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Abstract: The distance and divergence of the probability measures play a central role in statistics, ma-
chine learning, and many other related fields. The Wasserstein distance has received much attention
in recent years because of its distinctions from other distances or divergences. Although com-
puting the Wasserstein distance is costly, entropy-regularized optimal transport was proposed to
computationally efficiently approximate the Wasserstein distance. The purpose of this study is to
understand the theoretical aspect of entropy-regularized optimal transport. In this paper, we fo-
cus on entropy-regularized optimal transport on multivariate normal distributions and q-normal
distributions. We obtain the explicit form of the entropy-regularized optimal transport cost on
multivariate normal and q-normal distributions; this provides a perspective to understand the effect
of entropy regularization, which was previously known only experimentally. Furthermore, we obtain
the entropy-regularized Kantorovich estimator for the probability measure that satisfies certain con-
ditions. We also demonstrate how the Wasserstein distance, optimal coupling, geometric structure,
and statistical efficiency are affected by entropy regularization in some experiments. In particular,
our results about the explicit form of the optimal coupling of the Tsallis entropy-regularized optimal
transport on multivariate q-normal distributions and the entropy-regularized Kantorovich estimator
are novel and will become the first step towards the understanding of a more general setting.

Keywords: optimal transportation; entropy regularization; Wasserstein distance; Tsallis entropy;
q-normal distribution

1. Introduction

Comparing probability measures is a fundamental problem in statistics and ma-
chine learning. A classical way to compare probability measures is the Kullback–Leibler
divergence. Let M be a measurable space and µ, ν be the probability measure on M;
then, the Kullback–Leibler divergence is defined as:

KL(µ|ν) =
∫

M
dµ log

dµ

dν
. (1)

The Wasserstein distance [1], also known as the earth mover distance [2], is another
way of comparing probability measures. It is a metric on the space of probability measures
derived by the mass transportation theory of two probability measures. Informally, opti-
mal transport theory considers an optimal transport plan between two probability mea-
sures under a cost function, and the Wasserstein distance is defined by the minimum
total transport cost. A significant difference between the Wasserstein distance and the
Kullback–Leibler divergence is that the former can reflect the metric structure, whereas the
latter cannot. The Wasserstein distance can be written as:

Wp(µ, ν) :=
{

inf
π∈Π(µ,ν)

∫
M×M

d(x, y)pdπ(x, y)
} 1

p
, (2)
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where d(·, ·) is a distance function on a measurable metric space M and Π(µ, ν) denotes
the set of probability measures on M×M, whose marginal measures correspond to µ and
ν. In recent years, the application of optimal transport and the Wasserstein distance has
been studied in many fields such as statistics, machine learning, and image processing.
For example, Reference [3] generated the interpolation of various three-dimensional (3D)
objects using the Wasserstein barycenter. In the field of word embedding in natural
language processing, Reference [4] embedded each word as an elliptical distribution,
and the Wasserstein distance was applied between the elliptical distributions. There are
many studies on the applications of optimal transport to deep learning, including [5–7].
Moreover, Reference [8] analyzed the denoising autoencoder [9] with gradient flow in the
Wasserstein space.

In the application of the Wasserstein distance, it is often considered in a discrete
setting where µ and ν are discrete probability measures. Then, obtaining the Wasserstein
distance between µ and ν can be formulated as a linear programming problem. In general,
however, it is computationally intensive to solve such linear problems and obtain the
optimal coupling of two probability measures. For such a situation, a novel numerical
method, entropy regularization, was proposed by [10],

Cλ(µ, ν) := inf
π∈Π(µ,ν)

∫
Rn×Rn

c(x, y)π(x, y)dxdy− λEnt(π). (3)

This is a relaxed formulation of the original optimal transport of a cost function c(·, ·),
in which the negative Shannon entropy −Ent(·) is used as a regularizer. For a small λ,
Cλ(µ, ν) can approximate the p-th power of the Wasserstein distance between two discrete
probability measures, and it can be computed efficiently by using Sinkhorn’s algorithm [11].

