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Abstract: It is well-known that some information measures, including Fisher information and entropy,
can be represented in terms of the hazard function. In this paper, we provide the representations
of more information measures, including quantal Fisher information and quantal Kullback-leibler
information, in terms of the hazard function and reverse hazard function. We provide some estimators
of the quantal KL information, which include the Anderson-Darling test statistic, and compare their
performances.
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1. Introduction

Suppose that X is a random variable with a continuous probability density func-
tion (p.d.f.) f (x; θ), where θ is a real-valued scalar parameter. It is well-known that the
Fisher information plays an important role in statistical estimation and inference, which is
defined as

I(θ) =
∫ ∞

−∞
{ ∂

∂θ
log f (x; θ)}2 f (x; θ)dx.

Fisher information identity in terms of the hazard function has been provided by Efron
and Johnstone [1] as

I(θ) =
∫ ∞

−∞
{ ∂

∂θ
log h(x; θ)}2 f (x; θ)dx, (1)

where h(x; θ) is the hazard function defined as f (x; θ)/(1 − F(x; θ)) and F(x; θ) is the
cumulative distribution function.

It is also well-known that the entropy (Teitler et al., 1986) and Kullback-Leibler informa-
tion [2] can be represented in terms of the hazard function, respectively, as

H(X) = 1−
∫ ∞

−∞
f (x) log h(x)dx

and

KL( f : g) =
∫ ∞

−∞
f (x)(

hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1)dx,

where h f (x) and hg(x) are the hazard functions defined as f (x)/(1 − F(x)) and
g(x)/(1− G(x)), respectively.
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The quantal (randomly censored) Fisher information and the quantal (randomly censored)
Kullback-Leibler information have been defined [3], respectively, as

IQF(θ) =
∫ ∞

−∞
{F(t; θ)

(
∂

∂θ
log F(t; θ)

)2
+ F̄(t; θ)

(
∂

∂θ
log F̄(t; θ)

)2
}dW(t)

and

QKL(F : G) =
∫ ∞

−∞

(
F(t) log

F(t)
G(t)

+ F̄(t) log
F̄(t)
Ḡ(t)

)
dW(t), (2)

where W(t) is an appropriate weight function which satisfies
∫ ∞
−∞ dW(x) = 1.

The quantal Fisher information is related with the Fisher information in the ranked
set sample, and the quantal Kullback-Leibler information is related with the cumulative
residual entropy [4] and cumulative entropy [5], defined as

CRE(F) = −
∫ ∞

0
(1− F(x)) log(1− F(x))dx (3)

and

CE(F) = −
∫ ∞

0
F(x) log F(x)dx. (4)

The information representation in terms of the cumulative functions enables us to estimate
the information measure by employing the empirical distribution function.

The organization of this article is as follows: In Section 2, we discuss the rela-
tion between the quantal Fisher information and quantal Kullback-Leibler information.
In Section 3, we provide the expression of the quantal Fisher information in terms of the
hazard and reverse hazard functions as

IQF(θ) =
∫ ∞

−∞
W(x)

(
∂

∂θ
log r(x; θ)

)2
f (x; θ)dx−

∫ ∞

−∞
W(x)

(
∂

∂θ
log h(x; θ)

)2
f (x; θ)dx,

where h(x; θ) and r(x; θ) are the hazard and reverse hazard functions, respectively.
We also provide the expression of the quantal (randomly censored) KL information in

terms of the hazard and reverse hazard functions as

QKL(F : G) =
∫ ∞

−∞
W(x) f (x){

rg(x)
r f (x)

− log
rg(x)
r f (x)

−
hg(x)
h f (x)

+ log
hg(x)
h f (x)

}dx,

where r f (x) and rg(x) are the reverse hazard functions defined as f (x)/F(x) and g(x)/G(x),
respectively.

This representation enables us to estimate the quantal information by employing
the nonparametric hazard function estimator. In Section 4, we discuss the choice of the
weight function W(x) in terms of maximizing the related Fisher information. In Section 5,
we provide the estimator of (2) and evaluate its performance as a goodness-of-fit test
statistic. Finally, in Section 6, some concluding remarks are provided.

