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Abstract: Typical random codes (TRCs) in a communication scenario of source coding with side
information in the decoder is the main subject of this work. We study the semi-deterministic code
ensemble, which is a certain variant of the ordinary random binning code ensemble. In this code
ensemble, the relatively small type classes of the source are deterministically partitioned into the
available bins in a one-to-one manner. As a consequence, the error probability decreases dramatically.
The random binning error exponent and the error exponent of the TRCs are derived and proved to be
equal to one another in a few important special cases. We show that the performance under optimal
decoding can be attained also by certain universal decoders, e.g., the stochastic likelihood decoder
with an empirical entropy metric. Moreover, we discuss the trade-offs between the error exponent
and the excess-rate exponent for the typical random semi-deterministic code and characterize its
optimal rate function. We show that for any pair of correlated information sources, both error and
excess-rate probabilities exponential vanish when the blocklength tends to infinity.

Keywords: Slepian–Wolf coding; variable-rate coding; error exponent; excess-rate exponent; typical
random code

1. Introduction

As is well known, the random coding error exponent is defined by

Er(R) = lim
n→∞

{
− 1

n logE[Pe(Cn)]
}

, (1)

where R is the coding rate, Pe(Cn) is the error probability of a codebook Cn, and the
expectation is with respect to (w.r.t.) the randomness of Cn across the ensemble of codes.
The error exponent of the typical random code (TRC) is defined as [1]

Etrc(R) = lim
n→∞

{
− 1

nE[log Pe(Cn)]
}

. (2)

We believe that the error exponent of the TRC is the more relevant performance metric,
as it captures the most likely error exponent of a randomly selected code, as opposed to
the random coding error exponent, which is dominated by the relatively poor codes of
the ensemble, rather than the channel noise, at relatively low coding rates. In addition,
since in random coding analysis, the code is selected at random and remains fixed, it
seems reasonable to study the performance of the chosen code itself instead of directly
considering the ensemble performance.

To the best of our knowledge, not much is known about TRCs. In [2], Barg and Forney
considered TRCs with independently and identically distributed codewords, along with
typical linear codes, for the special case of the binary symmetric channel with maximum
likelihood (ML) decoding. It was also shown that at a certain range of low rates, Etrc(R)
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lies between Er(R) and the expurgated exponent, Eex(R). In [3] Nazari et al. provided
bounds on the error exponents of TRCs for both discrete memoryless channels (DMC) and
multiple-access channels. In a recent article by Merhav [1], an exact single-letter expression
has been derived for the error exponent of typical, random, fixed composition codes, over
DMCs, and a wide class of (stochastic) decoders, collectively referred to as the generalized
likelihood decoder (GLD). Later, Merhav studied error exponents of TRCs for the colored
Gaussian channel [4], typical random trellis codes [5], and a Lagrange dual lower bound
for the TRC exponent [6]. Large deviations around the TRC exponent were studied in [7].

While originally defined for pure channel coding [1–3], the notion of TRCs has natural
analogues in other settings as well, such as source coding with side information in the
decoder [8]. Typical random Slepian–Wolf (SW) code of a certain variant of the ordinary
variable-rate random binning code ensemble is the main theme of this work. The random
coding error exponent of SW coding, based on fixed-rate (FR) random binning, was
first addressed by Gallager in [9], and improved later on by the expurgated bound in
[10] and [11]. Variable-rate (VR) SW coding received less attention in the literature; VR
codes under average rate constraint have been studied in [12] and proved to outperform
FR codes in terms of error exponents. Optimum trade-offs between the error exponent
and the excess-rate exponent in VR coding were analyzed in [13]. Sphere-packing upper
bounds for source coding with side information in the FR and VR regimes were studied in
[9] and [12], respectively. More works where exponential error bounds in source coding
have been studied are [14–18].

It turns out that both the FR and VR ensembles suffer from an intrinsic deficiency,
caused by statistical fluctuations in the sizes of the bins that are populated by the relatively
small type classes of the source. This fundamental problem of the ordinary ensembles is
alleviated in some variant of the ordinary VR ensemble-the semi-deterministic (SD) code
ensemble, which has already been proposed and studied in its FR version in [18]. In the
SD code ensemble, for source type classes which are exponentially larger than the space
of the available bins, we just randomly assign each source sequence into one of the bins,
as is done in ordinary random binning. Otherwise, for relatively small type classes, we
deterministically order each source sequence into a different bin, which provides a one-to-
one mapping. This way, all these relatively small source type classes do not contribute to
the probability of error. The main results concerning the SD code are the following:

1. The random binning error exponent and the error exponent of the TRC are derived in
Theorems 1 and 2, respectively, and proved in Theorem 3 to be equal to one another
in a few important special cases, which include the matched likelihood decoder,
the MAP decoder, and the universal minimum entropy decoder. To the best of our
knowledge, this phenomenon has not been seen elsewhere before, since the TRC
exponent usually improves upon the random coding exponent. As a byproduct, we
are able to provide a relatively simple expression for the TRC exponent.

2. We prove in Theorem 4 that the error exponent of the TRC under MAP decoding
is also attained by two universal decoders: the minimum entropy decoder and the
stochastic entropy decoder, which is a GLD with an empirical conditional entropy
metric. As far as we know, this result is first of its kind in source coding; in other
scenarios, the random coding bound is attained also by universal decoders, but here,
we find that the TRC exponent is also universally achievable. Moreover, while the
likelihood decoder and the MAP decoder have similar error exponents [19], here
we prove a similar result, but for two universal decoders (one stochastic and one
deterministic) that share the same metric.

3. We discuss the trade-offs between the error exponent and the excess-rate exponent for
a typical random SD code, similarly to [13], but with a different notion of the excess-
rate event, which takes into account the available side information. In Theorem 5,
we provide an expression for the optimal rate function that guarantees a required
level for the error exponent of the typical random SD code. Analogously, Theorem 6
proposes an expression for the optimal rate function that guarantees a required level
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for the excess-rate exponent. Furthermore, we show that for any pair of correlated
information sources, the typical random SD code attains both exponentially vanishing
error and excess-rate probabilities.

The remaining part of the paper is organized as follows. In Section 2, we establish
notation conventions. In Section 3, we formalize the model, the coding technique, the
main objectives of this work, and we review some background. In Section 4, we provide
the main results concerning error exponents and universal decoding in the SD ensemble,
and in Section 5, we discuss the trade-offs between the error exponent and the excess-rate
exponent.

2. Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, realizations
will be denoted by the corresponding lower case letters, and their alphabets will be denoted
by calligraphic letters. Random vectors and their realizations will be denoted, respectively,
by boldface capital and lower case letters. Their alphabets will be superscripted by their
dimensions. Sources and channels will be subscripted by the names of the relevant random
variables/vectors and their conditionings, whenever applicable, following the standard
notation conventions, e.g., QU , QV|U , and so on. When there is no room for ambiguity,
these subscripts will be omitted. For a generic joint distribution QUV = {QUV(u, v), u ∈
U , v ∈ V}, which will often be abbreviated by Q, information measures will be denoted in
the conventional manner, but with a subscript Q; that is, HQ(U) is the marginal entropy of
U, HQ(U|V) is the conditional entropy of U given V, and IQ(U; V) = HQ(U)− HQ(U|V)
is the mutual information between U and V. The Kullback–Leibler divergence between
two probability distributions, QUV and PUV , is defined as

D(QUV‖PUV) = ∑
(u,v)∈U×V

QUV(u, v) log
QUV(u, v)
PUV(u, v)

, (3)

where logarithms, here and throughout the sequel, are understood to be taken to the
natural base. The probability of an event E will be denoted by P{E}, and the expectation
operator w.r.t. a probability distribution Q will be denoted by EQ[·], where the subscript
will often be omitted. For two positive sequences, {an} and {bn}, the notation an

.
= bn will

stand for equality in the exponential scale, that is, limn→∞(1/n) log(an/bn) = 0. Similarly,

an
·
≤ bn means that lim supn→∞(1/n) log(an/bn) ≤ 0, and so on. The indicator function of

an event A will be denoted by 1{A}. The notation [t]+ will stand for max{0, t}.
The empirical distribution of a sequence u ∈ Un, which will be denoted by P̂u, is the

vector of relative frequencies, P̂u(u), of each symbol u ∈ U in u. The type class of u ∈ Un,
denoted T (u), is the set of all vectors u′ with P̂u′ = P̂u. When we wish to emphasize the
dependence of the type class on the empirical distribution P̂, we will denote it by T (P̂).
The set of all types of vectors of length n over U will be denoted by Pn(U ), and the set of
all possible types over U will be denoted by P(U ) = ⋃∞

n=1 Pn(U ). Information measures
associated with empirical distributions will be denoted with ‘hats’ and will be subscripted
by the sequences from which they are induced. For example, the entropy associated with
P̂u, which is the empirical entropy of u, will be denoted by Ĥu(U). Similar conventions
will apply to the joint empirical distribution, the joint type class, the conditional empirical
distributions and the conditional type classes associated with pairs (and multiples) of
sequences of length n. Accordingly, P̂uv would be the joint empirical distribution of
(u, v) = {(ui, vi)}n

i=1, T (P̂uv) will denote the joint type class of (u, v), T (P̂u|v|v) will stand
for the conditional type class of u given v, Ĥuv(U|V) will be the empirical conditional
entropy, and so on. Likewise, when we wish to emphasize the dependence of empirical
information measures upon a given empirical distribution Q, we denote them using the
subscript Q, as described above.
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3. Problem Formulation and Background
3.1. Problem Formulation

Let (U, V) = {(Ut, Vt)}n
t=1 be n independent copies of a pair of random variables,

(U, V) ∼ PUV , taking on values in finite alphabets, U and V , respectively. The vector U
will designate the source vector to be encoded and the vector V will serve as correlated side
information available to the decoder. In ordinary VR binning, the coding rate is not fixed
for every u ∈ Un, but depends on its empirical distribution. Let us denote a rate function
by R(·), which is a given continuous function from the probability simplex of U to the set
of nonnegative reals. In that manner, for every type QU ∈ Pn(U ), all source sequences in
T (QU) are randomly partitioned into enR(QU) bins. Every source sequence is encoded by
its bin index, denoted by B(u), along with a header that indicates its type index, which
requires only a negligible extra rate when n is large enough.

The SD code ensemble is a refinement of the ordinary VR code: for types with
HQ(U) ≥ R(QU), i.e., type classes which are exponentially larger than the space of avail-
able bins, we just randomly assign each source sequence into one out of the enR(QU) bins.
For the other types, we deterministically order each member of T (QU) into a different bin.
This way, all type classes with HQ(U) < R(QU) do not contribute to the probability of
error. The entire binning code of source sequences of blocklength n, i.e., the set {B(u)}u∈Un ,
is denoted by Bn. A sequence of SW codes, {Bn}n≥1, indexed by the block length n, will be
denoted by B.

The decoder estimates u based on the bin index B(u), the type index T (u), and the
side information sequence v, which is a realization of V . The optimal (MAP) decoder
estimates u according to

û = arg max
u′∈B(u)∩T (u)

P(u′, v). (4)

As in [1,20], we consider here the GLD. The GLD estimates u stochastically, using the bin
index B(u), the type index T (u), and the side information sequence v, according to the
following posterior distribution

P
{

Û = u′
∣∣v,B(u), T (u)

}
=

exp{n f (P̂u′v)}
∑ũ∈B(u)∩T (u) exp{n f (P̂ũv)}

, (5)

where P̂uv is the empirical distribution of (u, v) and f (·) is a given continuous, real valued
functional of this empirical distribution. The GLD provides a unified framework which
covers several important special cases, e.g., matched decoding, mismatched decoding,
MAP decoding, and universal decoding (similarly to the α-decoders described in [11]). A
more detailed discussion is given in [20].