More recently, many studies have been published on improving the computational
efficiency. According to [12], the most computationally efficient algorithm at this moment
to solve the linear problem for the Wasserstein distance is Lee–Sidford linear solver [13],
which runs in O(n2.5). Reference [14] proved that a complexity bound for the Sinkhorn
algorithm is Õ(n2ε−2), where ε is the desired absolute performance guarantee. After [10]
appeared, various algorithms have been proposed. For example, Reference [15] adopted
stochastic optimization schemes for solving the optimal transport. The Greenkhorn al-
gorithm [16] is the greedy variant of the Sinkhorn algorithm, and Reference [12] pro-
posed its acceleration. Many other approaches such as adapting a variety of standard
optimization algorithms to approximate the optimal transport problem can be found
in [12,17–19]. Several specialized Newton-type algorithms [20,21] achieve complexity
bound Õ(n2ε−1) [22,23], which are the best ones in terms of computational complexity at
the present moment.

Moreover, entropy-regularized optimal transport has another advantage. Because of
the differentiability of the entropy-regularized optimal transport and the simple structure
of Sinkhorn’s algorithm, we can easily compute the gradient of the entropy-regularized
optimal transport cost and optimize the parameter of a parametrized probability distribu-
tion by using numerical differentiation or automatic differentiation. Then, we can define a
differentiable loss function that can be applied to various supervised learning methods [24].
Entropy-regularized optimal transport can be used to approximate not only the Wasserstein
distance, but also its optimal coupling as a mapping function. Reference [25] adopted the
optimal coupling of the entropy-regularized optimal transport as a mapping function from
one domain to another.

Despite the empirical success of the entropy-regularized optimal transport, its theoret-
ical aspect is less understood. Reference [26] studied the expected Wasserstein distance
between a probability measure and its empirical version. Similarly, Reference [27] showed
the consistency of the entropy-regularized optimal transport cost between two empirical
distributions. Reference [28] showed that minimizing the entropy-regularized optimal
transport cost between empirical distributions is equivalent to a type of maximum likeli-
hood estimator. Reference [29] considered Wasserstein generative adversarial networks
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with an entropy regularization. Reference [30] constructed information geometry from the
convexity of the entropy-regularized optimal transport cost.

Our intrinsic motivation of this study is to produce an analytical solution about the
entropy-regularized optimal transport problem between continuous probability measures
so that we can gain insight into the effects of entropy regularization in a theoretical,
as well as an experimental way. In our study, we generalized the Wasserstein distance
between two multivariate normal distributions by entropy regularization. We derived the
explicit form of the entropy-regularized optimal transport cost and its optimal coupling,
which can be used to analyze the effect of entropy regularization directly. In general,
the nonregularized Wasserstein distance between two probability measures and its optimal
coupling cannot be expressed in a closed form; however, Reference [31] proved the explicit
formula for multivariate normal distributions. Theorem 1 is a generalized form of [31].
We obtain an explicit form of the entropy-regularized optimal transport between two
multivariate normal distributions. Furthermore, by adopting the Tsallis entropy [32] as the
entropy regularization instead of the Shannon entropy, our theorem can be generalized to
multivariate q-normal distributions.

Some readers may find it strange to study the entropy-regularized optimal trans-
port for multivariate normal distributions, where the exact (nonregularized) optimal
transport has been obtained explicitly. However, we think it is worth studying from
several perspectives:

• Normal distributions are the simplest and best-studied probability distributions, and
thus, it is useful to examine the regularization theoretically in order to infer results for
other distributions. In particular, we will partly answer the questions “How much do
entropy constraints affect the results?” and “What does it mean to constrain by the
entropy?” for the simplest cases. Furthermore, as a first step in constructing a theory
for more general probability distributions, in Section 4, we propose a generalization
to multivariate q-normal distributions.

• Because normal distributions are the limit distributions in asymptotic theories using
the central limit theorem, studying normal distributions is necessary for the asymp-
totic theory of regularized Wasserstein distances and estimators computed by them.
Moreover, it was proposed to use the entropy-regularized Wasserstein distance to
compute a lower bound of the generalization error for a variational autoencoder [29].
The study of the asymptotic behavior of such bounds is one of the expected applica-
tions of our results.

• Though this has not yet been proven theoretically, we suspect that entropy regulariza-
tion is efficient not only for computational reasons, such as the use of the Sinkhorn al-
gorithm, but also in the sense of efficiency in statistical inference. Such a phenomenon
can be found in some existing studies, including [33]. Such statistical efficiency is
confirmed by some experiments in Section 6.