2. Quantal Fisher Information and Quantal Kullback-Leibler Information

If we define the quantal response variable Y at t as

Y =

{
1 if X ≤ t
0 if X > t,

its density function is

fY(y : θ) = F(t; θ)y F̄(t; θ)1−y.
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Then, the conditional Fisher information in the quantal response at t about θ can be
obtained as

It
QF(θ) = F(t; θ)

(
∂

∂θ
log F(t; θ)

)2
+ F̄(t; θ)

(
∂

∂θ
log F̄(t; θ)

)2
.

This conditional Fisher information has been studied in terms of censoring by Gertsbakh [6]
and Park [7], and its weighted average has been defined to be the quantal randomly censored
Fisher information [3] as

IQF(θ) =
∫ ∞

−∞
{F(t; θ)

(
∂

∂θ
log F(t; θ)

)2
+ F̄(t; θ)

(
∂

∂θ
log F̄(t; θ)

)2
}dW(t), (5)

where W(t) is an appropriate weight function.
The expression (5) says that IQF(θ) may be called cumulative Fisher information and can be
written in a simpler way, as

IQF(θ) =
∫ ∞

−∞

(
∂
∂θ F(x; θ)

)2

F(x; θ)(1− F(x; θ))
dW(x).

Remark 1. If we take W(x) to be F(x; θ), IQF(θ) is related with the Fisher information in the
ranked set sample [8] as

IRSS(θ) = ISRS(θ) + n(n + 1)IQF(θ),

where ISRS(θ) is the Fisher information in a simple random sample of size n, which is equal to
nI(θ), and IRSS(θ) is the Fisher information in a ranked set sample.

The result means that the ranked set sample has additional ordering information in the n(n+ 1)
pairs to the simple random sample. Hence, 1 + (n + 1)IQF/I(θ) represents the efficiency level of
the ranked set sample relative to the simple random sample.

In a similar way, the Kullback-Leibler (KL) information between two quantal random
variables can be obtained as

KLt(F : G) = F(t) log
F(t)
G(t)

+ F̄(t) log
F̄(t)
Ḡ(t)

.

Then, the weighted average of KLt(F : G) has been defined to be quantal (randomly censored)
divergence [3], as

QKL(F : G) =
∫ ∞

−∞

(
F(x) log

F(x)
G(x)

+ F̄(x) log
F̄(x)
Ḡ(x)

)
dW(x).

We note that the quantal KL information (quantal divergence) with dW(x) = dx is equal
to the addition of the cumulative KL information (Park, 2015) and cumulative residual
KL information [9]. This quantal Kullback-Leibler information has been discussed in
constructing goodness-of-fit test statistics by Zhang [10].

The following approximation of the KL information in terms of the Fisher information
is well-known [11], as

KL( f (x; θ) : f (x; θ + ∆θ)) ≈ 1
2
(∆θ)2

∫ ∞

−∞
{ ∂

∂θ
log f (x; θ)}2 f (x; θ)dx. (6)

Hence, we can also apply Taylor’s expansion to (2) to have the approximation of the
quantal KL information in terms of the quantal Fisher information as follows:
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Lemma 1.

QKL(F(x; θ) : F(x; θ + ∆θ)) ≈ 1
2
(∆θ)2 IQF(θ).

Proof of Lemma 1. By applying the Taylor expansion, we have

QKL(F(x; θ) : F(x; θ + ∆θ)) ≈

−1
2
(∆θ)2

∫ ∞

−∞
{F(x; θ)

∂2

∂θ2 log F(x; θ) + F̄(x; θ)
∂2

∂θ2 log F̄(x; θ)}dW(x).

Then, we can show that

−F(x; θ)
∂2

∂θ2 log F(x; θ)− F̄(x; θ)
∂2

∂θ2 log F̄(x; θ) =

F(x; θ)

(
∂

∂θ
log F(x; θ)

)2
+ F̄(x; θ)

(
∂

∂θ
log F̄(x; θ)

)2
.