The probability of error is the probability of the event {Û 6= U}. For a given binning
code Bn, the probability of error is given by

Pe(Bn) = ∑
u,v

P(u, v) · 1
{

Ĥu(U) ≥ R(P̂u)
}
·

∑u′∈B(u)∩T (u),u′ 6=u exp{n f (P̂u′v)}
∑ũ∈B(u)∩T (u) exp{n f (P̂ũv)}

. (6)

For a given rate function, we derive the random binning exponent of this ensemble, which
is defined by

Er(R(·)) = lim
n→∞

{
− logE[Pe(Bn)]

n

}
, (7)

and compare it to the TRC exponent, which is
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Etrc(R(·)) = lim
n→∞

{
−E[log Pe(Bn)]

n

}
. (8)

Although it is unclear that the limits in (7) and (8) exist a priori, it will be evident from the
analyses in Appendixes A and B, respectively.

One way to define the excess-rate probability is as P{R(P̂U) ≥ R}, where R is some
target rate [13]. Due to the availability of side information in the decoder, it makes sense to
require a target rate which depends on the pair (u, v). Since the lowest possible compression
rate in this setting is given by HP(U|V) [8], given U = u and V = v, it is reasonable to
adopt Ĥuv(U|V) as a reference rate. Hence, an alternative definition of the excess-rate
probability of a code Bn, is as per(Bn, R(·), ∆) = P{R(P̂U) ≥ ĤUV (U|V) + ∆}, where ∆ > 0
is a redundancy threshold. (Note that the entire analysis remains intact if we allow a more
general redundancy threshold as ∆ = ∆(P̂uv). This covers other alternatives for the excess-
rate probability, e.g., P{R(P̂U) ≥ R} or P{R(P̂U) ≥ αĤU(U)}, α ∈ (0, 1).) Accordingly, the
excess-rate exponent function, achieved by a sequence of codes B, is defined as

Eer(B, R(·), ∆) = lim inf
n→∞

− 1
n

log per(Bn, R(·), ∆). (9)

The main mission is to characterize the optimal trade-off between the error exponent and
the excess-rate exponent for the typical random SD code, and the optimal rate function that
attains a prescribed value for the error exponent of the typical random SD code.

3.2. Background

In pure channel coding, Merhav [1] has derived a single-letter expression for the error
exponent of the typical random fixed composition code:

Etrc(R, QX) = lim
n→∞

{
− 1

nE[log Pe(Cn)]
}

. (10)

In order to present the main result of [1], we define first a few quantities. Consider a
DMC, W = {W(y|x), x ∈ X , y ∈ Y}, where X and Y are the finite input/output alphabets.
Define

α(R, QY) = max
{QX̃|Y : IQ(X̃;Y)≤R, QX̃=QX}

{g(QX̃Y)− IQ(X̃; Y)}+ R, (11)

where the function g(·), which is the decoding metric, is a continuous function that maps
joint probability distributions over X ×Y to real numbers. Additionally define

Γ(QXX′ , R) = min
QY|XX′

{D(QY|X‖W|QX) + IQ(X′; Y|X)

+ [max{g(QXY), α(R, QY)} − g(QX′Y)]+}, (12)

where D(QY|X‖W|QX) is the conditional divergence between QY|X and W, averaged by
QX . A brief intuitive explanation on the term Γ(QXX′ , R) can be found in [7](Section 4.1).
Having defined the above quantities, the error exponent of the TRC is given by [1]

Etrc(R, QX) = min
{QX′ |X : IQ(X;X′)≤2R, QX′=QX}

{Γ(QXX′ , R) + IQ(X; X′)− R}. (13)
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Returning to the SW model, several articles have been written on error exponents for
the FR and the VR codes. Here, we mention only those results that are directly relevant
to the current work. The random binning and expurgated bounds of the FR ensemble in
the SW model are given, respectively, by [11] (Section VI, Theorem 2), [10] (Appendix I,
Theorem 1)

Efr
r (R) = min

QU

{
D(QU‖PU) + Er(QU , PV|U , HQ(U)− R)

}
, (14)

Efr
ex(R) = min

QU

{
D(QU‖PU) + Eex(QU , PV|U , HQ(U)− R)

}
, (15)

where Er(QU , PV|U , S) and Eex(QU , PV|U , S) are, respectively, the random coding and expur-
gated bounds associated with the channel PV|U w.r.t. the ensemble of fixed composition
code of rate S, whose composition is QU . The exponent function Er(QU , PV|U , S) is given by

Er(QU , PV|U , S) = min
QV|U
{D(QV|U‖PV|U |QU) + [IQ(U; V)− S]+}, (16)

and Eex(QU , PV|U , S) is given by

Eex(QU , PV|U , S) = min
{QU′ |U : IQ(U;U′)≤S, QU′=QU}

{EQUU′
[dPV|U (U, U′)] + IQ(U; U′)− S},

(17)

where

dPV|U (u, u′) = − log

[
∑

v∈V

√
PV|U(v|u)PV|U(v|u′)

]
. (18)

The exact error exponent of VR random binning is given by [13] (Equation (34)):

Evr
r (R(·)) = min

QUV

{
D(QUV‖PUV) + [R(QU)− HQ(U|V)]+

}
. (19)

4. Error Exponents and Universal Decoding

To present some of the results, we need a few more definitions. The minimum
conditional entropy (MCE) decoder estimates u, using the bin index B(u), the type index
T (u), and the side information vector v, according to

û = arg min
u′∈B(u)∩T (u)

Ĥu′v(U|V). (20)

The stochastic conditional entropy (SCE) decoder is a special case of the GLD with the
decoding metric f (P̂uv) = −Ĥuv(U|V); i.e., it estimates u according to the following
posterior distribution

P
{

Û = u′
∣∣v,B(u), T (u)

}
=

exp{−nĤu′v(U|V)}
∑ũ∈B(u)∩T (u) exp{−nĤũv(U|V)}

. (21)

First, we present random binning error exponents, which are modifications of (19) to
this ensemble. Define the expression
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E(QUV , R(·)) = min
QU′ |V

[
R(QU)− HQ(U′|V) + [ f (QUV)− f (QU′V)]+

]
+ (22)

and the exponent functions:

Er,GLD(R(·)) = min
{QUV : HQ(U)≥R(QU)}

{D(QUV‖PUV) + E(QUV , R(·))}, (23)

and

Er,MAP(R(·)) = min
{QUV : HQ(U)≥R(QU)}

{
D(QUV‖PUV) + [R(QU)− HQ(U|V)]+

}
. (24)

The following result is proved in Appendix A.

Theorem 1. Let R(·) be a given rate function. Then, for the SD ensemble,

1. Er(R(·)) = Er,GLD(R(·)) for the GLD;
2. Er(R(·)) = Er,MAP(R(·)) for the MAP and MCE decoders.

As a matter of fact, a special case of the second part of Theorem 1 has already been
proved in [18] for the FR regime, while here, we prove a stronger result, according to
which, the MCE decoder attains the same random binning error exponent as the MAP
decoder, in the VR coding regime too. The first part of Theorem 1 is completely new;
it proposes a single letter expression for the random binning error exponent, for a wide
family of stochastic and deterministic decoders. Additionally, note that an analogous
result to the first part of Theorem 1 has been proved in [20]. Comparing the expressions
in (19) and (24), namely, the random binning error exponents of the ordinary VR and the
SD VR ensembles, respectively, we find that they differ at relatively high coding rates,
since these minimization problems share the same objective but (24) also has the constraint
HQ(U) ≥ R(QU). The origin of this constraint is the deterministic coding of the relatively
small type classes.

Next, we provide a single-letter expression for the error exponent of the TRCs in this
ensemble. We define

γ(R(·), QU , QV) = max{ QŨ|V : QŨ=QU ,
HQ(Ũ|V)≥R(QŨ)

}{ f (QŨV) + HQ(Ũ|V)} − R(QŨ) (25)

and

Ψ(R(·), QUU′V) = [max{ f (QUV), γ(R(·), QU , QV)} − f (QU′V)]+. (26)

Furthermore, define

Λ(QUU′ , R(QU)) = min
QV|UU′

{
Ψ(R(QU), QUU′V)− HQ(V|U, U′)−EQ[log P(V|U)]

}
, (27)

and the following exponent function:
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Etrc,GLD(R(·)) = min{
QUU′ : QU′=QU ,
HQ(U)≥R(QU)

}{Λ(QUU′ , R(QU))−EQ[log P(U)]− HQ(U, U′) + R(QU)
}

.

(28)

Then, the following theorem is proved in Appendix B.

Theorem 2. Let R(·) be a given rate function. Then, for the SD ensemble and the GLD,

Etrc(R(·)) = Etrc,GLD(R(·)). (29)

As explained before, an analogous result has already been proved in pure channel
coding [1], and one can find a high degree of similarity between the expressions in (25)–(28)
and the expressions in Section 3.2. While in channel coding, the coding rate is fixed, here,
on the other hand, we allow the rate to depend on the type class of the source. In order
to optimize the rate function, we constrain the problem by introducing the excess-rate
exponent (9), which is the exponential rate of decay of the probability that the compression
rate will be higher than some predefined level. A detailed discussion on optimal rate
functions and optimal trade-offs between these two exponents can be found in Section 5.

The definition of the error exponent of the TRC as in (8) should not be taken for
granted. The reason for that is the following. It turns out that the definition in (8) and
the value of − 1

n log Pe(Bn) for the highly probable codes in the ensemble may not be the
same, and they coincide if and only if the ensemble does not contain both zero error
probability codes and positive error probability codes. For example, the FR ensemble in
SW coding contains the one-to-one code (which obviously attains Pe(Bn) = 0) as long as
R ≥ log |U |, but it is definitely not a typical code, at least when ordinary random binning
is considered. Hence, in this case, we conclude that − 1

nE[log Pe(Bn)] = ∞, while the value
of − 1

n log Pe(Bn) for the highly probable codes is still finite. As for the SD code ensemble,
the definition in (8) indeed provides the error exponent of the highly probable codes in the
ensemble, which is explained by the following reasoning. For any given rate function such
that R(QU) < HQ(U) for at least one type class, all the type classes with R(QU) < HQ(U)
are encoded by random binning; thus, all the codes in the ensemble have a strictly positive
error probability, which implies that the value of − 1

n log Pe(Bn) concentrates around the
error exponent of the TRC, as defined in (8).

