
entropy

Article

Error Exponents of LDPC Codes under Low-Complexity
Decoding

Pavel Rybin 1,* , Kirill Andreev 1,2 and Victor Zyablov 3

����������
�������

Citation: Rybin, P.; Andreev, K.;

Zyablov, V. Error Exponents of LDPC

Codes Under Low-Complexity

Decoding. Entropy 2021, 23, 253.

https://doi.org/10.3390/e23020253

Academic Editor: Balazs Matuz,

Alexey Frolov and Aaron Gulliver

Received: 17 December 2020

Accepted: 19 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and
Technology, 121205 Moscow, Russia; k.andreev@skoltech.ru

2 Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
3 Laboratory №3—Transmission, Protection and Analysis of Information, Institute for Information

Transmission Problems, Russian Academy of Sciences, 119991 Moscow, Russia; zyablov@iitp.ru
* Correspondence: p.rybin@skoltech.ru

Abstract: This paper deals with the specific construction of binary low-density parity-check (LDPC)
codes. We derive lower bounds on the error exponents for these codes transmitted over the mem-
oryless binary symmetric channel (BSC) for both the well-known maximum-likelihood (ML) and
proposed low-complexity decoding algorithms. We prove the existence of such LDPC codes that the
probability of erroneous decoding decreases exponentially with the growth of the code length while
keeping coding rates below the corresponding channel capacity. We also show that an obtained error
exponent lower bound under ML decoding almost coincide with the error exponents of good linear
codes.

Keywords: low-density parity check (LDPC) codes; Gallager’s LDPC codes; binary LDPC codes;
decoding algorithm; low-complexity; error exponent; capacity

1. Introduction

Low-density parity-check (LDPC) codes [1] are known for their very efficient low-
complexity decoding algorithms. This paper’s central question is: Are there LDPC codes
that asymptotically achieve the capacity of binary-symmetric channel (BSC) under a low-
complexity decoding algorithm? The following results help us construct LDPC code with
specific construction and develop a decoding algorithm to answer yes to this question. So,
Zyablov and Pinsker showed in [2] that the ensemble of LDPC codes, proposed by Gallager
(G-LDPC codes), includes codes that can correct a number of the errors that grow linearly
with the code length n while the decoding complexity remains O(n log n). Later the lower
bound on this fraction of errors was improved in [3–5]. Thus, the main idea of LDPC code
construction and decoding algorithm, considered in this paper, is as follows. We need to
introduce to the construction of G-LDPC code some “good” codes that reduce the number
of errors from the channel in such a way that the low-complexity majority decoding can
correct the rest errors. As “good” codes, we select the codes with the error exponent of good
codes under ML decoding [6]. To introduce these “good” codes to the construction, we
compose the parity-check matrix layer with the parity-check matrices of “good” codes. To
meet the requirements on low-complexity (O(n log n)) of decoding algorithm we impose
restrictions on the length of “good” codes (it must be small (log log(n)) compared to the
length of whole construction). To show that the proposed construction asymptotically
achieves the capacity of BSC we consider the estimation on error-exponent under the
proposed low-complexity decoding algorithm.

It worth mention that papers [7,8] introduce expander codes achieving the BSC capac-
ity under an iterative decoding algorithm with low complexity. But in this paper, we are
interested in LDPC-code construction and corresponding decoding algorithm.
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To show that the proposed construction of LDPC code is good, we also estimate
the error exponent under ML decoding and compare it with the error exponent under
the proposed low-complexity decoding algorithm. Previously the authors of [9,10] have
derived the upper and lower bounds on the G-LDPC codes error exponent under the ML
decoding assumption. Moreover, one can conclude from [10] that the lower bound on
the error exponent under ML decoding of G-LDPC codes almost coincides with the lower
bound obtained for good linear codes (from [6]) under ML.

Some parts of this paper were previously presented (with almost all of the proofs
omitted) in the conference paper [11]. The low-complexity decoding algorithm that we
use for our analysis was proposed in [12,13]. Unlike in previous papers, Corollary 1 is
significantly enhanced and proved in detail in this paper. Moreover, the results for the error-
exponent bound under ML decoding and corresponding proofs are added. We compare the
obtained lower bounds on the error exponents under the low-complexity decoding and the
ML decoding. We evaluate the error exponents numerically for different code parameters.