The remainder of this paper is organized as follows. First, we review some definitions
of optimal transport and entropy regularization in Section 2. Then, in Section 3, we provide
an explicit form of the entropy-regularized optimal transport cost and its optimal coupling
between two multivariate normal distributions. We also extend this result to q-normal
distributions for Tsallis entropy regularization in Section 4. In Section 5, we obtain the
entropy-regularized Kantorovich estimator of probability measures on Rn with a finite
second moment that are absolutely continuous with respect to the Lebesgue measure in
Theorem 3. We emphasize that Theorem 3 is not limited to the case of multivariate normal
distribution, but can handle a wider range of probability measures. We analyze how
entropy regularization affects the optimal result experimentally in certain sections.

We note that after publishing the preprint version of the paper, we found closely
related results [34,35] reported within half a year. In Janati et al. [34], they proved the same
result as Theorem 1 based on solving the fixed-point equation behind Sinkhorn’s algorithm.
Their results include the unbalanced optimal transport between unbalanced multivariate
normal distributions. They also studied the convexity and differentiability of the objective
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function of the entropy-regularized optimal transport. In [35], the same closed-form as
Theorem 1 was proven by ingeniously using the Schrödinger system. Although there are
some overlaps, our paper has significant novelty in the following respects. Our proof is
more direct than theirs and can be extended directly to the proof for the Tsallis entropy-
regularized optimal transport between multivariate q-normal distributions provided in
Section 4. Furthermore, Corollaries 1 and 2 are novel and important results to evaluate
how much the entropy regularization affects the estimation results or not at all. We also
obtain the entropy-regularized Kantorovich estimator in Theorem 3.

2. Preliminary

In this section, we review some definitions of optimal transport and entropy-regularized
optimal transport. These definitions were referred to in [1,36]. In this section, we use a tuple
(M, Σ) for a set M and σ-algebra on M and P(X) for the set of all probability measures on
a measurable space X.

Definition 1 (Pushforward measure). Given measurable spaces (M1, Σ1) and (M2, Σ2), a mea-
sure µ : Σ1 → [0,+∞], and a measurable mapping ϕ : M1 → M2, the pushforward measure of µ
by ϕ is defined by:

∀B ∈ Σ2, ϕ#µ(B) := µ
(

ϕ−1(B)
)

. (4)

Definition 2 (Optimal transport map). Consider a measurable space (M, Σ), and let c : M×
M→ R+ denote a cost function. Given µ, ν ∈ P(M), we call ϕ : M→ M the optimal transport
map if ϕ realizes the infimum of:

inf
ϕ#µ=ν

∫
M

c(x, ϕ(x))dµ(x). (5)

This problem was originally formalized by [37]. However, the optimal transport map
does not always exist. Then, Kantorovich considered a relaxation of this problem in [38].

Definition 3 (Coupling). Given µ, ν ∈ P(M), the coupling of µ and ν is a probability measure
on M×M that satisfies:

∀A ∈ Σ, π(A×M) = µ(A), π(M× A) = ν(A). (6)

Definition 4 (Kantorovich problem). The Kantorovich problem is defined as finding a coupling
π of µ and ν that realizes the infimum of:∫

M×M
c(x, y)dπ(x, y). (7)

Hereafter, let Π(µ, ν) be the set of all couplings of µ and ν. When we adopt a distance
function as the cost function, we can define the Wasserstein distance.

Definition 5 (Wasserstein distance). Given p ≥ 1, a measurable metric space (M, Σ, d),
and µ, ν ∈ P(M) with a finite p-th moment, the p-Wasserstein distance between µ and ν is
defined as:

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
M×M

d(x, y)pdπ(x, y)
) 1

p
. (8)

Now, we review the definition of entropy-regularized optimal transport on Rn.
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Definition 6 (Entropy-regularized optimal transport). Let µ, ν ∈ P(Rn), λ > 0, and let
π(x, y) be the density function of the coupling of µ and ν, whose reference measure is the Lebesgue
measure. We define the entropy-regularized optimal transport cost as:

Cλ(µ, ν) := inf
π∈Π(µ,ν)