The proof of Theorem 2 follows exactly the same lines as the proof of ([1] (Theorem
1)), except for one main modification: when we introduce the type class enumerator
N(QUU′) (see below) and sum over joint types, the summation set becomes {QUU′ : QU′ =
QU , HQ(U) ≥ R(QU)}, where the constraint HQ(U) ≥ R(QU) is due to the indicator
function in (6). Afterwards, the analysis of the type class enumerator yields the constraint
HQ(U, U′) ≥ R(QU), which becomes redundant and thus omitted. This constraint is
analogous to the constraint IQ(X; X′) ≤ 2R in the minimization of (13). The origin of
HQ(U, U′) ≥ R(QU) is the following. Define

N(QUU′) = ∑
(u,u′)∈T (QUU′ )

1
{
B(u′) = B(u)

}
, (30)

which enumerate pairs of source sequences. Then, one of the main steps in the proof of
Theorem 2 is deriving the high probability value of N(QUU′), which is 0 if HQ(U, U′) <
R(QU) (a relatively small set of source pair and relatively large number of bins) and
en[HQ(U,U′)−R(QU)] for HQ(U, U′) ≥ R(QU) (a large set of source sequence pair and a small
number of bins). One should note that the analysis of N(QUU′) is not trivial, since it is not a
binomial random variable; i.e., the enumerator N(QUU′) is given by the sum of dependent
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binary random variables. For a sum N of independent binary random variables, ordinary
tools from large deviation theory (e.g., the Chernoff bound) can be invoked for assessing
the exponential moments E[Ns], s ≥ 0, or the large deviation rate function of P{N ≥ enσ},
σ ∈ IR. For sums of dependent binary random variables, such as N(QUU′) in the current
problem, this can no longer be done by the same techniques, and it requires more advanced
tools (see, e.g., [1,4–6]).

It is possible to compare (23) and (28) analytically in the special cases of the matched
or the mismatched likelihood decoders and the MCE decoder. In the following theorem,
the choice f (QUV) = βEQ[log P̃(U, V)], where P̃(U, V) is a possibly different source
distribution than P(U, V), corresponds to a family of stochastic mismatched decoders. We
have the following result, the proof of which is given in Appendix D.

Theorem 3. Consider the SD ensemble and a given rate function R(·). Then,

1. For a GLD with the decoding metric f (Q) = βEQ[log P̃(U, V)], for a given β > 0,

Etrc,GLD(R(·)) = Er,GLD(R(·)). (31)

2. For the MCE decoder,

Etrc,MCE(R(·)) = Er,MCE(R(·)). (32)

This result is quite surprising at first glance, since one expects the error exponent
of the TRC to be strictly better than the random binning error exponent, as in ordinary
channel coding at relatively low coding rates [1,2]. This phenomenon is due to the fact
that part of the source type classes are deterministically partitioned into bins in a one-to-
one fashion, and hence do not affect the probability of error (notice that the constraint
HQ(U) ≥ R(QU) appears in both the random binning and the TRC exponents, while in the
latter, it makes the original constraint HQ(U, U′) ≥ R(QU) redundant). In the cases of FR
or ordinary VR binning, these relatively “thin” type classes dominated the error probability
at relatively high binning rates, but now, by encoding them deterministically into the
bins; other mechanisms dominate the error event, such as the channel noise (between U
and V) or the random binning of the type classes with HQ(U) ≥ R(QU). The result of
the second part of Theorem 3 is also nontrivial, since it establishes an equality between
the error exponent of the TRC and the random binning error exponent, but now for a
universal decoder.

Concerning universal decoding, it is already known [21] (Exercise 3.1.6), [13] that
the random binning error exponents under optimal MAP decoding in both the FR and
VR codes, given by (14) and (19), respectively, are also attained by the MCE decoder.
Furthermore, a similar result for the SD ensemble has been proved here in Theorem 1. The
natural question that arises is whether the error exponent of the TRC is also universally
attainable. The following result, which is proved in Appendix E, provides a positive answer
to this question.

Theorem 4. Consider the SD ensemble and a given rate function R(·). Then, the error exponents
of the TRC under the MAP, the MCE, and the SCE decoders are all equal; i.e.,

Etrc,MAP(R(·)) = Etrc,MCE(R(·)) = Etrc,SCE(R(·)). (33)

Theorem 4 asserts that the error exponent of the typical random SD code is not affected
if the optimal MAP decoder is replaced by a certain universal decoder, which must not
even be deterministic. While the left hand equality in (33) follows immediately from the
results of Theorems 1 and 3, the right hand equality in (33) is far less trivial, since the SCE
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decoder is both universal and stochastic, and hence, its TRC exponent is expected to be
inferior w.r.t. the TRC exponent under MAP decoding, but nevertheless, they turn out
to be equal. Comparing to channel coding, it has been recently proved in [22] that the
error exponent of the typical random fixed composition code (given in (13)) is the same for
the ML and the maximum mutual information decoder, but on the other hand, numerical
evidence shows that a GLD which is based on an empirical mutual information metric
attains a strictly lower exponent.

5. Optimal Trade-off Functions

In this section, we study the optimal trade-off between the threshold ∆, the error
exponent of the TRC, and the excess-rate exponent. Since both exponents depend on the
rate function, we wish to characterize rate functions that are optimal w.r.t. this trade-off.
Since a single-letter characterization of the error exponent of the TRC has already been
given in (28), we next provide a single-letter expression for the excess-rate exponent. Define
the following exponent function:

Eer(R(·), ∆) = min
{QUV : R(QU)≥HQ(U|V)+∆}

D(QUV‖PUV). (34)

Then, we have the following.

Proposition 1. Fix ∆ > 0 and let R(·) be any rate function. Then,

Eer(B, R(·), ∆) = Eer(R(·), ∆). (35)

Proof. The excess-rate probability is given by:

P{R(P̂U) ≥ ĤUV (U|V) + ∆}
= ∑

QUV

1{R(QU) ≥ HQ(U|V) + ∆} · P{(U, V) ∈ T (QUV)} (36)

.
= ∑
{QUV : R(QU)≥HQ(U|V)+∆}

exp{−nD(QUV‖PUV)} (37)

.
= exp

{
−n · min

{QUV : R(QU)≥HQ(U|V)+∆}
D(QUV‖PUV)

}
, (38)

which proves the desired result. �

Since Proposition 1 is proved by the method of types [21], we conclude that the excess-
rate event is dominated by one specific type class T (QUV), whose respective rate R(QU)
has been chosen too large w.r.t. the value of HQ(U|V) + ∆. One extreme case is when
the rate function is given by HQ(U), which obviously provides a one-to-one mapping,
since the size of each T (QU) is upper-bounded by enHQ(U). In this case, the probability of
error is zero, while the excess-rate probability is one, at least when ∆ is not too large. In
Section 5.2, we prove that the optimal rate function is indeed upper-bounded by HQ(U),
but can also be strictly smaller, especially when the requirement on the error exponent is
not too stringent.

One way to explore the trade-off between the error exponent of the TRC and the
excess-rate exponent, which will be presented in Section 5.1, is to require the excess-rate
exponent to exceed some value Er > 0, then solve Eer(R(·), ∆) ≥ Er for an optimal rate
function R∗(QU), and then to substitute this optimal rate function back into the error
exponents in (24) and (28) to give expressions for the optimal trade-off function Ee(Er, ∆).
In Section 5.2, we present an alternative option to characterize this trade-off, which is to
require the error exponent of the TRC to exceed some value Ee > 0, to solve Ee(R(·)) ≥ Ee
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in order to extract an optimal rate function, and then to substitute it back into the excess-rate
exponent in (34) to provide an expression for the optimal trade-off function Eer(Ee, ∆).

5.1. Constrained Excess-Rate Exponent

Relying on the exponent function in (34), the following theorem proposes a rate
function, whose optimality is proved in Appendix F.

Theorem 5. Let Er > 0 be fixed. Then, the constraint Eer(R(·), ∆) ≥ Er implies that

R(QU) ≤ J(QU ,Er, ∆)
4
= min
{QV|U : D(QUV‖PUV)≤Er}

{
HQ(U|V) + ∆

}
. (39)

This means that we have a dichotomy between two kinds of source types. Each type
class that is associated with an empirical distribution that is relatively close to the source
distribution, i.e., when D(QUV‖PUV) ≤ Er for some QV|U , is partitioned into enJ(QU ,Er ,∆)

bins, and the rest of the type classes, those that are relatively distant from PU , are encoded
by a one-to-one mapping. Two extreme cases should be considered here. First, when Er is
relatively small, then only the types closest to PU are encoded with a rate approximately
HP(U|V) + ∆, which can be made arbitrarily close to the SW limit [8], and each a–typical
source sequence is allocated with n · log2 |U | bits. This coding scheme is the one related to
VR coding with an average rate constraint, like the one discussed in [12]. Second, when Er
is extremely large, then each type class is encoded to exp{n∆} bins, which is equivalent to
FR coding.

Following the first part of Theorem 3, let us denote the error exponent of the TRC
under MAP decoding by Ee(·). Upon substituting the optimal rate function of Theorem 5
back into (24) and (28) and using the fact that Ee(·) is monotonically increasing, we find
that the optimal trade-off function for the typical random SD code is given by

Ee(Er, ∆) = min
{QUV : HQ(U)≥J(QU)}

{
D(QUV‖PUV) + [J(QU)− HQ(U|V)]+

}
, (40)

or, alternatively,

Ee(Er, ∆) = min{
QUU′ : QU′=QU ,
HQ(U)≥J(QU)

}{Λ(QUU′ , J(QU))−EQ[log P(U)]− HQ(U, U′) + J(QU)
}

,

(41)

where J(QU) = J(QU ,Er, ∆) is given in (39). The dependence of Ee(Er, ∆) on Er is as
follows. Let Q∗UU′(∆) and Q∗V|U be the respective minimizers of the problems which are
similar to (39) and (41), except that the constraint D(QUV‖PUV) ≤ Er is removed from
(39). Furthermore, let Q∗U(∆) be the marginal distribution of Q∗UU′(∆). Now, when Er
is sufficiently large, i.e., when Er ≥ D(Q∗U(∆)× Q∗V|U‖PUV), Ee(Er, ∆) reaches a plateau
and is the lowest possible. It follows from the fact that the stringent requirement on the
excess-rate forces the encoder to encode each type class QU to its target rate ∆, thus all of
them affect the error event. Otherwise, when Er < D(Q∗U(∆)×Q∗V|U‖PUV), the constraint
D(QUV‖PUV) ≤ Er is active and Ee(Er, ∆) is a monotonically nonincreasing function of
Er. The reason for that is the fact that as Er decreases, more and more type classes are
encoded with n · log2 |U | bits, and hence do not contribute to the error event. When Er = 0,
necessarily QU = PU , only the typical set is encoded, and Ee(0, ∆) is the highest possible.
In this case, J(QU) = HP(U|V) + ∆ and the constraint set in (41) becomes empty when
∆ > IP(U; V), and then Ee(0, ∆) = ∞.
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5.2. Constrained Error Exponent

Based on (24), the following theorem proposes a rate function, whose optimality is
proved in Appendix G.