2. LDPC Code Construction

Let us briefly consider the LDPC code construction from [11,12]. First, let us consider
the G-LDPC code parity-check matrix H2 of size `× b0n0 from [1]:

H2 =


π1
(
Hb0

)
π2
(
Hb0

)
...

π`

(
Hb0

)
.

Here we denote πl
(
Hb0

)
, l = 1, . . . , `, as a random column permutation of Hb0 , which is

given by

Hb0 =



H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0︸ ︷︷ ︸

b0


,

where H0 is the parity-check matrix of the constituent single parity check (SPC) code of
length n0.

The elements of the Gallager’s LDPC codes ensemble EG(`, n0, b0) are obtained by
independently selecting the equiprobable permutations πl , l = 1, 2, ..., `.

One can write a lower bound on the G-LDPC code rate EG(`, n0, b0) as

R2 ≥ 1− `(1− R0), (1)

where R0 = n0−1
n0

is a SPC code rate.
The equality achieved if and only if the matrix H2 has full rank.
Consider a G-LDPC parity check matrix with an additional layer consisting of linear

codes (LG-LDPC code). Let us denote this matrix as H:

H =


π1
(
Hb0

)
π2
(
Hb0

)
...

π`

(
Hb0

)
π`+1

(
Hb1

)

,
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where Hb1 is given by

Hb1 =



H1 0 . . . 0
0 H1 . . . 0
...

...
. . .

...
0 0 . . . H1︸ ︷︷ ︸

b1


,

where b1 is such that b1n1 = b0n0. As soon as the first ` layers of matrix H is the G-LDPC
parity-check matrix, we can write H as

H =

(
H2

π`+1
(
Hb1

) ).

For a given SPC code with the code length n0 and the parity-check matrix H0 and for
a given linear code with the code length n1 and the parity-check matrix H1, the elements
of the LG-LDPC codes ensemble ELG(`, n0, b0, R1, n1, b1) are obtained by independently
selecting the equiprobable permutations πl , l = 1, 2, ..., `+ 1.

The length of the constructed LG-LDPC code is n = b0n0 = b1n1, and the code rate R
is lower bounded by

R ≥ R1 − `(1− R0),

According to (1),
R ≥ R1 + R2 − 1.

3. Decoding Algorithms

In this paper, we consider two decoding algorithms of the proposed construction.
The first one is the well-known maximum likelihood decoding algorithm AML. Under the
second decoding algorithm AC, the LG-LDPC code is decoded as a concatenated code. In
other words, in the first step, we decode the received sequence using linear codes with
the parity-check matrix H1 from the `+ 1 layer of H. Then, in the second step, we decode
the sequence obtained in the previous step using the G-LDPC code with the parity-check
matrix H2. Thus, this algorithm AC consists of the following two steps:

1. The received sequence is separately decoded with the well-known maximum like-
lihood algorithm by b1 linear codes with the parity-check matrix H1 from the `+ 1
layer of H.

2. The tentative sequence is decoded with the well-known bit-flipping (majority) decod-
ing algorithm AM by the G-LDPC code with the parity-check matrix H2.

An important note here is that AC is a two-step decoding algorithm, and each step is
performed only once. It first decodes the received sequence once by the ML decoding algo-
rithm using linear codes H1. Then it applies the iterative bit-flipping (majority) algorithm
AM using the G-LDPC code to the tentative sequence.

It is also worth noting that the complexity of the proposed decoding algorithm AC is
O(n log n) with some restrictions on the length of the linear codes with the parity-check
matrix H1 (see Lemma 3). At the same time the complexity of ML decoding is exponential.

4. Main Results

Consider a BSC with a bit error probability p. Let a decoding error probability P be
the probability of the union of decoding denial and the erroneous decoding events. In this
paper, we consider the decoding error probability P in the following form

P ≤ exp{−nE(·)},

with the E(·) being the required error exponent.
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Let us define two error exponents: EC(·) and EML(·) corresponding to the AC decod-
ing algorithm (having O(n log n) complexity) and the AML decoding algorithm (having an
exponential complexity) respectively. Let us consider first the error exponent EC(·).