∫
Rn×Rn

c(x, y)π(x, y)dxdy− λEnt(π), (9)

where Ent(·) denotes the Shannon entropy of a probability measure:

Ent(π) = −
∫
Rn×Rn

π(x, y) log π(x, y)dxdy. (10)

There is another variation in entropy-regularized optimal transport defined by the
relative entropy instead of the Shannon entropy:

C̃λ(µ, ν) := inf
π∈Π(µ,ν)

∫
Rn×Rn

c(x, y)π(x, y)dxdy + λKL(π|dµ⊗ dν). (11)

This is definable even when Π(µ, ν) includes a coupling that is not absolutely continu-
ous with respect to the Lebesgue measure. We note that when both µ and ν are absolutely
continuous, the infimum is attained by the same π for Cλ and C̃λ, and it depends only on µ
and ν. In the following part of the paper, we assume the absolute continuity of µ, ν, and π
with respect to the Lebesgue measure for well-defined entropy regularization.

3. Entropy-Regularized Optimal Transport between Multivariate Normal Distributions

In this section, we provide a rigorous solution of entropy-regularized optimal transport
between two multivariate normal distributions. Throughout this section, we adopt the
squared Euclidean distance ‖x− y‖2 as the cost function. To prove our theorem, we start
by expressing Cλ using mean vectors and covariance matrices. The following lemma is a
known result; for example, see [31].

Lemma 1. Let X ∼ P, Y ∼ Q be two random variables on Rn with means µ1, µ2 and covariance
matrices Σ1, Σ2, respectively. If π(x, y) is a coupling of P and Q, we have:∫

Rn×Rn
‖x− y‖2π(x, y)dxdy = ‖µ1 − µ2‖2 + tr{Σ1 + Σ2 − 2Cov(X, Y)}. (12)

Proof. Without loss of generality, we can assume X and Y are centralized, because:∫
‖(x− µ1)− (y− µ2)‖2π(x, y)dxdy =

∫
‖x− y‖2π(x, y)dxdy− ‖µ1 − µ2‖2. (13)

Therefore, we have:∫
‖x− y‖2π(x, y)dxdy = E[‖X−Y‖2] = E[tr{(X−Y)(X−Y)T}]

= tr{Σ1 + Σ2 − 2Cov(X, Y)}. (14)

By adding ‖µ1 − µ2‖2, we obtain (12).

Lemma 1 shows that
∫
Rn×Rn ‖x− y‖2π(x, y)dxdy can be parameterized by the covari-

ance matrices Σ1, Σ2, Cov(X, Y). Because Σ1 and Σ2 are fixed, the infinite-dimensional
optimization of the coupling π is a finite-dimensional optimization of covariance matrix
Cov(X, Y).

We prepare the following lemma to prove Theorem 1.

Lemma 2. Under a fixed mean and covariance matrix, the probability measure that maximizes the
entropy is a multivariate normal distribution.
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Lemma 2 is a particular case of the principle of maximum entropy [39], and the proof
can be found in [40] Theorem 3.1.

Theorem 1. Let P ∼ N (µ1, Σ1), Q ∼ N (µ2, Σ2) be two multivariate normal distributions.
The optimal coupling π of P and Q of the entropy-regularized optimal transport:

Cλ(P, Q) = inf
π∈Π(P,Q)

∫
Rn×Rn

‖x− y‖2π(x, y)dxdy− 4λEnt(π). (*) (15)

is expressed as:

π ∼ N
((

µ1
µ2

)
,
(

Σ1 Σλ

ΣT
λ Σ2

))
(16)

where:
Σλ := Σ1/2

1 (Σ1/2
1 Σ2Σ1/2

1 + λ2 I)1/2Σ−1/2
1 − λI. (17)

Furthermore, Cλ(P, Q) can be written as:

Cλ(P, Q) =‖µ1 − µ2‖2 + tr(Σ1 + Σ2 − 2(Σ1/2
1 Σ2Σ1/2

1 + λ2 I)1/2)

−2λ log |(Σ1/2
1 Σ2Σ1/2

1 + λ2 I)1/2 − λI| − 2λn log(2πλ)− 4λn log(2π)− 2λn (18)

and the relative entropy version can be written as:

C̃λ(P, Q) = Cλ(P, Q) + 2λ log |Σ1||Σ2|+ 4λn{log(2π) + 1}. (19)

We note that we use the regularization parameter 4λ in (*) for the sake of simplicity.