Theorem 6. Let Ee > 0 be fixed. Then, the constraint Ee(R(·)) ≥ Ee implies that

R(QU) ≥ Ω(QU ,Ee)
4
= min

{
HQ(U), G(QU ,Ee)

}
, (42)

where,

G(QU ,Ee) = max
{QV|U : D(QUV‖PUV)≤Ee}

{HQ(U|V) + Ee − D(QUV‖PUV)}. (43)

The dependence of G(QU ,Ee) on Ee is as follows. For any given QU , let Q̃V|U be the
minimizer of D(QUV‖PUV). Then, as long as Ee < D(QU × Q̃V|U‖PUV), the constraint
set in (43) is empty, and R(QU) can vanish, which practically means that in this range,
the entire type class T (QU) can be totally ignored, while still achieving Pe ≈ e−nEe . Only
for the unique type QU = PU , G(PU ,Ee) > 0 for all Ee ≥ 0, and specifically, we find that
G(PU , 0) = HP(U|V). Furthermore, let Q∗V|U be the maximizer in the unconstrained problem

max
QV|U

{
HQ(U|V)− D(QUV‖PUV)

}
. (44)

Then, as long as Ee ∈ [D(QU × Q̃V|U‖PUV), D(QU × Q∗V|U‖PUV)), G(QU ,Ee) is a mono-
tonically nondecreasing function of Ee. When Ee ≥ D(QU ×Q∗V|U‖PUV), the maximization
in (43) reaches its unconstrained optimum, and G(QU ,Ee) increases without bound in an
affine fashion as Ee + HQ∗(U|V)− D(QU ×Q∗V|U‖PUV). As can be seen in (42), Ω(QU ,Ee)

finally reaches a plateau at the level of HQ(U).
Upon substituting Ω(QU ,Ee) back into (34) and using the fact that Eer(·, ∆) is mono-

tonically nonincreasing, we find that the trade-off function is given by

Eer(Ee, ∆) = min
{QUV : Ω(QU ,Ee)≥HQ(U|V)+∆}

D(QUV‖PUV). (45)

Since Ω(QU ,Ee) is monotonically nondecreasing in Ee for every QU , Eer(Ee, ∆) is mono-
tonically nonincreasing in Ee, which is not very surprising. The dependence of Eer(Ee, ∆)
on Ee and ∆ is as follows. At Ee = 0, notice that Ω(QU , 0) = −∞ for any QU 6= PU
while Ω(PU , 0) = HP(U|V). Thus, Eer(0, ∆) = 0 as long as ∆ = 0, and it follows from the
monotonicity that Eer(Ee, 0) = 0 everywhere. Otherwise, if ∆ > 0, {QUV : Ω(QU ,Ee) ≥
HQ(U|V) + ∆} is empty as long as Ee < E∗e (∆), where an expression for E∗e (∆) can be
found by solving

max
QUV
{Ω(QU ,Ee)− HQ(U|V)} ≤ ∆, (46)

and then Eer(Ee, ∆) = ∞ in this range. In the other extreme case of a very large Ee, Ω(QU ,Ee)
reaches a plateau at a level of HQ(U). Then, if ∆ ≤ HP(U) − HP(U|V) = IP(U; V),
Eer(Ee, ∆) reaches zero for a sufficiently large Ee. Else, if ∆ > IP(U; V), Eer(Ee, ∆) reaches a
strictly positive plateau, given by
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min
{QUV : IQ(U;V)≥∆}

D(QUV‖PUV), (47)

which is a monotonically nondecreasing function of ∆. Particularly, it means that in this
range, the typical random SD code attains both an exponentially vanishing excess-rate
probability and Pe ≈ 0.

It is interesting to relate this to the expurgated bound of the FR code in the SW model,
which is given by (15). Comparing Efr

ex(R) and Ee(∞, ∆) analytically is rather difficult.
Thus, we examined these two exponent functions numerically. Consider the case of a
double binary source with alphabets U = V = {0, 1}, and joint probabilities given by
PUV(0, 0) = 0.75, PUV(0, 1) = 0.1, PUV(1, 0) = 0, and PUV(1, 1) = 0.15. We already
mentioned before, that in the special case of Er = ∞, the rate function is given by the
threshold ∆, hence we choose ∆ = R in order to have a fair comparison. Graphs of the
functions Efr

ex(R) and Ee(∞, R) are presented in Figure 1.

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4
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0.8

Ee(R)
Efr

ex(R)

Figure 1. Graphs of the functions Efr
ex(R) and Ee(∞, R).

As can be seen in Figure 1, both Efr
ex(R) and Ee(∞, R) tend to infinity as R tends to

log 2 ≈ 0.693. For relatively high binning rates, Efr
ex(R) is strictly higher than Ee(∞, R),

which can be explained in the following way: Referring to the analogy between SW coding
and channel coding, one can think of each bin as containing a channel code. In general,
a channel code behaves well if it does not contain pairs of relatively “close” codewords.
Since we randomly assign the source vectors into the bins (even if the populations of the
bins are totally equal, which can be attained by randomly partitioning each type class into
exp{nR} subsets), it is reasonable to assume that some bins will contain relatively bad
codebooks. On the other hand, in the expurgated SW code [11], each type class T (QU) is
partitioned into exp{nR} “balanced” subsets in some sense (referring to the enumerators
N(QUU′) in (30), they are equally populated in all of the bins), such that the codebooks
contained in the bins have approximately equal error probabilities. Moreover, we conclude
from (15) that each bin contains a codebook with a quality of an expurgated channel code.
This code is certainly better than the TRCs in the SD ensemble.

In channel coding, it is known [23] that the random Gilbert–Varshamov ensemble
has an exact random coding error exponent which is as high as the maximum between
(16) and (17). In SW source coding, on the other hand, it seems to be a more challenging
problem to define an ensemble, such that the error exponent of its TRCs is as high as Efr

ex(R)
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of (15). Since the gap between Efr
ex(R) and Ee(∞, R) is not necessarily very significant, as

can be seen in Figure 1, we conclude that the SD ensemble may be more attractive because
the amount of computations needed for drawing a code from it are much lower than the
amount of computations required for having an expurgated SW code. In addition, it is
important to note that the probability of drawing a SD code with an exponent much lower
than Ee(∞, R) decays exponentially fast, in analogy to the result in pure channel coding [7].
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Appendix A. Proof of Theorem 1

By definition, we have

E[Pe(Bn)] = E
[

∑u′∈B(U),u′ 6=U exp{n f (P̂u′V )}
∑ũ∈B(U) exp{n f (P̂ũV )}

]
. (A1)

Step 1: Averaging Over the Random Code

We first condition on the true source sequences (U = u, V = v) and take the expecta-
tion only w.r.t. the random binning. We get

E[Pe(Bn)|u, v]

= E
[

∑u′∈B(u),u′ 6=u exp{n f (P̂u′v)}
exp{n · f (P̂uv)}+ ∑u′∈B(u),u′ 6=u exp{n f (P̂u′v)}

]
(A2)

=
∫ 1

0
P
{

∑u′∈B(u),u′ 6=u exp{n f (P̂u′v)}
exp{n · f (P̂uv)}+ ∑u′∈B(u),u′ 6=u exp{n f (P̂u′v)}

≥ s

}
ds (A3)

=
∫ ∞

0
ne−nξ · P

{
∑u′∈B(u),u′ 6=u exp{n f (P̂u′v)}

exp{n · f (P̂uv)}+ ∑u′∈B(u),u′ 6=u exp{n f (P̂u′v)}
≥ e−nξ

}
dξ (A4)

=
∫ ∞

0
ne−nξ · P

(1− e−nξ) ∑
u′∈B(u),u′ 6=u

exp{n f (P̂u′v)} ≥ e−nξ exp{n f (P̂uv)}

dξ (A5)

.
=
∫ ∞

0
ne−nξ · P

 ∑
u′∈B(u),u′ 6=u

exp{n f (P̂u′v)} ≥ exp{n[ f (P̂uv)− ξ]}

dξ, (A6)

where (A4) follows by changing the integration variable in (A3) according to s = e−nξ .
Define

Nu,v(QU|V) = ∑
u′∈B(u),u′ 6=u

1{u′ ∈ T (QU|V |v)}, (A7)

such that the probability in (A6) is given by
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P

 ∑
u′∈B(u),u′ 6=u

exp{n f (P̂u′v)} ≥ exp{n[ f (P̂uv)− ξ]}


= P

 ∑
QU′ |V

Nu,v(QU′ |V) exp{n f (QU′V)} ≥ exp{n[ f (P̂uv)− ξ]}

 (A8)

.
= P

{
max
QU′ |V

Nu,v(QU′ |V) exp{n f (QU′V)} ≥ exp{n[ f (P̂uv)− ξ]}
}

(A9)

= P
⋃

QU′ |V

{
Nu,v(QU′ |V) exp{n f (QU′V)} ≥ exp{n[ f (P̂uv)− ξ]}

}
(A10)

.
= ∑

QU′ |V

P
{

Nu,v(QU′ |V) ≥ exp{n[ f (P̂uv)− f (QU′V)− ξ]}
}

, (A11)

where QU′V = QU′ |V × P̂v. Let us denote B0 = f (P̂uv)− f (QU′V). Now, given u and v,

Nu,v(QU′ |V) is a binomial sum of |T (QU′ |V |v)|
.
= enHQ(U′ |V) trials and success rate of the

exponential order of e−nR(QU). Therefore, using the techniques of [24] (Section 6.3),

− 1
n

logP
{

Nu,v(QU′ |V) ≥ exp{n[B0 − ξ]}
}

=

{ [
R(QU)− HQ(U′|V)

]
+

[
HQ(U′|V)− R(QU)

]
+ ≥ B0 − ξ

∞
[
HQ(U′|V)− R(QU)

]
+ < B0 − ξ

(A12)

=

{ [
R(QU)− HQ(U′|V)

]
+ ξ ≥ B0 −

[
HQ(U′|V)− R(QU)

]
+

∞ ξ < B0 −
[
HQ(U′|V)− R(QU)

]
+

, (A13)

and so,

∫ ∞

0
e−nξ · P

{
Nu,v(QU|V) ≥ exp{n[B0 − ξ]}

}
dξ

.
=
∫ ∞

[B0−[HQ(U′ |V)−R(QU)]+]+
e−nξ · e−n[R(QU)−HQ(U′ |V)]+dξ (A14)

.
= exp

{
−n
(
[R(QU)− HQ(U′|V)]+ +

[
B0 − [HQ(U′|V)− R(QU)]+

]
+

)}
(A15)

= exp
{
−n
(

R(QU)− HQ(U′|V) + [B0]+ R(QU) ≥ HQ(U′|V)[
R(QU)− HQ(U′|V) + B0

]
+ R(QU) < HQ(U′|V)

)}
(A16)

= exp

{
−n

( [
R(QU)− HQ(U′|V) + [B0]+

]
+ R(QU) ≥ HQ(U′|V)[

R(QU)− HQ(U′|V) + [B0]+
]
+ R(QU) < HQ(U′|V)

)}
(A17)

= exp
{
−n ·

[
R(QU)− HQ(U′|V) + [B0]+

]
+

}
. (A18)

Finally, we have that
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∑
QU′ |V

∫ ∞

0
e−nξ · P

{
Nu,v(QU|V) ≥ exp{n[B0 − ξ]}

}
dξ (A19)

.
= max

QU′ |V
exp

{
−n ·

[
R(QU)− HQ(U′|V) + [B0]+

]
+

}
(A20)

= exp

{
−n · min

QU′ |V

[
R(QU)− HQ(U′|V) + [B0]+

]
+

}
, (A21)

thus,

E(u, v) = min
QU′ |V

[
R(QU)− HQ(U′|V) + [ f (P̂uv)− f (QU′V)]+

]
+. (A22)

Step 2: Averaging Over U and V

Notice that the exponent function E(u, v) depends on (u, v) only via the empirical
distribution P̂uv. Averaging over the source and the side information sequences, now yields

E{Pe(Bn)} = ∑
u,v

P(u, v) · 1
{

Ĥu(U) ≥ R(P̂u)
}
· exp

{
−n · E(P̂uv)

}
(A23)

.
= ∑
{QUV : HQ(U)≥R(QU)}

e−n·D(QUV‖PUV) · exp{−n · E(QUV)} (A24)

.
= exp

{
−n · min

{QUV : HQ(U)≥R(QU)}
[D(QUV‖PUV) + E(QUV)]

}
, (A25)

which proves the first point of Theorem 1.