Theorem 1. Let there exist in the ensemble EG(`, n0, b0) of the G-LDPC codes a code with the code
rate R2 that can correct any error pattern of weight up to bωtnc while decoding with the bit-flipping
(majority) algorithm AM.

Let there exist a linear code with code length n1, code rate R1 and an error exponent under
maximum likelihood decoding lower bounded by E0(R1, p).

Then, in the ensemble ELG(`, n0, b0, R1, n1, b1) of the LG-LDPC codes, there exists a code
with code length n,

n = n0b0 = n1b1,

code rate R,
R ≥ R1 + R2 − 1,

and an error exponent over the memoryless BSC with BER p under the decoding algorithm AC
with complexity O(n log n) lower bounded by EC(·):

EC(R1, n1, ωt, p) = min
ωt≤β≤β0

{
βE0(R1, p) + E2(β, ωt, p)− 1

n1
H(β)

}
, (2)

where β0 = min
(

ωt
2p , 1

)
, H(β) = −β ln β − (1− β) ln(1− β) – an entropy function – and

E2(β, ωt, p) is given by

E2(β, ωt, p) =
1
2

(
ωt ln

ωt

p
+ (2β−ωt) ln

2β−ωt

1− p

)
− β ln(2β),

where n1 satisfies the following condition:

− ln β0

E0(R1, p)
≤ n1 ≤

1
R1

log2log2(n). (3)

Corollary 1. EC(·) > 0, if R → C, where C is the capacity of a memoryless BSC with error
probability p, such that R1 → C and R2 < 1.

Thus, according to Corollary 1, we can state that there exists an LG-LDPC code such
that the error probability of the low-complexity decoding algorithm AC exponentially
decreases with the code length for all code rates below the channel capacity C.

Remark 1. We have obtained the lower bound on EC(R1, n1, ωt, p) assuming n → ∞, where
n0 = const, n1 = const, b0 → ∞, and b1 → ∞. As a result, the complexity of AC algorithm
equals to O(n log n), and we have the right inequality of condition (3) for n1.

Theorem 1 was obtained in [12]. The main idea of the proof is based on the following
results. Our previous results [3,4] show that in the ensemble EG(`, n0, b0) of G-LDPC codes,
there exists a code that can correct any error pattern of weight up to bωtnc under the
algorithm AM with complexity O(n log n). In [6], it was shown that there exists a linear
code for which the error exponent under ML decoding is lower bounded by E0(R, p),
where E0(R, p) > 0 for ∀R < C.

Let us now consider the lower bound on the error exponent EML(·).
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Theorem 2. In the ensemble ELG(`, n0, b0, R1, n1, b1), there exists an LG-LDPC code such that
the error exponent of this code over the memoryless BSC with BER p under the decoding algorithm
AML is lower bounded by

EML(p) = max
ω0≤ωc≤1

{min(Eδ(ωc, p), Eωc(ωc, p))},

where ω0 = max(δ, p), δ is the code distance of this code, and Eδ(ωc, p) is given by

Eδ(ωc, p) = max
δ≤ω≤ωc

{
ν(ω) + ω

(
ln 2 + ln

√
p(1− p)

)}
,

where ν(ω) is an asymptotic spectrum of the LG-LDPC code:

ν(ω) = lim
n→∞

ln N(ωn)
n

,

where N(ωn) is the average number of codewords and Eωc(ωc, p) is given by

Eωc(ωc, p) = (1−ωc) ln
1−ωc

1− p
+ ωc ln

ωc

p
.

We have obtained Theorem 2 using the methods developed in [14] to estimate the error
exponent under the ML decoding of codes with the given spectrum. We have taken ideas
of [1] for G-LDPC codes to construct the upper bound on the code spectrum and the lower
bound on the code distance of the proposed LDPC construction (see Lemmas 1 and 2).

Lemma 1. The value of ν(ω) for the codes from the ensemble ELG(`, n0, b0, R1, n1, b1) of LG-
LDPC codes is upper bounded by

ν(ω) ≤ ν0(ω) = −(`− 1)H(ω) + min
s>0

{
`− 1

n0
ln g0(s, n0) +

1
n1

ln g1(s, R1, n1)−ω` ln s
}

,

where g0(s, n0) is a spectrum function of the constituent SPC code with length n0,

g0(s, n0) =
n0

∑
i=0

(1 + s)n0 + (1− s)n0

2
,

and g1(s, R1, n1) is a spectrum function of the constituent linear code with a good spectrum, code
rate R1 and length n1 obtained in [14]:

g1(s, R1, n1) ≤ 1 + n12−(1−R1)n1
n1

∑
i=dδVGn1e

(
n1
i

)
si,

where δVG is given by the Varshamov-Gilbert bound.