Proof. Although the first half of the proof can be derived directly from Lemma 2, we pro-
vide a proof of this theorem by Lagrange calculus, which will be used later for the extension
to q-normal distributions. Now, we define an optimization problem that is equivalent to
the entropy-regularized optimal transport as follows:

minimize
∫
‖x− y‖2π(x, y)dxdy− 4λEnt(π) (20)

subject to
∫

π(x, y)dx = q(y) for ∀ y ∈ Rn,∫
π(x, y)dy = p(x) for ∀ x ∈ Rn . (21)

Here, p(x) and q(y) are probability density functions of P and Q, respectively. Let α(x),
β(y) be Lagrange multipliers that correspond to the above two constraints. The Lagrangian
function of (21) is defined as:

L(π, α, β) : =
∫
‖x− y‖2π(x, y)dxdy + 4λ

∫
π(x, y) log π(x, y)dxdy

−
∫

α(x)π(x, y)dxdy +
∫

α(x)p(x)dx

−
∫

β(y)π(x, y)dxdy +
∫

β(y)q(y)dy. (22)

Taking the functional derivative of (22) with respect to π, we obtain:

δL(π, α, β) =
∫ (
‖x− y‖2 + 4λ log π(x, y)− α(x)− β(y)

)
δπ(x, y)dxdy. (23)

By the fundamental lemma of the calculus of variations, we have:

π(x, y) ∝ exp
(

α(x) + β(y)− ‖x− y‖2

4λ

)
. (24)
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Here, α(x), β(y) are determined from the constraints (21). We can assume that π
is a 2n-variate normal distribution, because for a fixed covariance matrix Cov(X, Y),
−Ent(π) takes the infimum when the coupling π is a multivariate normal distribution
by Lemma 2. Therefore, we can express π by using z = (xT, yT)T and a covariance matrix
Σ := Cov(X, Y) as:

π(x, y) ∝ exp

{
−1

2
zT

(
Σ1 Σ
ΣT Σ2

)−1

z

}
. (25)

Putting: (
Σ̃1 Σ̃
Σ̃T Σ̃2

)
:=
(

Σ1 Σ
ΣT Σ2

)−1

, (26)

we write:

−1
2

zT

(
Σ1 Σ
ΣT Σ2

)−1

z = −1
2
(
xT yT

)(Σ̃1 Σ̃
Σ̃T Σ̃2

)(
x
y

)
(27)

= −1
2

xTΣ̃1x− 1
2

yTΣ̃2y− xTΣ̃y. (28)

According to block matrix inversion formula [41], Σ̃ = −Σ−1
1 ΣA−1 holds, where A :=

Σ2 − ΣTΣ−1
1 Σ is positive definite. Then, comparing the term xTy between (24) and (28),

we obtain Σ−1
1 ΣA−1 = 1

2λ I and:

2λΣ−1
1 Σ = A = Σ2 − ΣTΣ−1

1 Σ. (29)

Here, Σ−1
1 Σ = ΣTΣ−1

1 holds, because A is a symmetric matrix, and thus, we obtain:

λΣ−1
1 Σ + λΣTΣ−1

1 = Σ2 − ΣTΣ−1
1 Σ. (30)

Completing the square of the above equation, we obtain:

(Σ−1/2
1 (Σ + λI)Σ1/2

1 )T(Σ−1/2
1 (Σ + λI)Σ1/2

1 ) = Σ1/2
1 Σ2Σ1/2

1 + λ2 I (31)

Let Q be an orthogonal matrix; then, (31) can be solved as:

Σ−1/2
1 (Σ + λI)Σ1/2

1 = Q(Σ1/2
1 Σ2Σ1/2

1 + λ2 I)1/2. (32)

We rearrange the above equation as follows:

Σ1/2
1 (Σ−1

1 Σ)Σ1/2
1 + λI = Q(Σ1/2

1 Σ2Σ1/2
1 + λ2 I)1/2. (33)

Because the left terms and (Σ1/2
1 Σ2Σ1/2

1 + λ2 I)1/2 are all symmetric positive definite,
we can conclude that Q is the identity matrix by the uniqueness of the polar decomposition.
Finally, we obtain:

Σ = Σ1/2
1 (Σ1/2

1 Σ2Σ1/2
1 + λ2 I)1/2Σ−1/2

1 − λI =: Σλ. (34)

We obtain (18) by the direct calculation of Cλ using Lemma 1 with this Σλ.