Step 3: Moving from Stochastic to Deterministic Decoding

In order to transform the GLD into the general deterministic decoder of

û = arg max
u′∈B(u)∩T (u)

f (P̂u′v), (A26)

we just have to multiply f (·), in

E(QUV) = min
QU′ |V

[
R(QU)− HQ(U′|V) + [ f (QUV)− f (QU′V)]+

]
+, (A27)

by β ≥ 0, and then let β→ ∞. We find that the overall error exponent of the SD ensemble
with the general deterministic decoder of (A26) is given by

E(P) = min
{QUV : HQ(U)≥R(QU)}

[
D(QUV‖PUV) + Ẽ(QUV)

]
, (A28)

where,

Ẽ(QUV) = min
{QU′ |V : f (QU′V)≥ f (QUV)}

[
R(QU)− HQ(U′|V)

]
+. (A29)
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Step 4: A Fundamental Limitation on the Error Exponent

Note that the minimum in (A29) can be upper–bounded by choosing a specific distri-
bution in the feasible set. In (A29), we take QU′ |V = QU|V and then

Ẽ(QUV) ≤
[
R(QU)− HQ(U|V)

]
+. (A30)

Hence, the overall error exponent is upper–bounded as

E(P) ≤ min
{QUV : HQ(U)≥R(QU)}

[
D(QUV‖PUV) +

[
R(QU)− HQ(U|V)

]
+

]
. (A31)

Step 5: An Optimal Universal Decoder

We prove that the upper bound of (A31) is attainable by choosing the universal
decoding metric f (QUV) = −HQ(U|V). Now, we get for (A29)

Ẽ(QUV) = min
{QU′ |V : f (QU′V)≥ f (QUV)}

[
R(QU)− HQ(U′|V)

]
+ (A32)

= min
{QU′ |V : HQ(U|V)≥HQ(U′ |V)}

[
R(QU)− HQ(U′|V)

]
+ (A33)

=
[
R(QU)− HQ(U|V)

]
+, (A34)

which completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

Appendix B.1. Lower Bound on the Error Exponent

Our starting point is the following inequality, for any ρ > 0,

E[log Pe(Bn)] ≤ log
(
E[Pe(Bn)]

1/ρ
)ρ

, (A35)

which is due to the following considerations. First, for a positive random variable X, the
function

f (ρ) = log
(
E
[

X1/ρ
])ρ

(A36)

is monotonically decreasing, and second, by L’Hospital’s rule,

lim
ρ→∞

log
(
E
[

X1/ρ
])ρ

= E[log X]. (A37)

Recall that the error probability is given by

Pe(Bn) = ∑
u,v

P(u, v) · 1
{

Ĥu(U) ≥ R(P̂u)
}
·

∑u′∈B(u)∩T (u),u′ 6=u exp{n f (P̂u′v)}
∑ũ∈B(u)∩T (u) exp{n f (P̂ũv)}

. (A38)

Let

Zu(v) = ∑
ũ∈B(u)∩T (u),ũ 6=u

exp{n f (P̂ũv)}, (A39)
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fix ε > 0 arbitrarily small, and for every u ∈ Un and v ∈ Vn, define the set

Bε(u, v) =
{
Bn : Zu(v) ≤ exp{nα(R + ε, P̂u, P̂v)}

}
. (A40)

Following the result of [20] (Appendix B), we prove the following modification in Appendix C.

Lemma A1. Let ε > 0 be arbitrarily small. Then, for every u ∈ Un and v ∈ Vn,

P
{

Zu(v) ≤ exp{nα(R + ε, P̂u, P̂v)}
}
≤ exp{−enε + nε + 1}. (A41)

Thus, by the union bound,

P
{ ⋃

u∈Un

⋃
v∈Vn

Bε(u, v)

}
4
= P{Bε} ≤ ∑

u∈Un
∑

v∈Vn
P{Bε(u, v)} (A42)

≤ ∑
u∈Un

∑
v∈Vn

exp{−enε + nε + 1} (A43)

= |U × V|n · exp{−enε + nε + 1}, (A44)

which still decays double–exponentially fast. Recall that Q = {QUU′ : QU = QU′}. Then,
for any ρ ≥ 1

E
{
[Pe(Bn)]

1/ρ
}

= E
{

Pe(Bn)
1/ρ · 1{Bc

ε}
}
+E

{
Pe(Bn)

1/ρ · 1{Bε}
}

(A45)

≤ E


[
∑
u,v

P(u, v)1
{

Ĥu(U) ≥ R(P̂u)
}∑u′∈B(u)∩T (u),u′ 6=u exp{n f (P̂u′v)}

exp{n f (P̂uv)}+ Zu(v)

]1/ρ

1{Bc
ε}


+ P{Bε} (A46)

≤ E


∑

u,v
∑

u′∈B(u)∩T (u),u′ 6=u
P(u, v)1

{
Ĥu(U) ≥ R(P̂u)

}
×min

{
1,

exp{n f (P̂u′v)}
exp{n f (P̂uv)}+ exp{nα(R + ε, P̂u, P̂v)}

}]1/ρ
}

+ |U × V|n · exp{−enε + nε + 1} (A47)

.
= E


∑

u
∑

u′∈B(u)∩T (u),u′ 6=u
P(u)1

{
Ĥu(U) ≥ R(P̂u)

}

×∑
v

P(v|u) exp
{
−n ·

[
max{ f (P̂uv), α(R + ε, P̂u, P̂v)} − f (P̂u′v)

]
+

}]1/ρ
 (A48)

.
= E


∑

u
∑

u′∈B(u)∩T (u),u′ 6=u
P(u) · 1

{
Ĥu(U) ≥ R(P̂u)

}
· exp

{
−n ·Λ(P̂uu′ , R + ε)

}1/ρ
 (A49)

= E


 ∑
{QUU′∈Q: HQ(U)≥R(QU)}

N(QUU′) · enEQ [log P(U)] · exp{−n ·Λ(QUU′ , R + ε)}

1/ρ
 (A50)

.
= ∑
{QUU′∈Q: HQ(U)≥R(QU)}

E
{
[N(QUU′)]

1/ρ
}
· en(EQ [log P(U)])/ρ · exp{−n ·Λ(QUU′ , R + ε)/ρ}, (A51)
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where (A47) is due to Lemma A1, (A49) is by the method of types and the definition of
Λ(QUU′ , R) in (27), and in (A50) we used the definition of N(QUU′) in (30). Therefore, our
next task is to evaluate the 1/ρ–th moment of N(QUU′). Let us define

Nu(QU′ |U) = ∑
u′∈T (QU′ |U |u)

1
{
B(u′) = B(u)

}
. (A52)

For a given ρ ≥ 1, let s ∈ [1, ρ]. Then,

E
{
[N(QUU′)]

1/ρ
}
= E


 ∑

u∈T (QU)

Nu(QU′ |U)

1/ρ
 (A53)

= E



 ∑

u∈T (QU)

Nu(QU′ |U)

1/s


s/ρ
 (A54)

≤ E


 ∑

u∈T (QU)

[
Nu(QU′ |U)

]1/s
s/ρ

 (A55)

≤

E

 ∑
u∈T (QU)

[
Nu(QU′ |U)

]1/s


s/ρ

(A56)

=

 ∑
u∈T (QU)

E
{[

Nu(QU′ |U)
]1/s

}s/ρ

, (A57)

where (A56) follows from Jensen’s inequality. Now, Nu(QU′ |U) is a binomial random

variable with |T (QU′ |U |u)|
.
= enHQ(U′ |U) trials and success rate which is of the exponential

order of e−nR. We have that [24] (Section 6.3)

E
{[

Nu(QU′ |U)
]1/s

}
.
=

{
exp{n[HQ(U′|U)− R]/s} HQ(U′|U) ≥ R
exp{n[HQ(U′|U)− R]} HQ(U′|U) < R

, (A58)

and so,

E
{
[N(QUU′)]

1/ρ
}
≤ enHQ(U)·s/ρ ·

(
E
{[

Nu(QU′ |U)
]1/s

})s/ρ

(A59)

.
= enHQ(U)·s/ρ ·

{
exp{n[HQ(U′|U)− R]/ρ} HQ(U′|U) ≥ R
exp{n[HQ(U′|U)− R]s/ρ} HQ(U′|U) < R

(A60)

=

{
exp{n[HQ(U) · s + HQ(U′|U)− R]/ρ} HQ(U′|U) ≥ R
exp{n[HQ(U) + HQ(U′|U)− R]s/ρ} HQ(U′|U) < R

(A61)

=

{
exp{n[HQ(U) · s + HQ(U′|U)− R]/ρ} HQ(U′|U) ≥ R
exp{n[HQ(U, U′)− R]s/ρ} HQ(U′|U) < R

.

(A62)

After optimizing over s, we get
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1
n

logE
{
[N(QUU′)]

1/ρ
}

≤ min
1≤s≤ρ


[
HQ(U) · s + HQ(U′|U)− R

]
/ρ HQ(U′|U) ≥ R[

HQ(U, U′)− R
]
s/ρ HQ(U′|U) < R, HQ(U, U′) ≥ R[

HQ(U, U′)− R
]
s/ρ HQ(U′|U) < R, HQ(U, U′) < R

(A63)

=


[
HQ(U) + HQ(U′|U)− R

]
/ρ HQ(U′|U) ≥ R[

HQ(U, U′)− R
]
/ρ HQ(U′|U) < R, HQ(U, U′) ≥ R[

HQ(U, U′)− R
]
ρ/ρ HQ(U′|U) < R, HQ(U, U′) < R

(A64)

=

{ [
HQ(U, U′)− R

]
/ρ HQ(U, U′) ≥ R[

HQ(U, U′)− R
]

HQ(U, U′) < R
, (A65)

which gives, after raising to the ρ–th power,

(
E
{
[N(QUU′)]

1/ρ
})ρ
≤
{

exp{n
[
HQ(U, U′)− R

]
} HQ(U, U′) ≥ R

exp{n
[
HQ(U, U′)− R

]
· ρ} HQ(U, U′) < R

(A66)

= exp{n([HQ(U, U′)− R]+ − ρ[R− HQ(U, U′)]+)}. (A67)

Let us denote F(Q, R, ρ) = [HQ(U, U′)− R]+ − ρ[R− HQ(U, U′)]+. Continuing now from
(A51),(

E
{
[Pe(Bn)]

1/ρ
})ρ

·
≤

 ∑
{QUU′∈Q: HQ(U)≥R(QU)}

E
{
[N(QUU′)]

1/ρ
}
· en[EQ log P(U)]/ρ · exp{−n ·Λ(QUU′ , R + ε)/ρ}

ρ

(A68)

.
= ∑
{QUU′∈Q: HQ(U)≥R(QU)}

(
E
{
[N(QUU′)]

1/ρ
})ρ
· enEQ log P(U) · exp{−n ·Λ(QUU′ , R + ε)} (A69)

≤ ∑
{QUU′∈Q: HQ(U)≥R(QU)}

exp{n(F(Q, R, ρ) +EQ[log P(U)]−Λ(QUU′ , R + ε))} (A70)

.
= exp

{
−n · min

{QUU′∈Q: HQ(U)≥R(QU)}
(Λ(QUU′ , R + ε)− F(Q, R, ρ)−EQ[log P(U)])

}
. (A71)

where (A70) follows from (A67). Finally, it follows by (A35) that

lim inf
n→∞

− 1
n
E[log Pe(Bn)]

≥ lim inf
n→∞

− 1
n

log
(
E[Pe(Bn)]

1/ρ
)ρ

(A72)

≥ min
{QUU′∈Q: HQ(U)≥R(QU)}

(Λ(QUU′ , R + ε)− F(Q, R, ρ)−EQ[log P(U)]). (A73)

Letting ρ grow without bound yields that
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lim inf
n→∞

− 1
n
E[log Pe(Bn)]

≥ min
{QUU′∈Q: HQ(U)≥R(QU), HQ(U,U′)≥R(QU)}

(Λ(QUU′ , R + ε)− HQ(U, U′)

+ R(QU)−EQ[log P(U)]) (A74)

= min
{QUU′∈Q: HQ(U)≥R(QU)}

(Λ(QUU′ , R + ε)− HQ(U, U′) + R(QU)−EQ[log P(U)]).