Lemma 2. Let the positive root δ0 of the following equation exist:

ν0(δ0) = 0.

Then, a code with minimum code distance δ ≥ δ0 exists in ensemble ELG(`, n0, b0, R1, n1, b1).

5. Numerical Results

One can see from Theorems 1 and 2 that the obtained lower-bounds EC(·) and EML(·)
depend on the set of parameters: error probability p of BSC, code rate R1 and length n1 of
linear code from added layer, code rate R2 and constituent code length n0 of G-LDPC code
(the value of ωt, used in EC(·) bound, depends on these parameters), wherein the code rate
R of whole construction depends on R1 and R2.
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Thus, to simplify the analysis let us first fix the parameters R1 = 0.85, n1 = 2000,
R = 0.5 and p = 10−3 and find how EC(·) and EML(·) depend on the SPC code length n0
(see Figure 1). Then, let us consider the maximized EML(·) and EC(·) over the values of n0
(see Figure 2).
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Figure 1. Comparison of the dependence on n0 of EC(·), EML(·) and E0(·) for fixed R1 ≈ 0.85,
n1 = 2000, R = 0.5 and p = 10−3.
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Figure 2. Comparison of the dependences on R1 of EC(·), EML(·) and E0(·) for fixed n1 = 2000,
R = 0.5 and p = 10−3.

We can explain the different behaviors of EML(·) and EC(·) shown in Figures 1 and 2
by the following: the value of EML(·) significantly depends on the value of the code
distance δ of the LG-LDPC code and the value of EC(·) depends on the value of the error
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fraction ωt, which is guaranteed to be corrected by the G-LDPC code. And it is known
that for the fixed code rate R code distance of LDPC code increases with the growth of
constituent code length n0 and guaranteed corrected error fraction ωt has the maximum
for the certain parameters n0 and `.

In Figure 3, we compare the dependencies on R for fixed p = 10−3 of the obtained
lower bound EML(·), maximized over the values of n0 and R1, and of the lower bound
E0(·).
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Figure 3. Comparison of the dependencies on R for fixed p = 10−3 of EML(·), maximized over the
values of n0 and R1 for fixed n1 = 2000, and of E0(·).

Figure 4 shows the dependencies on R of the maximum values of EML(·) and EC(·)
for fixed p = 10−3 (the maximization was performed over the values of n0 and R1).

As observed from Figure 4, EC(·) is approximately two orders of magnitude smaller
than EML(·), which almost reaches the lower bound on the error exponent E0(·) of the
good linear code (see Figure 3). However, it is important to note that EML(·) encounters
only exponential decoding complexity and EC(·) encounters the decoding complexity of
O(n log n).
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Figure 4. Comparison of the dependencies on R of EC(·) and EML(·), maximized over the values of
n0 and R1 for fixed n1 = 2000 and p = 10−3.

6. Conclusions

The main result of this paper is that we prove (see Corollary 1) the existence of such
LDPC code with specific construction that the probability of erroneous decoding with
low-complexity algorithm (O(n log n)) decreases exponentially with the growth of the
code length for all code rates below BSC capacity. We also obtain the lower bound on error
exponent under ML decoding for proposed construction (see Theorem 2) and show with
numeric results that obtained lower-bound almost coincide with the error exponents of
good linear codes for the certain parameters.

As a future work to improve the lower-bound for the low-complexity decoder, we plan
to consider error-reducing codes instead of good linear codes and generalize our results for
channels with reliability (e.g., channels with additive white Gaussian noise (AWGN) and
“soft” reception).

7. Proofs of the Main Results
7.1. Error Exponent for Decoding Algorithm AC

Theorem 1 was proved in [12]. Here, we provide the proof for convenience of the
reader in more detail, especially for the essential Corollary 1.

Let us first consider the complexity of the decoding algorithm AC of an LG-LDPC
code.

