisfied. Thus,
Equation (24) is oscillatory.

2.4. Equation (1) When ω = −1

Define
Q(ς) := q(ς)[p(δ−1(τ(ς)))]−γ/β. (25)

In this context, we have the following result.

Theorem 5. Let conditions (i)–(iv) and (3) hold and assume that there exists a continuous function
ξ(ς) with h∗(ς) ≤ ξ(ς) ≤ ς, ς ≥ ς0, and

lim
ς→∞

ξ(ς) = ∞.

If condition (18) and

lim sup
ς→∞

∫ ς

ξ(ς)
Q(s)[h1(h∗(s), ς1)]

γ/β
(
[ξ(s)− h∗(s)][a(ξ(s)]−1/α

)γ/β
∆s = ∞ (26)

hold for γ ≤ αβ and ς1 ∈ [ς0, ∞)T , then Equation (1) is either oscillatory or every solution of it
converges to zero, where the function Q(ς) is defined in (25).

Proof. Let x(ς) > 0 be a (i.e., non-oscillatory) solution of Equation (1) and

lim
ς→∞

x(ς) 6= 0,

x(τ(ς)) > 0, and x(δ(ς)) > 0 for ς ≥ ς1, ς1 ∈ [ς0, ∞)T . Equation (1) yields that(
a(ς)

[
y∆∆(ς)

]α)∆
= −q(ς)xγ(τ(ς)) ≤ 0.
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Hence a(ς)
[
y∆∆(ς)

]α is non-increasing and is of constant sign. As in the proof of
Theorem 1, there exists a ς2 ≥ ς1 such that y∆∆(ς) > 0 for ς ≥ ς2.

To this end, we examine the cases:

(I) y(ς) > 0 and y∆(ς) > 0;
(II) y(ς) > 0 and y∆(ς) < 0;
(III) y(ς) < 0 and y∆(ς) > 0;
(IV) y(ς) < 0 and y∆(ς) < 0.

Case (I): (2) implies that x(ς) ≥ y(ς). Thus, we have

(a(ς)[y∆∆(ς)]α)∆ ≤ −q(ς)yγ(τ(ς)). (27)

Since y∆∆(ς) > 0 and y∆(ς) > 0 for ς ≥ ς2, we get a contradiction by following the
proof of Theorem 1 (Case I).

Case (II): This case is excluded.
Next, we consider Case (III) and Case (IV), when y(ς) < 0 for ς ≥ ς2. Let

z(ς) = −y(ς) = −x(ς) + p(ς)xβ(δ(ς)) ≤ p(ς)xβ(δ(ς)).

Then we have

x(δ(ς)) ≥
(

z(ς)
p(ς)

)1/β

or

x(ς) ≥
(

z
(
δ−1(ς)

)
p(δ−1(ς))

)1/β

.

Hence, we have

(a(ς)[z∆∆(ς)]α)∆ = q(ς)xγ(τ(ς))

≥ q(ς)[p(δ−1(τ(ς))))]−γ/β[z(δ−1(τ(ς)))]γ/β

= Q(ς)[z(h∗(ς))]γ/β. (28)

Case (III): In this case we have z∆∆(ς) < 0 and so z∆(ς) ≤ 0. However, this contradicts
with Condition (3).

Case (IV): In this case we have z∆∆(ς) < 0 and so z∆(ς) ≥ 0. It is easy to see that

z(h∗(ς)) ≥ h1(h∗(ς), ς1)z∆(h∗(ς)).

Using the last inequality, (28) turns out that

(a(ς)[z∆∆(ς)]α)∆ ≥ Q(ς)[z(h(ς)]γ/β ≥ Q(ς)[h1(h∗(ς), ς1)]
γ/β
[
z∆(h∗(ς))

]γ/β
,

i.e.,
(a(ς)[Z∆(ς)]α)∆ ≥ Q(ς)[h1(h∗(ς), ς1)]

γ/β[Z(h∗(ς))]γ/β, (29)

where Z(ς) = z∆(ς) > 0. We see that

Z(u)− Z(v) ≥ (v− u)
(
−Z∆(v)

)
for v ≥ u ≥ ς1. Setting u = h∗(ς) and v = ξ(ς) we have

Z(h(ς)) ≥ [ξ(ς)− h∗(ς)]
(
−Z∆(ξ(ς)

)
. (30)
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Using (29) and (30), we get

(a(ς)[Z∆(ς)]α)∆ + Q(ς)[h1(h∗(ς), ς1)]
γ/β[Z(h∗(ς))]γ/β − X∆(ς)

≥ Q(ς)
(
[ξ(ς)− h∗(ς)][a(ξ(ς))]−1/α

)γ/β
[h1(h∗(ς), ς1)]

γ/β[X(ξ(ς))]γ/αβ,

where X(ς) = −a(ς)
[
Z∆(ς)

]α. Due to the similarity to the above cases, the rest of the proof
is left to the reader, and hence is omitted.

Example 5. Let T = R and consider the functional differential equation(
ς3(y(ς))′′)3

)′
+ x(ς/2) = 0, (31)

where
y(ς) = x(ς)− x3(ς/2).

Here we have a(ς) = ς3, p(ς) = 1, α = 3, τ(ς) = δ(ς) = ς/2. It can be verified that all the
conditions of Theorem 5 are satisfied, and hence Equation (31) is either oscillatory or every solution
of it converges to zero.

3. Conclusions

In this paper, we discussed the oscillatory behavior of a new type of third-order
nonlinear dynamic equations with mixed nonlinear neutral terms. Particular emphasis was
paid to the consideration of nonlinear neutral terms in the main equation, which has not
been considered before. The proof of the main results was given based on the cases β ≤ 1
and β ≥ 1. It was demonstrated that the equations considered in the examples cannot
be commented on by the results obtained in the literature [6–13]. Thus, the results of this
paper complement and generalize somehow the existing results in the literature.

The results given in the paper can be generalized to the higher-order dynamic equa-
tions of the form(

a(ς)
[
y∆(n−1)

(ς)
]α)∆

+ q(ς)xγ(τ(ς)) = 0; n = 4, 5, . . .

We leave this problem for further consideration in the future.
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