(A75)

Due to the arbitrariness of ε > 0, we have proved that

lim inf
n→∞

− 1
n
E[log Pe(Bn)]

≥ min
{QUU′∈Q: HQ(U)≥R(QU)}

(Λ(QUU′ , R)− HQ(U, U′) + R(QU)−EQ[log P(U)]). (A76)

completing half of the proof of Theorem 2.

B.2. Upper Bound on the Error Exponent

Consider a joint distribution QUU′ , that satisfies HQ(U, U′) > R, and define the
event E(QUU′) = {Bn : N(QUU′) < exp{n[HQ(U, U′)− R− ε]}}. We want to show that
P{E(QUU′)} is small. Consider the following:

P{E(QUU′)} = P{N(QUU′) < exp{n[HQ(U, U′)− R− ε]}} (A77)

= P{N(QUU′) < e−nε ·E{N(QUU′)}} (A78)

= P
{

N(QUU′)

E{N(QUU′)}
− 1 < −(1− e−nε)

}
(A79)

≤ P
{[

N(QUU′)−E{N(QUU′)}
E{N(QUU′)}

]2

> (1− e−nε)2

}
(A80)

≤ Var{N(QUU′)}
(1− e−nε)2 ·E2{N(QUU′)}

. (A81)

Let us use the shorthand notations I(u, u′) = 1{B(u′) = B(u)}, K = |T (QUU′)|, and
p = e−nR. Concerning the variance of N(QUU′), we have the following

Var{N(QUU′)}
= E{N2(QUU′)} −E2{N(QUU′)} (A82)

= E


 ∑
(u,u′)∈T (QUU′ )

I(u, u′)

×
 ∑
(ũ,û)∈T (QUU′ )

I(ũ, û)

− (Kp)2 (A83)

= ∑
(u,u′)∈T (QUU′ )

∑
(ũ,û)∈T (QUU′ )

E
{
I(u, u′)I(ũ, û)

}
− (Kp)2 (A84)

= ∑
(u,u′)∈T (QUU′ )

E
{
I2(u, u′)

}
+ ∑

(u,u′),(ũ,û)∈T (QUU′ )
(u,u′) 6=(ũ,û)

E
{
I(u, u′)I(ũ, û)

}
− (Kp)2 (A85)

= Kp + K(K− 1)p2 − (Kp)2 (A86)

= Kp(1− p) (A87)
.
= exp{n[HQ(U, U′)− R]}, (A88)
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and hence,

P{E(QUU′)}
·
≤

exp{n[HQ(U, U′)− R]}
exp{n[2HQ(U, U′)− 2R]} (A89)

= exp{−n[HQ(U, U′)− R]}, (A90)

which decays to zero since we have assumed that HQ(U, U′) > R. Furthermore, if
HQ(U, U′) ≥ R + ε, then P{E(QUU′)} tends to zero at least as fast as e−nε. Now, for
a given ε > 0, and a given joint type QUU′V , such that HQ(U, U′) ≥ R + ε, let us define

Zuu′(v) = ∑
ũ∈B(u)∩T (u),ũ 6=u,u′

exp{n f (P̂ũv)}, (A91)

and

Gn(QUU′V) =

{
Bn : ∑

(u,u′)∈T (QUU′ )

1{B(u′) = B(u)}×

∑
v∈T (QV|UU′ |u,u′)

1

{
Zuu′(v) ≤ en[α(R−2ε,QU ,QV)+ε]

}
≥

exp{n[HQ(U, U′)− R− 3ε/2]} · |T (QV|UU′ |u, u′)|
}

, (A92)

where (u, u′) in the expression |T (QV|UU′ |u, u′)| should be understood as any pair of
source sequences in T (QUU′). Next, we define

Gn =
⋂

{QUU′V : HQ(U,U′)≥R+ε}
[Gn(QUU′V) ∩ E c(QUU′)]. (A93)

We start by proving that P{Gn} → 1 as n→ ∞, or equivalently, that P{G c
n} → 0 as n→ ∞.

Now,

P{G c
n} = P

 ⋃
{QUU′V : HQ(U,U′)≥R+ε}

[G c
n(QUU′V) ∪ E(QUU′)]

 (A94)

≤ ∑
{QUU′V : HQ(U,U′)≥R+ε}

P{G c
n(QUU′V) ∪ E(QUU′)} (A95)

= ∑
{QUU′V : HQ(U,U′)≥R+ε}

[P{E(QUU′)}+ P{G c
n(QUU′V) ∩ E c(QUU′)}]. (A96)

The last summation contains a polynomial number of terms. If we prove that the summand
tends to zero exponentially with n, then P{G c

n} → 0 as n→ ∞. The first term in the sum-
mand, P{E(QUU′)}, has already been proved to be upper bounded by e−nε. Concerning
the second term, we have the following
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P{G c
n(QUU′V) ∩ E c(QUU′)}

= P
[

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · ∑
v∈T (QV|UU′ |u,u′)

1

{
Zuu′(v) ≤ en[α(R−2ε,QU ,QV)+ε]

}
<

exp{n[HQ(U, U′)− R− 3ε/2]} · |T (QV|UU′ |u, u′)|,

N(QUU′) ≥ exp{n[HQ(U, U′)− R− ε]}
]

(A97)

= P
[

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · ∑
v∈T (QV|UU′ |u,u′)

1

{
Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]

}
>

[N(QUU′)− exp{n[HQ(U, U′)− R− 3ε/2]}] · |T (QV|UU′ |u, u′)|,

N(QUU′) ≥ exp{n[HQ(U, U′)− R− ε]}
]

(A98)

≤ P
[

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · ∑
v∈T (QV|UU′ |u,u′)

1

{
Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]

}
>

[exp{n[HQ(U, U′)− R− ε]} − exp{n[HQ(U, U′)− R− 3ε/2]}] · |T (QV|UU′ |u, u′)|,

N(QUU′) ≥ exp{n[HQ(U, U′)− R− ε]}
]

(A99)

≤ P
[

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · ∑
v∈T (QV|UU′ |u,u′)

1

{
Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]

}
>

[exp{n[HQ(U, U′)− R− ε]} − exp{n[HQ(U, U′)− R− 3ε/2]}] · |T (QV|UU′ |u, u′)|
]

(A100)

≤
E
{

∑(u,u′)∈T (QUU′ )
1{B(u′) = B(u)} ·∑v∈T (QV|UU′ |u,u′) 1

{
Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]

}}
[exp{n[HQ(U, U′)− R− ε]} − exp{n[HQ(U, U′)− R− 3ε/2]}] · |T (QV|UU′ |u, u′)| (A101)

·
≤
|T (QUU′)| · |T (QV|UU′ |u, u′)| · P

{
B(u′) = B(u), Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]

}
exp{n[HQ(U, U′)− R− ε]} · |T (QV|UU′ |u, u′)| (A102)

.
=

exp{nHQ(U, U′)} · P{B(u′) = B(u)} · P
{

Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]
}

exp{n[HQ(U, U′)− R− ε]} (A103)

= enε · P
{

Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]
}

, (A104)

where (A99) follows by using the second event N(QUU′) ≥ exp{n[HQ(U, U′)− R− ε]}
to increase the first event inside the probability in (A98), (A100) is true since the second
event in (A99) was omitted, (A101) follows from Markov’s inequality, and (A103) is due
to the independence between the two events inside the probability in (A102). As for the
probability in (A104),
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P
{

Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]
}

= P

 ∑
QU|V

N(QUV)en f (QUV) > en[α(R−2ε,QU ,QV)+ε]

 (A105)

.
= max

QU|V
P{N(QUV) > exp{n[α(R− 2ε, QU , QV) + ε− f (QUV)]}} (A106)

.
= e−nE, (A107)

where N(QUV) is the number of source sequences within B(u), other than u and u′, that
fall in the conditional type class T (QU|V |v), which is a binomial random variable with
enHQ(U|V) − 2 trials and success rate of exponential order e−nR, and hence,

E = min
QU|V

{
[R− HQ(U|V)]+ f (QUV) + [HQ(U|V)− R]+ ≥ α(R− 2ε, QU , QV) + ε
∞ f (QUV) + [HQ(U|V)− R]+ < α(R− 2ε, QU , QV) + ε

(A108)

= min
{QU|V : f (QUV)+[HQ(U|V)−R]+≥α(R−2ε,QU ,QV)+ε}

[R− HQ(U|V)]+. (A109)

By definition of the function α(R, QU , QV), the set {QU|V : f (QUV) + [HQ(U|V)− R]+ ≥
α(R− 2ε, QU , QV) + ε} is a subset of {QU|V : HQ(U|V) ≤ R− 2ε}. Thus,

E ≥ min
{QU|V : HQ(U|V)≤R−2ε}

[R− HQ(U|V)]+ ≥ 2ε, (A110)

and hence, P
{

Zuu′(v) > en[α(R−2ε,QU ,QV)+ε]
} ·
≤ e−2nε, which provides

P{G c
n(QUU′V) ∩ E c(QUU′)}

·
≤ enε · e−2nε = e−nε, (A111)

which proves that P{Gn} → 1 as n→ ∞. Now, for a given Bn ∈ Gn(QUU′V), we define the
set

K(Bn, QUU′V) = {(u, u′, v) : Zuu′(v) ≤ exp{n[α(R− 2ε, QU , QV) + ε]}}, (A112)

and

K(Bn, QUU′V |u, u′) = {v : (u, u′, v) ∈ K(Bn, QUU′V)}. (A113)

Then, by definition, for any Bn ∈ Gn(QUU′V),

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} ·
|T (QV|UU′ |u, u′) ∩K(Bn, QUU′V |u, u′)|

|T (QV|UU′ |u, u′)|

≥ exp{n[HQ(U, U′)− R− 3ε/2]}, (A114)

where we have used the fact that T (QV|UU′ |u, u′) has exponentially the same cardinality
for all (u, u′) ∈ T (QUU′). Wrapping all up, we get that for any Bn ∈ Gn,
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Pe(Bn)

= ∑
u,v

P(u, v)1
{

Ĥu(U) ≥ R(P̂u)
} ∑u′∈B(u)∩T (u),u′ 6=u exp{n f (P̂u′v)}

exp{n f (P̂uv)}+ exp{n f (P̂u′v)}+ Zuu′(v)
(A115)

≥ ∑
{QUU′ : HQ(U,U′)≥R+ε,HQ(U)≥R(QU)}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · exp{nEQ log P(U)}

× ∑
QV|UU′

∑
v∈T (QV|UU′ |u,u′)∩K(Bn ,QUU′V |u,u′)

exp{nEQ log P(V|U)}

× exp{n f (QU′V)}
exp{n f (QUV)}+ exp{n f (QU′V)}+ Zuu′(v)