Lemma 3. The complexity of the decoding algorithm AC of an LG-LDPC code with length n is of
order O(n log n) if the length of the linear code satisfies the inequality n1 ≤ 1

R1
log2 log2(n).

Proof. Since the length of the linear code is equal to n1 and the code rate is R1, the
complexity of the maximum likelihood decoding algorithm for the single code is of order
O(2R1n1). The total number of codes is b1, which is proportional to n, and then, the
complexity of decoding all of the codes is of order O(n2R1n1).

In [4], it was shown that the complexity of the bit-flipping decoding algorithm of
LDPC codes is O(n log n).

Therefore, the complexity of decoding algorithm AC is of order O(n log2 n) if the
following condition is satisfied:

n2R1n1 ≤ n log2(n).



Entropy 2021, 23, 253 9 of 16

Here we find the condition on n1:

n1 ≤
1

R1
log2 log2(n). (4)

Let us now consider the proof of Theorem 1.

Proof. Assume that in the first step of the decoding algorithm AC of LG-LDPC code, the
decoding error occurred exactly in i linear codes. Since each code contains no more than n1
errors, the total number of errors W after the first step of decoding is no greater than in1.
Let i = βb1, where β is the fraction of linear codes in which the decoding failure occurred;
then,

W ≤ βb1n1 = βn.

According to [4], LDPC code is capable of correcting any error pattern with weight
less than W, that is,

W < W0 = bωtnc,

where ωt is the fraction of errors guaranteed corrected by the G-LDPC code [4] (Theorem 1).
Consequently, for the case where β < ωt, the decoding error probability P for LG-LDPC
code under decoding algorithm AC is equal to 0:

P = 0, β < ωt.

At β > ωt, the error decoding probability is defined as

P =
b1

∑
i=bωtb1c

(
b1
i

)
P2(W ≥W0|i)Pi

1(1− P1)
b1−i, (5)

where P1 is the error decoding probability of linear code,

P1 ≤ exp{−n1E0(R1, p)},

and P2(W ≥W0|i) is the probability that the number of errors after the first step of the
decoding algorithm AC is not less than W0 under the condition that the decoding error
occurred exactly in i linear codes.

Since the number of errors no more than doubles in a block in the case of error
decoding with the maximum likelihood decoding algorithm, it must be greater than W0

2
errors before the first step in i erroneous blocks to have more than W0 errors after the first
step of decoding algorithm AC. Then, we can write P2(W ≥W0|i) as

P2(W ≥W0|i) =
in1

∑
j=b ωtn

2 c

(
in1

j

)
pj(1− p)in1−j.

Using the Chernoff bound, we obtain

P2(W ≥W0|i) ≤ exp{−nE2(β, ωt, p)},

where

E2(β, ωt, p) =

{
1
2

(
ωt ln ωt

p + (2β−ωt) ln 2β−ωt
1−p

)
− β ln 2β, β < β0,

0, β ≥ β0.
(6)
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Here β = i
b1

> ωt, and

β0 = min
(

ωt

2p
, 1
)

because β > 1 has no sense.
In accordance with (6), the probability P2(W ≥W0|i) can be replaced with the trivial

estimation P2(W ≥ W0|i) ≤ 1 for i ≥ dβ0b1e, and then, sum (5) is upper bounded as
follows:

P 6
bβ0b1c

∑
i=bωtb1c

(
b1
i

)
P2(W ≥W0|i)Pi

1(1− P1)
b1−i +

b1

∑
i=dβ0b1e

(
b1
i

)
Pi

1(1− P1)
b1−i.

Let PII denote the first sum in the right part of this inequality and PI denote the second
sum. Let us consider each sum separately.

The sum PI can be easily estimated as a tail of the binomial distribution with probability
P1 using the Chernoff bound:

PI ≤ exp{−nEI(R1, n1, ωt, p)},

where
EI(R1, n1, p) = β0E0(R1, p)− 1

n1
H(β0),

and P1 satisfies the condition
P1(n1, R1, p) ≤ β0.

Thus,

n1 ≥
− ln β0

E0(R1, p)
. (7)

Let us now consider the sum PII:

PI I ≤ d(β0 −ωt)b1e × max
ωt≤β≤β0

{(
b1

βb1

)
P2(W ≥W0|βb1)Pβb1

1 (1− P1)
(1−β)b1

}
.