The following corollary helps us to understand the properties of Σλ.

Corollary 1. Let νλ,1 ≤ νλ,2 ≤ ≤̇νλ,n be the eigenvalues of Σλ; then, νλ,i monotonically decreases
with λ for any i ∈ {1, 2, ,̇n}.
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Proof. Because Σ−1/2
1 ΣλΣ1/2

1 = (Σ1/2
1 Σ2Σ1/2

1 + λ2 I)1/2 − λI has the same eigenvalues as

Σλ, if we let {ν0,i} be the eigenvalues of Σ1/2
1 Σ2Σ1/2

1 , νλ,i =
√

ν0,i + λ2 − λ, which is a
monotonically decreasing function of the regularization parameter λ.

By the proof, for large λ, we can prove Σ−1/2
1 ΣλΣ1/2

1 ' 1
2λ Σ1/2

1 Σ2Σ1/2
1 by diagonaliza-

tion and νλ,i ' 1
2λ ν0,i. Thus, Σλ ' 1

2λ Σ1Σ2, and each element of Σλ converges to zero as
λ→ ∞.

We show how entropy regularization behaves in two simple experiments. We calculate
the entropy-regularized optimal transport cost N

((
0
0

)
,
(

1 0
0 1

))
and N

((
0
0

)
,
(

2 −1
−1 2

))
in the

original version and the relative entropy version in Figure 1. We separate the entropy-
regularized optimal transport cost into the transport cost term and regularization term and
display both of them.

Figure 1. Graph of the entropy-regularized optimal transport cost between N
((

0
0

)
,
(

1 0
0 1

))
and

N
((

0
0

)
,
(

2 −1
−1 2

))
with respect to λ from zero to 10.

It is reasonable that as λ ↓ 0, Σλ converges to Σ1/2
1 (Σ1/2

1 Σ2Σ1/2
1 )1/2Σ−1/2

1 , which is
equal to the original optimal coupling of nonregularized optimal transport and as λ→ ∞,
Σλ converges to 0. This is a special case of Corollary 1.The larger λ becomes, the less
correlated the optimal coupling is. We visualize this behavior by computing the optimal
couplings of two one-dimensional normal distributions in Figure 2.

Figure 2. Contours of the density functions of the entropy-regularized optimal coupling of N (0, 1) and N (5, 2) in three
different parameters λ = 0.1, 1, 10. All of the optimal couplings are two-variate normal distributions.

The left panel shows the original version. The transport cost is always positive, and
the entropy regularization term can take both signs in general; then, the sign and total cost
depend on their balance. We note that the transport cost as a function of λ is bounded,
whereas the entropy regularization is not. The boundedness of the optimal cost is deduced
from (1) and Corollary 1, and the unboundedness of the entropy regularization is due to the
regularization parameter λ multiplied by the entropy. The right panel shows the relative
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entropy version. It always takes a non-negative value. Furthermore, because the total cost
is bounded by the value for the independent joint distribution (which is always a feasible
coupling), both the transport cost and the relative entropy regularization regularization
term are also bounded. Nevertheless, the larger the regularization parameter λ, the greater
the influence of entropy regularization over the total cost.

It is known that a specific Riemannian metric can be defined in the space of multi-
variate normal distributions, which induces the Wasserstein distance [42]. To understand
the effect of entropy regularization, we illustrate how entropy regularization deforms this
geometric structure in Figure 3. Here, we generate 100 two-variate normal distributions
{N (0, Σr,k)}r,k∈{1,2,,̇10}, where {Σr,k} is defined as:

Σr,k =

cos
(

2π · k
10

)
− sin

(
2π · k

10

)
sin
(

2π · k
10

)
cos
(

2π · k
10

) T(
1 0

0
√

r
10

)cos
(

2π · k
10

)
− sin

(
2π · k

10

)
sin
(

2π · k
10

)
cos
(

2π · k
10

) . (35)

To visualize the geometric structure of these two-variate normal distributions, we
compute the relative entropy-regularized optimal transport cost C̃λ between each pairwise
two-variate normal distributions. Then, we apply multidimensional scaling [43] to embed
them into a plane (see Figure 3). We can see entropy regularization deforming the geo-
metric structure of the space of multivariate normal distributions. The deformation for
distributions close to the isotopic normal distribution is more sensitive to the change in λ.