(A116)

≥ ∑
{QUU′ : HQ(U,U′)≥R+ε,HQ(U)≥R(QU)}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)} · exp{nEQ log P(U)}

× ∑
QV|UU′

∑
v∈T (QV|UU′ |u,u′)∩K(Bn ,QUU′V |u,u′)

exp{nEQ log P(V|U)}

× exp{n f (QU′V)}
exp{n f (QUV)}+ exp{n f (QU′V)}+ exp{n[α(R− 2ε, QU , QV) + ε]} (A117)

.
= ∑
{QUU′ : HQ(U,U′)≥R+ε,HQ(U)≥R(QU)}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)}

× ∑
QV|UU′

|T (QV|UU′ |u, u′) ∩K(Bn, QUU′V |u, u′)|
|T (QV|UU′ |u, u′)| · |T (QV|UU′ |u, u′)| · enEQ log P(U,V)

× exp{−n · [max{ f (QUV), α(R− 2ε, QU , QV) + ε} − f (QU′V)]+} (A118)
.
= ∑
{QUU′V : HQ(U,U′)≥R+ε,HQ(U)≥R(QU)}

∑
(u,u′)∈T (QUU′ )

1{B(u′) = B(u)}

×
|T (QV|UU′ |u, u′) ∩K(Bn, QUU′V |u, u′)|

|T (QV|UU′ |u, u′)| · enHQ(V|U,U′) · enEQ log P(U,V)

× exp{−n · [max{ f (QUV), α(R− 2ε, QU , QV) + ε} − f (QU′V)]+} (A119)

≥ ∑
{QUU′V : HQ(U,U′)≥R+ε,HQ(U)≥R(QU)}

exp{n[HQ(U, U′)− R− 3ε/2]} · enHQ(V|U,U′)

× enEQ log P(U,V) · exp{−n · [max{ f (QUV), α(R− 2ε, QU , QV) + ε} − f (QU′V)]+} (A120)

.
= exp

{
−n · min

{QUU′V : HQ(U,U′)≥R+ε,HQ(U)≥R(QU)}
{−HQ(U, U′) + R + 3ε/2− HQ(V|U, U′)

−EQ[log P(U, V)] + [max{ f (QUV), α(R− 2ε, QU , QV) + ε} − f (QU′V)]+}
}

(A121)
4
= exp{−nEtrc(R, ε)}, (A122)

where (A117) follows from the definition of the setK(Bn, QUU′V |u, u′) in (A113) and (A120)
is due to (A114). Consider the following:
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E
[
− 1

n
log Pe(Bn)

]
= ∑
Bn

P{Bn}
(
− 1

n
log Pe(Bn)

)
(A123)

= ∑
Bn∈Gn

P{Bn}
(
− 1

n
log Pe(Bn)

)
+ ∑
Bn∈Gc

n

P{Bn}
(
− 1

n
log Pe(Bn)

)
(A124)

≤ ∑
Bn∈Gn

P{Bn}
(
− 1

n
log e−nEtrc(R,ε)

)
+ ∑
Bn∈Gc

n

P{Bn}
(
− 1

n
log e−nEsp(R)

)
(A125)

= P{Gn}Etrc(R, ε) + P{G c
n}Esp(R), (A126)

which implies that

lim sup
n→∞

E
[
− 1

n
log Pe(Bn)

]
≤ Etrc(R, ε). (A127)

It follows from the arbitrariness of ε that

lim sup
n→∞

E
{
− 1

n
log[Pe(Bn)]

}
≤ min
{QUU′V : HQ(U,U′)≥R,HQ(U)≥R(QU)}

{−HQ(U, U′) + R− HQ(V|U, U′)

−EQ[log P(U, V)] + [max{ f (QUV), α(R, QU , QV)} − f (QU′V)]+} (A128)

= min
{QUU′V : HQ(U)≥R(QU)}

{−HQ(U, U′) + R− HQ(V|U, U′)

−EQ[log P(U, V)] + [max{ f (QUV), α(R, QU , QV)} − f (QU′V)]+} (A129)

= min
{QUU′∈Q: HQ(U)≥R(QU)}

{Λ(QUU′ , R)− HQ(U, U′) + R(QU)−EQ[log P(U)]}, (A130)

which completes the proof of Theorem 2.

Appendix C. Proof of Lemma A1

Let N(T (QU|V |v),B(u)) be defined as

N(T (QU|V |v),B(u)) = ∑
u′∈T (QU|V |v)

1
{
B(u′) = B(u)

}
. (A131)

First, note that

Zu(v) = ∑
ũ∈B(u)∩T (u),ũ 6=u

exp{n f (P̂ũv)} = ∑
QU|V∈S(P̂u ,P̂v)

N(T (QU|V |v),B(u))en f (QUV),

(A132)

where S(P̂u, P̂v) = {QU|V : (P̂v × QU|V)U = P̂u}. Thus, taking the randomness of
{B(u)}u∈Un into account,
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P
{

Zv(u) ≤ exp{nα(R + ε, P̂u, P̂v)}
}

= P

 ∑
QU|V∈S(P̂u ,P̂v)

N(T (QU|V |v),B(u))en f (QUV) ≤ exp{nα(R + ε, P̂u, P̂v)}

 (A133)

≤ P
{

max
QU|V∈S(P̂u ,P̂v)

N(T (QU|V |v),B(u))en f (QUV) ≤ exp{nα(R + ε, P̂u, P̂v)}
}

(A134)

= P
⋂

QU|V∈S(P̂u ,P̂v)

{
N(T (QU|V |v),B(u))en f (QUV) ≤ exp{nα(R + ε, P̂u, P̂v)}

}
(A135)

= P
⋂

QU|V∈S(P̂u ,P̂v)

{
N(T (QU|V |v),B(u)) ≤ exp{n[α(R + ε, P̂u, P̂v)− f (QUV)]}

}
. (A136)

Now, N(T (QU|V |v),B(u)) is a binomial random variable with |T (QU|V |v)|
.
= enHQ(U|V)

trials and success rate which is of the exponential order of e−nR. We prove that by the very
definition of the function α(R + ε, P̂u, P̂v), there must exist some conditional distribution
Q∗U|V ∈ S(P̂u, P̂v) such that for Q∗UV = P̂v ×Q∗U|V , the two inequalities HQ∗(U|V) ≥ R + ε

and HQ∗(U|V) − R − ε ≥ α(R + ε, P̂u, P̂v) − f (Q∗UV) hold. To show that, we assume
conversely, i.e., that for every conditional distribution QU|V ∈ S(P̂u, P̂v), which defines
QUV = P̂v × QU|V , either HQ(U|V) < R + ε or HQ(U|V) − R − ε < α(R + ε, P̂u, P̂v)−
f (QUV), which means that for every distribution QU|V ∈ S(P̂u, P̂v)

HQ(U|V)− ε < max{R, R + α(R + ε, P̂u, P̂v)− f (QUV)} (A137)

= R + [α(R + ε, P̂u, P̂v)− f (QUV)]+. (A138)

Writing it slightly differently, for every QU|V ∈ S(P̂u, P̂v) there exists some real number
t ∈ [0, 1] such that

HQ(U|V)− ε < R + t[α(R + ε, P̂u, P̂v)− f (QUV)], (A139)

or equivalently,

α(R + ε, P̂u, P̂v) > max
QU|V∈S(P̂u ,P̂v)

min
t∈[0,1]

f (QUV) +
HQ(U|V)− R− ε

t
(A140)

= max
QU|V∈S(P̂u ,P̂v)

{
f (QUV) + HQ(U|V)− R− ε HQ(U|V) ≥ R + ε
−∞ HQ(U|V) < R + ε

(A141)

= max
{QU|V∈S(P̂u ,P̂v): HQ(U|V)≥R+ε}

[ f (QUV) + HQ(U|V)]− R− ε (A142)

≡ α(R + ε, P̂u, P̂v), (A143)

which is a contradiction. Let the conditional distribution Q∗U|V be as defined above. Then,

P
⋂

QU|V∈S(P̂u ,P̂v)

{
N(T (QU|V |v),B(u)) ≤ exp{n[α(R + ε, P̂u, P̂v)− f (QUV)]}

}
(A144)

≤ P
{

N(T (Q∗U|V |v),B(u)) ≤ exp{n[α(R + ε, P̂u, P̂v)− f (Q∗UV)]}
}

. (A145)
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Now, we know that both of the inequalities HQ∗(U|V) ≥ R + ε and HQ∗(U|V)− R− ε ≥
α(R + ε, P̂u, P̂v)− f (Q∗UV) hold. By the Chernoff bound, the probability of (A145) is upper
bounded by

exp
{
− enHQ∗ (U|V)D(e−an‖e−bn)

}
, (A146)

where a = HQ∗(U|V) + f (Q∗UV) − α(R + ε, P̂u, P̂v) and b = R, and where D(α‖β), for
α, β ∈ [0, 1], is the binary divergence function, that is

D(α‖β) = α log
α

β
+ (1− α) log

1− α

1− β
. (A147)

Since a− b ≥ ε, the binary divergence is lower bounded as follows [24] (Section 6.3):

D(e−an‖e−bn) ≥ e−bn
{

1− e−(a−b)n[1 + n(a− b)]
}

(A148)

≥ e−nR[1− e−nε(1 + nε)], (A149)

where in the second inequality, we invoked the decreasing monotonicity of the function
f (t) = (1 + t)e−t for t ≥ 0. Finally, we get that

P
{

N(T (Q∗U|V |v),B(u)) ≤ exp{n[α(R + ε, P̂u, P̂v)− f (Q∗UV)]}
}

(A150)

≤ exp
{
− enHQ∗ (U|V) · e−nR[1− e−nε(1 + nε)]

}
(A151)

≤ exp
{
− enε[1− e−nε(1 + nε)]

}
(A152)

= exp
{
− enε + nε + 1

}
. (A153)

This completes the proof of Lemma A1.