Hence, at n→ ∞ (b1 → ∞ and b0 → ∞), we obtain

EII(R1, n1, ωt, p) = min
ωt≤β≤β0

{
E2(β, ωt, p) + βE0(R1, p)− 1

n1
H(β)

}
. (8)

Let us note that if a minimum is achieved at β0 in the right part of equality (8), then
according to (6), we obtain EII = EI. Consequently, EII ≤ EI.

It is easy to see that at n→ ∞, the following inequality is satisfied:

P ≤ exp{−nE(R1, n1, ωt, p)},

where E(R1, n1, ωt, p) = min{EII, EI} = EII.
According to the proved lemma, the complexity of the decoding algorithm AC is

of order O(n log n) if the condition (4) is satisfied, but for the obtained estimation, the
condition (7) must also be satisfied. Thus,

− ln β0

E0(R1, p)
≤ n1 ≤

1
R1

log2 log2 n.

This completes the proof.

Before proving Corollary 1, we need to consider the lower-bound behavior of the error
fraction ωt guaranteed corrected by G-LDPC code. In [4], the new estimation of the error
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fraction ωt guaranteed corrected by generalized LDPC code with a given constituent code
was obtained. Let us formulate this result for G-LDPC code:

Theorem 3. Let the root ω0 exist for the following equation:

h(ω0)− `Fe(ω0, n0) = 0, (9)

where Fe(ω0, n0) is given by

Fe(ω0, n0) = h(ωt) + max
s>0,0<v<1

{
ω0log2sv− 1

n0
log2(ge(s, v, n0) + g0(s, n0))

}
,

where g0(s, n0) and ge(s, v, n0) have the following forms:

g0(s, n0) =
(1 + s)n0 + (1− s)n0

2
, ge(s, v, n0) = gd

(
sv2, n0

)
,

where
gd(s, n0) = (1 + s)n0 − g0(s, n0).

Let for the found value ω0, the root α0 exist for the following equation:

h(ω0)− `Fs(α, ω0, n0, `) = 0, (10)

where Fs(α, ω0, n0, `) is given by

Fs(α, ω0, n0, `) = h(ω0)+ max
s>0,0<v<1

{
ω0

(
log2s +

`− 1−α
α

`
log2v

)
− 1

n0
log2(gd(s, n0)v + g0(s, n0))

}
.

Then, there exists a code (with pn : lim
n→∞

pn = 1) in the ensemble EG(`, n0, b0) of G-LDPC codes

that can correct any error pattern with weight less than bωtnc, where ωt = α0ω0, with decoding
complexity O(n log n).

For Theorem 3, we obtain the following:

Corollary 2. For the given code rate R < 1, there exists a G-LDPC code in the ensemble
EG(`, n0, b0) with ` > 2 such that equation (9) has a positive root ωt > 0.

The proof of Theorem 3 was given in a more generalized form in [4]. Here, we consider
only the proof of Corollary 2. For this purpose, let us formulate some useful facts proved
in [4].

First, let us formulate the condition of the existence of a symbol that upon inversion,
reduces the number of unsatisfied checks:

Lemma 4. At least one such symbol exists that will be inverted during one iteration of decoding
algorithm AM for G-LDPC code if the following condition is satisfied:

E(W)
∑ = 2

W

∑
j=1

e
(ij)

A1→0
+

W

∑
j=1

e
(ij)

A1→1
> W`, (11)

where W is the number of errors in the received sequence, i1, i2, ..., iW are indices of erroneous
symbols, e(i)A1→0

is the number of edges emanating from the ith variable-node to the set of check-nodes

for which the checks become satisfied after the inversion of this symbol, and e(i)A1→1
is the number of

the edges emanating from the ith variable-node to the set of check-nodes for which the checks remain
unsatisfied after the inversion of this symbol.
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Now, let us consider the estimation of the probability that the above condition is not
satisfied:

Lemma 5. The probability PW

(
E(W)

∑ 6 W`
)

for the fixed pattern of errors of weight W that

condition (11) is not satisfied, e.g., E(W)
∑ 6 W`, is upper bounded as follows:

PW

(
E(W)

∑ 6 W`
)
6 2−n`Fe(ω,n0)+o(n), ω =

W
n

.