3. Quantal Fisher Information in Terms of the (Reversed) Hazard Function

It is well-known that the Fisher information can be represented in terms of the hazard
function [1] as

I(θ) =
∫ ∞

−∞
{ ∂

∂θ
log h(x; θ)}2 f (x; θ)dx, (7)

where h(x; θ) is the hazard function defined as f (x; θ)/(1− F(x; θ)).
The mirror image of (1) provides another representation of the Fisher information in

terms of the reverse hazard function [12] as

I(θ) =
∫ ∞

−∞
{ ∂

∂θ
log r(x; θ)}2 f (x; θ)dx, (8)

where r(x; θ) is the reverse hazard function defined as f (x; θ)/F(x; θ).
Then, (6) can be written again in terms of both hazard function and reversed hazard

function in view of (7) and (8) as follows:

Lemma 2.

KL( f (x; θ) : f (x; θ + ∆θ)) =
1
2
(∆θ)2

∫ ∞

−∞
{ ∂

∂θ
log h(x; θ)}2 f (x; θ)dx

=
1
2
(∆θ)2

∫ ∞

−∞
{ ∂

∂θ
log r(x; θ)}2 f (x; θ)dx.

Now, we show that the quantal Fisher information can also be expressed in terms of
both hazard function and reversed hazard function, as follows.

Theorem 1. Suppose that W(x) is bounded and the regularity conditions for the existence of the
Fisher information hold.

IQF(θ) =
∫ ∞

−∞
W(x)

(
∂

∂θ
log r(x; θ)

)2
f (x; θ)dx−

∫ ∞

−∞
W(x)

(
∂

∂θ
log h(x; θ)

)2
f (x; θ)dx. (9)

Proof of Theorem 1. In view of Park [7], we have the decomposition of the Fisher infor-
mation as

I(θ) = It
L(θ) + It

QF(θ) + It
R(θ), (10)
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where

It
L(θ) =

∫ t

−∞

(
∂

∂θ
log r(x; θ)

)2
f (x; θ)dx

and

It
R(θ) =

∫ ∞

t

(
∂

∂θ
log h(x; θ)

)2
f (x; θ)dx.

Hence, It
QF(θ) can also be expressed from (10) as

It
QF(θ) =

∫ t

−∞

(
∂

∂θ
log h(x; θ)

)2
f (x; θ)dx−

∫ t

−∞

(
∂

∂θ
log r(x; θ)

)2
f (x; θ)dx. (11)

We can take the expectation of (11) and apply Fubini’s theorem to get the result.

Example 1. If W(x) is taken to be F(x; θ), (9) can be written as

IQF(θ) =
1
2
(I1:2(θ) + I2:2(θ)− 2I(θ))

because it has been shown in Park (1996) that

I1:2(θ) = 2
∫ ∞

−∞

(
∂

∂θ
log h(x; θ)

)2
f (x; θ)(1− F(x; θ))dx

I2:2(θ) = 2
∫ ∞

−∞

(
∂

∂θ
log r(x; θ)

)2
f (x; θ)F(x; θ)dx,

where Ii:n(θ) is the Fisher information in the ith order statistic from an independently and identically
distributed sample of size n.

4. Quantal KL Information and Choice of the Weight Function in Terms of
Maximizing the Quantal Fisher Information

Because Lemma 2 shows that the approximation of the Kullback-Leibler information
can be represented in terms of the hazard function and reverse hazard function, the fol-
lowing representations of the KL information in terms of the hazard function and reverse
hazard function have been shown in Park and Shin [2] as

KL( f : g) =
∫ ∞

−∞
f (x)(

hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1)dx (12)

and

KL( f : g) =
∫ ∞

−∞
f (x)(

rg(x)
r f (x)

− log
rg(x)
r f (x)

− 1)dx.

In a similar context, Lemma 2 and Theorem 1 says that the approximation of the quan-
tal Kullback-Leibler information can also be represented in terms of the hazard function
and reverse hazard function; hence, we can expect the following quantal KL information
representation in terms of the hazard function and reverse hazard function.
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Theorem 2.