Appendix D. Proof of Theorem 3

By definition of the error exponents, it follows that Etrc,GLD(R(·)) ≥ Er,GLD(R(·)). We
now prove the other direction. The expression in (28) can also be written as

Etrc,GLD(R(·))
= min{

QUU′ : QU′=QU ,
HQ(U)≥R(QU)

}{Λ(QUU′ , R(QU))−EQ[log P(U)]− HQ(U, U′) + R(QU)
}

(A154)

= min{
QUU′ : QU′=QU ,
HQ(U)≥R(QU)

}
{

min
QV|UU′

{
Ψ(R(QU), QUU′V)− HQ(V|U, U′)−EQ[log P(V|U)]

}
−EQ[log P(U)]− HQ(U, U′) + R(QU)

}
(A155)

= min{
QUU′V : QU′=QU ,

HQ(U)≥R(QU)

}{Ψ(R(QU), QUU′V)− HQ(U, U′, V)−EQ[log P(U, V)] + R(QU)
}

(A156)

= min{
QUU′V : QU′=QU ,

HQ(U)≥R(QU)

}{Ψ(R(QU), QUU′V) + D(QUV‖PUV)− HQ(U′|U, V) + R(QU)
}

(A157)

= min
Q

{
D(QUV‖PUV) + R(QU)− HQ(U′|U, V)

+[max{ f (QUV), γ(R(QU), QU , QV)} − f (QU′V)]+
}

, (A158)
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with the set Q given by Q = {QUU′V : QU′ = QU , HQ(U) ≥ R(QU)}, and where,

γ(R(·), QU , QV) = max{ QŨ|V : QŨ=QU ,
HQ(Ũ|V)≥R(QŨ)

}{ f (QŨV) + HQ(Ũ|V)} − R(QU). (A159)

We upper–bound the minimum in (A158) by decreasing the feasible set; we add to Q the
constraint that U ↔ V ↔ U′ form a Markov chain in that order and denote the new
feasible set by Q̃. We get that

Etrc,GLD(R(·)) ≤ min
Q̃

{
D(QUV‖PUV) + R(QU)− HQ(U′|U, V)

+[max{ f (QUV), γ(R(QU), QU , QV)} − f (QU′V)]+
}

(A160)

= min
Q̃

{
D(QUV‖PUV) + R(QU)− HQ(U′|V)

+[max{ f (QUV), γ(R(QU), QU , QV)} − f (QU′V)]+
}

(A161)

= min
{QUV : HQ(U)≥R(QU)}

{
D(QUV‖PUV) + min

QU′ |V∈Q̂
{R(QU)− HQ(U′|V)

+ [max{ f (QUV), γ(R(QU), QU , QV)} − f (QU′V)]+}
}

, (A162)

where Q̂ = {QU′ |V : QU′ = QU}. In order to upper–bound the inner minimum in (A162),
we split into two cases, according to the maximum between f (QUV) and γ(R(QU), QU , QV).
This is legitimate when the inner minimum and this maximum can be interchanged, which
is possible at least in the special cases of the matched/mismatched decoding metrics
f (Q) = βEQ[log P̃(U, V)] for some β > 0, since if f (Q) is linear, then the entire expression
inside the inner minimum in (A162) is convex in QU′ |V . On the one hand, if the maximum
is given by f (QUV), then the inner minimum in (A162) is just

min
QU′ |V∈Q̂

{
R(QU)− HQ(U′|V) + [ f (QUV)− f (QU′V)]+

}
. (A163)

On the other hand, if the maximum is given by γ(R(QU), QU , QV), let Q∗ = Q∗Ũ|V be the
maximizer in (A159), and then

min
QU′ |V∈Q̂

{
R(QU)− HQ(U′|V) + [γ(R(QU), QU , QV)− f (QU′V)]+

}
= min

QU′ |V∈Q̂

{
R(QU)− HQ(U′|V) +

[
f (Q∗ŨV) + HQ∗(Ũ|V)− R(QU)− f (QU′V)

]
+

}
(A164)

≤ R(QU)− HQ∗(U′|V) +
[

f (Q∗ŨV) + HQ∗(Ũ|V)− R(QU)− f (Q∗U′V)
]
+

(A165)

= R(QU)− HQ∗(U′|V) +
[
HQ∗(Ũ|V)− R(QU)

]
+ (A166)

= R(QU)− HQ∗(U′|V) + HQ∗(Ũ|V)− R(QU) (A167)

= 0, (A168)

where (A165) is because we choose Q∗U′ |V = Q∗Ũ|V instead of minimizing over all QU′ |V ∈ Q̂
and (A167) is true since HQ∗(Ũ|V) ≥ R(QU) by the definition of γ(R(QU), QU , QV).
Combining (A163) and (A168), we find that (A162) is upper–bounded by
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Etrc,GLD(R(·)) ≤ min
{QUV : HQ(U)≥R(QU)}

{D(QUV‖PUV)

+max

{
min

QU′ |V∈Q̂

{
R(QU)− HQ(U′|V) + [ f (QUV)− f (QU′V)]+

}
, 0

}}
(A169)

= min
{QUV : HQ(U)≥R(QU)}

{D(QUV‖PUV)

+

[
min

QU′ |V∈Q̂

{
R(QU)− HQ(U′|V) + [ f (QUV)− f (QU′V)]+

}]
+

 (A170)

= min
{QUV : HQ(U)≥R(QU)}

{D(QUV‖PUV)

+ min
QU′ |V∈Q̂

{[
R(QU)− HQ(U′|V) + [ f (QUV)− f (QU′V)]+

]
+

}}
(A171)

= Er,GLD(R(·)), (A172)

which proves the first point of the theorem. Moving forward, consider the following:

Etrc,MAP(R(·)) (a)
= Er,MAP(R(·)) (b)

= Er,MCE(R(·))
(c)
≤ Etrc,MCE(R(·))

(d)
≤ Etrc,MAP(R(·)), (A173)

where (a) follows from the first point in this theorem by using the matched decoding metric
f (Q) = βEQ[log P(U, V)] and letting β → ∞. Equality (b) is due to the second point
of Theorem 1, which ensures that the random binning error exponents of the MAP and
the MCE decoders are equal. Passage (c) is thanks to the fact that for any decoder, the
error exponent of the typical random code is always at least as high as the random coding
error exponent and (d) is due to the fact that the MAP decoder is optimal. Finally, the
leftmost and the rightmost sides of (A173) are the same, which implies that passages (c)
and (d) must hold with equalities. The equality in passage (c) concludes the second point
of the theorem.

Appendix E. Proof of Theorem 4

The left equality in (33) is implied by the proved equality in passage (d) in (A173). In
order to prove the right equality in (33), first note that Etrc,SCE(R(·)) ≤ Etrc,MAP(R(·)) by the
optimality of the MAP decoder. For the other direction, consider the universal decoding
metric of f (QUV) = −HQ(U|V). Then, trivially,

γ(R(·), QU , QV) = max{ QŨ|V : QŨ=QU ,
HQ(Ũ|V)≥R(QŨ)

}{ f (QŨV) + HQ(Ũ|V)} − R(QU) = −R(QU),

(A174)

and

Ψ(R(·), QUU′V) = [max{ f (QUV), γ(R(·), QU , QV)} − f (QU′V)]+ (A175)

=
[
max{−HQ(U|V),−R(QU)}+ HQ(U′|V)

]
+ (A176)

=
[
HQ(U′|V)−min{HQ(U|V), R(QU)}

]
+ (A177)

≥
[
HQ(U′|U, V)−min{HQ(U|V), R(QU)}

]
+. (A178)
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We have the following

Etrc,SCE(R(·))
= min

Q

{
D(QUV‖PUV) + R(QU)− HQ(U′|U, V)

+[max{ f (QUV), γ(R(QU), QU , QV)} − f (QU′V)]+
}

(A179)

≥ min
Q

{
D(QUV‖PUV) + R(QU)− HQ(U′|U, V)

+
[
HQ(U′|U, V)−min{HQ(U|V), R(QU)}

]
+

}
(A180)

= min
Q

{
D(QUV‖PUV)−min{HQ(U|V), HQ(U′|U, V), R(QU)}+ R(QU)

}
(A181)

≥ min
Q

{
D(QUV‖PUV)−min{HQ(U|V), HQ(U′), R(QU)}+ R(QU)

}
(A182)

= min
{QUV : HQ(U)≥R(QU)}

{
D(QUV‖PUV)−min{HQ(U|V), HQ(U), R(QU)}+ R(QU)

}
(A183)

= min
{QUV : HQ(U)≥R(QU)}

{
D(QUV‖PUV)−min{HQ(U|V), R(QU)}+ R(QU)

}
(A184)

= min
{QUV : HQ(U)≥R(QU)}

{
D(QUV‖PUV) + max{R(QU)− HQ(U|V), 0}

}
(A185)

= min
{QUV : HQ(U)≥R(QU)}

{
D(QUV‖PUV) + [R(QU)− HQ(U|V)]+

}
(A186)

= Etrc,MAP(R(·)), (A187)

which completes the proof of the theorem.

Appendix F. Proof of Theorem 5

We start by writing the expression in (34) in a slightly different way using
min{Q: g(Q)≤0} f (Q) = minQ sups≥0{ f (Q) + s · g(Q)}:

Eer(R(·), ∆) = min
{QUV : R(QU)≥HQ(U|V)+∆}

D(QUV‖PUV) (A188)

= min
QUV

sup
σ≥0
{D(QUV‖PUV) + σ · (HQ(U|V) + ∆− R(QU))}. (A189)

Now, the requirement Eer(R(·), ∆) ≥ Er is equivalent to

min
QUV

sup
σ≥0
{D(QUV‖PUV) + σ · (HQ(U|V) + ∆− R(QU))} ≥ Er (A190)

or,

∀QUV , ∃σ ≥ 0, D(QUV‖PUV) + σ · (HQ(U|V) + ∆− R(QU)) ≥ Er (A191)

or,

∀QU , ∀QV|U , ∃σ ≥ 0, R(QU) ≤ HQ(U|V) + ∆ +
D(QUV‖PUV)− Er

σ
(A192)

or that for any QU ∈ P(U ),
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R(QU) ≤ min
QV|U

sup
σ≥0

{
HQ(U|V) + ∆ +

D(QUV‖PUV)− Er

σ

}
(A193)

= min
QV|U

{
HQ(U|V) + ∆ D(QUV‖PUV) ≤ Er
∞ D(QUV‖PUV) > Er

(A194)

= min
{QV|U : D(QUV‖PUV)≤Er}

{
HQ(U|V) + ∆

}
, (A195)

with the understanding that a minimum over an empty set equals infinity.

Appendix G. Proof of Theorem 6

It follows by the identities min{Q: g(Q)≤0} f (Q) = minQ sups≥0{ f (Q) + s · g(Q)} and
[A]+ = maxµ∈[0,1] µA that (24) can also be written as

Ee(R(·)) = min
QU

min
QV|U

max
µ∈[0,1]

sup
σ≥0
{D(QUV‖PUV) + µ · (R(QU)− HQ(U|V))

+ σ · (R(QU)− HQ(U))}, (A196)

such that Ee(R(·)) ≥ Ee is equivalent to

∀QU , ∀QV|U , ∃µ ∈ [0, 1], ∃σ ≥ 0 :

D(QUV‖PUV) + µ · (R(QU)− HQ(U|V)) + σ · (R(QU)− HQ(U)) ≥ Ee, (A197)

or,

∀QU , ∀QV|U , ∃µ ∈ [0, 1], ∃σ ≥ 0 :

R(QU) ≥
µ · HQ(U|V) + σ · HQ(U) + Ee − D(QUV‖PUV)

µ + σ
, (A198)

or that for any QU ∈ P(U ),

R(QU) ≥ max
QV|U

min
µ∈[0,1]

inf
σ≥0

{
µ · HQ(U|V) + σ · HQ(U) + Ee − D(QUV‖PUV)

µ + σ

}
(A199)

= max
QV|U

min
µ∈[0,1]

min
{

HQ(U), HQ(U|V) +
Ee − D(QUV‖PUV)

µ

}
(A200)

= max
QV|U

min
{

HQ(U), min
µ∈[0,1]

{
HQ(U|V) +

Ee − D(QUV‖PUV)

µ

}}
(A201)

= max
QV|U

{
min{HQ(U), HQ(U|V) + Ee − D(QUV‖PUV)} Ee ≥ D(QUV‖PUV)
−∞ Ee < D(QUV‖PUV)

(A202)

= max
{QV|U : D(QUV‖PUV)≤Ee}

min{HQ(U), HQ(U|V) + Ee − D(QUV‖PUV)} (A203)

= min

{
HQ(U), max

{QV|U : D(QUV‖PUV)≤Ee}
{HQ(U|V) + Ee − D(QUV‖PUV)}

}
,

(A204)

and the proof is complete.
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