Now, let us consider the proof of Corollary 2.

Proof. Let us select an arbitrary small value ε′ and write the following condition:

lim
n→∞

bε′nc

∑
W=1

2−n(`Fe(W
n ,n0)−h(W

n )) < 1.

In the left part of the inequality is the upper bound on the probability of the code that
condition (11) is not satisfied for some sequences.

Let us introduce the following function G(ω):

G(ω) = `Fe(ω, n0)− h(ω) = (`− 1)h(ω)+ ` max
s>0, 0<v<1

{
ωlog2sv− 1

n0
log2(ge(s, v, n0) + g0(s, n0))

}
.

Since the variables s and v are dummies, they can be equal to an arbitrary value if
the conditions s > 0 and 0 < v < 1 are satisfied. Then, let us set s = v = 4

√
ω (this choice

is justified by the fact that due to the structure of the parity-check matrix, the conditions
` > 2 should be satisfied):

G∗(ω) = (`− 1)h(ω) + `

(
ω

2
log2ω− 1

n0
log2

(
ge
(

4
√

ω, 4
√

ω, n0
)
+ g0

(
4
√

ω, n0
)))

.

Let us transform G∗(ω) as follows:

G∗(ω) = −
(
`

2
− 1
)

ωlog2ω− (`− 1)(1−ω)log2(1−ω)− `

n0
log2

(
ge
(

4
√

ω, 4
√

ω, n0
)
+ g0

(
4
√

ω, n0
))

.

It is easy to show that ge(s, v, n0) + g0(s, n0) 6 (1 + s)n0 for 0 < s < 1 and 0 < v < 1.
Then, we obtain

G∗(ω) = −
(
`

2
− 1
)

ωlog2ω +O(ω).

It is easily noted that G(ω) > G∗(ω) implies

lim
n→∞

bε′nc

∑
W=1

2−nG(W
n ) 6 lim

n→∞

bε′nc

∑
W=1

2−nG∗(W
n ).

Since LDPC code construction requires ` > 2,
(
`
2 − 1

)
> 0, and consequently,

G(ω) > −c1ωlog2ω + c2ω + o(ω), c1 > 0.

lim
n→∞

bε′nc

∑
W=1

2−nG(W
n ) 6 lim

n→∞

bε′nc

∑
W=1

2n·c1·Wn ·log2
W
n − n·c2·Wn = lim

n→∞

bε′nc

∑
W=1

(
W
n

)c1W
2−c2W 6
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6 lim
n→∞

bε′nc

∑
W=1

((
ε′
)c12−c2

)W
=

(ε′)c12−c2

1− (ε′)c12−c2
= ε′′.

It should be noted that the sign of c2 is not important because ε′′ can be made arbitrarily
small by a correct choice of ε′.

Thus,

lim
n→∞

bε′nc

∑
W=1

2−n(`Fe(W
n ,n0)−h(W

n )) 6 ε′′ < 1.

Consequently, the code for which the condition (11) is satisfied for all values of ωt < ε′

exists with non-zero probability in the ensemble of G-LDPC codes.

Finally, let us consider the proof of Corollary 1.

Proof. The correctness of the corollary is easy to see if we note that E0(·) > 0 for R1 < C [6]
and E2(·) ≥ 0, which follows from (6), and we can always select n1 such that 1

n1
H(β) <

βE0(·) + E2(·) because n1 can be arbitrarily large according to condition (3). Therefore,
according to Corollary 2, the construction of G-LDPC code with ωt > 0 for any code
rate R2 < 1 exists, helping us omit this condition in the corollary formulation (unlike the
formulation of a similar corollary in [12]).

7.2. Error Exponent for Decoding Algorithm AML

Let us consider the proof of Theorem 2.

Proof. To simplify the proof without loss of generality, let us consider the transmission
of a zero codeword over the BSC with BER p. Let the probability of the transition of the
zero codeword to each of N(w) codewords with weight w during decoding with algorithm
AML be equal to Pδ(w). Moreover, let there exist a critical value wc of the number of errors
that leads to erroneous decoding with algorithm AML. Then, we can write

PML =
wc

∑
w=d

N(w)Pδ(w) + P(w ≥ wc),

where d is the code distance of the LG-LDPC code.
To obtain the upper bound, it is sufficient to consider the case when the zero codeword

becomes the word with weight w if there are more than w/2 errors:

Pδ(w) =
w

∑
i= w

2

(
w
i

)
pi(1− p)w−i ≤ 2w−1 p

w
2 (1− p)

w
2 ,

where p ≤ 1
2 .