QKL(F : G) =
∫ ∞

−∞
W(x) f (x){

rg(x)
r f (x)

− log
rg(x)
r f (x)

− 1}dx

−
∫ ∞

−∞
W(x) f (x){

hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1}dx. (13)

Proof of Theorem 2. We can show that

d
dx
{F(x) log

F(x)
G(x)

} = − f (x){
rg(x)
r f (x)

− log
rg(x)
r f (x)

− 1 + log
g(x)
f (x)
}

d
dx
{F̄(x) log

F̄(x)
Ḡ(x)

} = f (x){
hg(x)
h f (x)

− log
hg(x)
h f (x)

− 1 + log
g(x)
f (x)
}.

Then, we can apply the integration by parts to (2) to get the result.

Equation (13) can be rewritten in terms of the cumulative distribution function as follows:

QKL(F : G) =
∫ ∞

−∞
W(x)

F(x)− G(x)
G(x)(1− G(x))

dG(x) +
∫ ∞

−∞
W(x) log

G(x)/(1− G(x))
F(x)/(1− F(x))

dF(x).

Hence, the quantal KL information has another representation in terms of the cumulative
distribution function, which measures the weighted differences in distribution functions
and the log odds ratio.

Now, we consider the choice of the weight function W(x) in QKL(F : G), which has
not been discussed much so far. Here, we consider the criterion of maximizing the quantal
Fisher information in Theorem 1. For the multi-parameter case, we have the quantal
Fisher information matrix and can consider its determinant, which is called generalized
Fisher information.

For illustration, we take F(x) to be the normal distribution. Then we consider the
following dW(x)’s and plotted their shapes in Figure 1 where dW1(x) is the bimodal weight
function and the shapes get more centralized as i in dWi(x) increases.

1. dW1(x) = d{0.5Φ(x− 2) + 0.5Φ(x + 2)}
2. dW2(x) = π/8×Φ(x)0.5(1−Φ(x))0.5dΦ(x)
3. dW3(x) = dΦ(x)
4. dW4(x) = 6Φ(x)(1−Φ(x))dΦ(x),

where Φ(x) is the cumulative distribution function of the normal random variable.
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Figure 1. Shapes of the chosen weight functions.
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We calculate the corresponding quantal Fisher information and summarize the results
in Table 1. We can see from Table 1 that IQF(θ) about the location parameter gets larger as
the weight function becomes more centralized. We also note that we have the maximum
IQF(θ) about the scale parameter at the bimodal weight function. However, we can see
that we have the maximum generalized quantal Fisher information at dW(x) = dΦ(x).

Table 1. Quantal FI for some weight functions.

Specification IQF(θ)

Distribution Parameter dW1(x) dW2(x) dW3(x) dW4(x)

Normal Location 0.1983 0.4205 0.4805 0.5513

Normal Scale 0.3497 0.3014 0.2701 0.1883

Normal Generalized FI 0.0693 0.1267 0.1298 0.1013

5. Estimation of the Quantal KL Information

Suppose that we have an independently and identically distributed (IID) sample of
size n, (x1, · · · , xn), from an assumed density function fθ(x), and (x1:n, · · · , xn:n) are their
ordered values. Then, the distance between the sample distribution and the assumed
distribution can be measured as KL( fn : fθ), where fn is an appropriate nonparametric den-
sity function estimator, and its estimate has been studied as a goodness-of-fit test statistic
by lots of authors, including Pakyari and Balakrishnan [13], Noughabi and Arghami [14],
and Qiu and Jia [15] by considering a piecewise uniform density function estimator or
nonparametric kernel density function estimator. In the same manner, the estimate of
(12) has been studied by Park and Shin (2015) for the same purpose by considering a
nonparametric hazard function estimator. However, we note that the critical values based
on those nonparametric density (hazard) function estimators depend on the choice of the
bandwidth-type parameter.

We can also measure the distance between the sample distribution and the assumed
distribution with QKL(Fn : Fθ), if we choose the weight function to be Fn(x) in view of
Section 4, which can be written as

QKL(Fn : Fθ) =
∫ ∞

−∞

(
Fn(x) log

Fn(x)
Fθ(x)

+ F̄n(x) log
F̄n(x)
F̄θ(x)

)
dFn(x), (14)

where Fn is the empirical distribution function.
Then, F̄n(xi:n) can be obtained as i/n, and dFn(x) is obtained as 1/n only at xi:n’s,

and (14) can be written as

QKLR(Fn : Fθ) =
n

∑
i=1
{ i

n
log

i/n
ξi

+
n− i

n
log

(n− i)/n
1− ξi

}

= − 1
n

n

∑
i=1
{i log ξi + (n− i) log(1− ξi)}+ C1,

where ξi = Fθ(xi:n), ξ0 = 0 and ξn+1 = 1, and C1 = ∑n
i=1{(i/n) log(i/n)+ (1− i/n) log(1−

i/n)}.
However, because the empirical distribution function is only right-continuous, we also

consider F̄n(xi:n) to be (n− i + 1)/n so that F̄n(xi:n) to be (i− 1)/n, then we have

QKLL(Fn : Fθ) =
n

∑
i=1
{ i− 1

n
log

(i− 1)/n
ξi

+
n− i + 1

n
log

(n− i + 1)/n
1− ξi

}

= − 1
n

n

∑
i=1
{(i− 1) log ξi + (n− i + 1) log(1− ξi)}+ C1.
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Hence, we may obtain the average of both and obtain

QKLn(Fn : Fθ) = −
1
n

n

∑
i=1
{(i− 0.5) log ξi + (n− i + 0.5) log(1− ξi)}+ C1,

which is actually equivalent to the Anderson-Darling test.
Zhang [10] proposed a test statistic by choosing a weight function,

dW(x) = 1/{Fn(x)F̄n(x)}dFn(x),

as

ZA = −
n

∑
i=1
{ log ξi

n− i + 0.5
+

log(1− ξi)

i− 0.5
}+ C2,

where C2 = ∑n
i=1{log((i− 0.5)/n)/((n− i+ 0.5)/n)+ log((n− i+ 0.5)/n)/((i− 0.5)/n)}.

For example, we consider the performance of the above statistics for testing the
following hypothesis:

H0 : The true distribution function is N(µ, σ)
versus
H1 : The true distribution function is not N(µ, σ).
The unknown parameters, µ and σ, are estimated with the sample mean and sample

standard deviation, respectively. We also consider the classical Kolmogorov-Smirnov test
statistic (Lilliefors test) for comparison as

KS = sup
z
|Fn(z)− N(0, 1)|,

where z = (x− x̄)/s and x̄ and s are the sample mean and the sample standard deviation,
respectively.

We provide the critical values of the above test statistics for n = 10, 20, · · · , 100 in
Table 2, which are obtained by employing the Monte Carlo simulations of size 200,000.

Table 2. Critical values of test statistics.

n QKLR QKLL QKLn(ADn) ZA KS

10 0.4360 0.4350 0.4322 2.7395 0.2619

20 0.4131 0.4141 0.4115 3.9108 0.1920

30 0.4028 0.4025 0.4008 4.6310 0.1586

40 0.3977 0.3978 0.3960 5.1486 0.1385

50 0.3928 0.3924 0.3918 5.5000 0.1244

60 0.3901 0.3905 0.3892 5.8764 0.1138

70 0.3914 0.3914 0.3905 6.1723 0.1060

80 0.3872 0.3873 0.3867 6.3988 0.0991

90 0.3874 0.3874 0.3867 6.6307 0.0935

100 0.3858 0.3851 0.3851 6.8319 0.0888

Then, we compare the power estimates of the above test statistics, for illustration,
against the following alternatives to compare the powers:

1. Symmetric alternatives : Logistic, t(5), t(3), t(1), Uniform, Beta(0.5,0.5), Beta(2,2);
2. Asymmetric alternatives: Beta(2,5), Beta(5,2), Exponential, Lognormal(0,0.5),

Lognormal(0,1).
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We also employed the Monte Carlo simulation to estimate the powers against the
above alternatives for n = 20, 50, 100, respectively, where the simiulation size is 100,000.
The numerical results are summarized in Tables 3–5. These show that QKLn performs
better than QKLR and QKLL against symmetric alternatives, and the powers of QKLn
against asymmetric alternatives are in between QKLR and QKLL. They all outperform
the classical Kolmogorov-Smirnov test statistic. ZA generally performs better than QKLn
against asymmetric alternatives, but the simulation result shows that ZA seems to be a
biased test, which can be known from the power estimate against Beta(2, 2) for n = 20.