From this inequality, we easily obtain

Eδ(ωc, p) = max
δ≤ω≤ωc

{
ν(ω) + ω

(
ln 2 + ln

√
p(1− p)

)}
,

where ν(ω) is an asymptotic spectrum of the LG-LDPC code given by Lemma 1 and δ is
the relative code distance of the LG-LDPC code given by Lemma 2.

With the help of the Chernoff bound, we obtain the exponent of the probability that
more than wc errors have occurred:

P(w ≥ wc) ≤ exp{−nEωc(ωc, p)}.

Eωc(ωc, p) = (1−ωc) ln
1−ωc

1− p
+ ωc ln

ωc

p
, ωc ≥ p.



Entropy 2021, 23, 253 14 of 16

Consequently,
EML(p) = max

ω0≤ωc≤1
{min(Eδ(ωc, p), Eωc(ωc, p))},

ω0 = max(δ, p).

The estimations given in Lemmas 1 and 2 were obtained by the slightly modified
classical Gallager’s method [1]. Thus, in this paper, we give only a sketch of the proof.

Let us first consider the proof of Lemma 1.

Proof. Let us consider the fixed word of weight W and find the probability of there being
a code in the LG-LDPC code ensemble such that this word is a codeword for this code. For
this purpose, let us consider the first layer of the parity-check matrix of some LG-LDPC
code from the ensemble composed of the parity-check matrices of the single parity check
code. We can write the probability that the considered word is a codeword for a given layer
as follows:

P(1)
W =

N1(W)

( n
W)

,

where N1(W) is the number of layers, and the word of weight W is a codeword.
We estimate N1(W) as

N1(W) 6 min
s>0

{
gb0

0 (s, n0)

sW

}
,

where g0(s, n0) is a spectrum function of the SPC code.
Thus,

P(1)
W 6

(
n
w

)−1
min
s>0

{
gb0

0 (s, n0)s−W
}

.

It is clear that the obtained estimation is the same for all `− 1 layers:

P(i)
W 6

(
n
w

)−1
min
s>0

{
gb0

0 (s, n0)s−W
}

, i = 1...`− 1.

Similarly, we can write the probability that the considered word of weight W is a
codeword for the `th layer of the parity-check matrix composed of “optimal” linear codes:

P(`)
W 6

(
n
w

)−1
min
s>0

{
gb1

1 (s, R1, n1)s−W
}

,

where g1(s, R1, n1) is a spectrum of the code with a good spectrum.
Since the layer permutations are independent, we can write the probability that the

given word of weight W is a codeword for the whole code construction as

PW =
`

∏
i=1

P(i)
W 6

(
n
W

)−`
min
s>0

{
gb0(`−1)

0 (s, n0)gb1
1 (s, R1, n1)s−W`

}
.

Consequently, the average number of weight W codewords is given by

N̄(W) =

(
n
W

)
PW 6

(
n
W

)−(`−1)
min
s>0

{
gb0(`−1)

0 (s, n0)gb1
1 (s, R1, n1)s−W`

}
.

For W = ωn, we obtain

ν(ω) = lim
n→∞

ln N(ωn)
n

6 ν0(ω).
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Now, let us consider the proof of Lemma 2.

Proof. If the average number of codewords N̄(W) in the ensemble of LG-LDPC codes
satisfies the condition

d0

∑
W=1

N̄(W) 6 1,

then the code with code distance d > d0 exists in this ensemble.
It is easy to show that the sum of the right part of the inequality can be estimated

with the last member of this sum. Therefore, using the estimation obtained in the previous
lemma, we can write

ν0(δ) 6 0,

where δ = d/n is the relative code distance.
Thus, we can obtain the maximum value of δ0 such that the above-considered condi-

tion is satisfied for all smaller values δ 6 δ00 as the smallest positive root of the following
equation:

ν0(δ0) = 0.
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