Table 3. Power estimate (%) of 0.05 tests against 10 alternatives of the normal distribution based on
100,000 simulations; n = 20.

Alternatives QKLR QKLL QKLn(ADn) ZA KS

N(0,1) 5.01 5.01 5.00 5.08 4.96

Logistic(0,1) 10.54 10.35 10.48 12.34 8.55

t(5) 16.98 16.86 17.04 19.69 13.15

t(3) 32.15 31.96 32.35 34.56 26.03

t(1) 88.06 88.04 88.23 86.49 84.63

Uniform 16.57 16.40 16.78 13.57 9.71

Beta(0.5,0.5) 60.66 60.52 61.10 66.55 31.82

Beta(1,1) 16.73 16.55 16.91 13.53 9.89

Beta(2,2) 5.52 5.41 5.52 3.26 5.08

Beta(2,5) 11.53 17.47 14.64 17.26 11.54

Beta(5,2) 17.92 11.48 14.77 17.62 11.51

Exponential(1) 72.62 81.23 77.59 86.72 58.54

Log normal(0,0.5) 40.64 51.40 46.64 53.98 34.29

Log normal(0,1) 88.03 92.20 90.48 94.32 79.20

Table 4. Power estimate (%) of 0.05 tests against 10 alternatives of the normal distribution based on
100,000 simulations; n = 50.

Alternatives QKLR QKLL QKLn(ADn) ZA KS

N(0,1) 5.06 5.12 5.05 5.16 5.05

Logistic(0,1) 16.13 16.21 16.20 18.49 11.45

t(5) 30.25 30.31 30.41 33.63 21.10

t(3) 60.86 60.85 60.99 61.60 48.57

t(1) 99.72 99.72 99.73 99.48 99.33

Uniform 57.43 57.61 57.73 80.08 25.92

Beta(0.5,0.5) 99.06 99.08 99.08 99.97 80.21

Beta(1,1) 57.54 57.59 57.80 80.04 26.07

Beta(2,2) 13.18 13.30 13.33 14.75 8.21

Beta(2,5) 35.09 43.79 39.67 59.41 25.65

Beta(5,2) 43.56 35.09 39.47 59.03 25.57

Exponential(1) 99.50 99.76 99.65 99.99 96.05

Log normal(0,0.5) 84.70 89.52 87.40 94.16 71.05

Log normal(0,1) 99.94 99.97 99.96 100.00 99.52
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Table 5. Power estimate (%) of 0.05 tests against 10 alternatives of the normal distribution based on
100,000 simulations; n = 100.

Alternatives QKLR QKLL QKLn(ADn) ZA KS

N(0,1) 5.06 5.08 5.04 5.05 5.05

Logistic(0,1) 24.15 24.16 24.19 24.99 15.57

t(5) 48.18 48.23 48.26 50.34 33.23

t(3) 84.94 84.97 84.97 83.52 73.09

t(1) 100.00 100.00 100.00 100.00 100.00

Uniform 95.02 95.07 95.07 99.93 59.20

Beta(0.5,0.5) 100.00 100.00 100.00 100.00 99.47

Beta(1,1) 94.82 94.89 94.88 99.95 58.92

Beta(2,2) 31.96 32.10 32.10 54.81 15.39

Beta(2,5) 72.88 78.80 76.00 96.22 50.56

Beta(5,2) 78.73 72.98 76.04 96.11 50.70

Exponential(1) 100.00 100.00 100.00 100.00 100.00

Log normal(0,0.5) 99.28 99.59 99.47 99.94 95.07

Log normal(0,1) 100.00 100.00 100.00 100.00 100.00

6. Concluding Remarks

It is well-known that both Fisher information and Kullback-Leibler information can
be in terms of the hazard function or reverse hazard function. We considered the quantal
response variable and showed that the quantal Fisher information and quantal KL informa-
tion can also be represented in terms of both hazard function and reverse hazard function.
We also provided the criterion of maximizing the standardized quantal Fisher information
in choosing the weight function in the quantal KL information. For illustration, we consid-
ered the normal distribution and studied the choice of weight function, and compared the
performance of the estimators of the quantal KL information as a goodness-of-fit test.
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