Figure 3. Multidimensional scaling of two-variate normal distributions. The pairwise dissimilarities are given by the square
root of the entropy-regularized optimal transport cost C̃λ for three different regularization parameters λ = 0, 0.01, 0.05.
Each ellipse in the figure represents a contour of the density function {N (0, Σr,k)}.

The following corollary states that if we allow orthogonal transformations of two
multivariate normal distributions with fixed covariance matrices, then the minimum and
maximum of Cλ are attained when Σ1 and Σ2 are diagonalizable by the same orthogonal
matrix or, equivalently, when the ellipsoidal contours of the two density functions are
aligned with the same orthogonal axes.

Corollary 2. With the same settings as in Theorem 1, fix µ1, µ2, Σ1, and all eigenvalues of Σ2.
When Σ1 is diagonalized as Σ1 = ΓTΛ↓1Γ, where Λ↓1 is the diagonal matrix of the eigenvalues of Σ1
in descending order and Γ is an orthogonal matrix,

(i) Cλ(P, Q) is minimized by Σ2 = ΓTΛ↓2Γ and
(ii) Cλ(P, Q) is maximized by Σ2 = ΓTΛ↑2Γ,

where Λ↓2 and Λ↑2 are the diagonal matrices of the eigenvalues of Σ2 in descending and ascending
order, respectively. Therefore, neither the minimizer, nor the maximizer depend on the choice of λ.
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Proof. Because µ1, µ2, Σ1, and all eigenvalues of Σ2 are fixed,

Cλ(P, Q) = −2tr
(
(Σ1/2

1 Σ2Σ1/2
1 + λ2 I)1/2

)
− λ

2
log |(Σ1/2

1 Σ2Σ1/2
1 + λ2 I)1/2 − λI|+ (constant) (36)

=
n

∑
i=1
−2(νi + λ2)1/2 − λ

2
log{(νi + λ2)1/2 − λ}+ (constant) (37)

=
n

∑
i=1

gλ(log(νi)) + (constant) (38)

where ν1 ≤ · · · ≤ νn are the eigenvalues of Σ1/2
1 Σ2Σ1/2

1 and:

gλ(x) := −2(ex + λ2)1/2 − λ

2
log{(ex + λ2)1/2 − λ}. (39)

Note that gλ(x) is a concave function, because:

g′′λ(x) = − ex(4ex + 7λ2)

8(ex + λ2)3/2 < 0. (40)

Let ν↓↓1 ≤ · · · ≤ ν↓↓n and ν↓↑1 ≤ · · · ≤ ν↓↑n be the eigenvalues of Λ↓1Λ↓2 and Λ↓1Λ↑2 ,
respectively. By Exercise 6.5.3 of [44] or Theorem 6.13 and Corollary 6.14 of [45],

(log(ν↓↑i )) ≺ (log(νi)) ≺ (log(ν↓↓i )), (41)

Here, for (ai), (bi) ∈ Rn such that a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn, (ai) ≺ (bi) means:

k

∑
i=1

ai ≤
k

∑
i=1

bi for k = 1, . . . , n− 1, and
n

∑
i=1

ai =
n

∑
i=1

bi (42)

and (ai) is said to be majorized by (bi). Because gλ(x) is concave,

gλ(log(ν↓↑i )) ≺w gλ(log(νi)) ≺w gλ(log(ν↓↓i )), (43)

where ≺w represents weak supermajorization, i.e., (ai) ≺w (bi) means:

n

∑
i=k

ai ≥
n

∑
i=k

bi for k = 1, . . . , n (44)

(see Theorem 5.A.1 of [46], for example). Therefore,

n

∑
i=1

gλ(log(ν↓↑i )) ≥
n

∑
i=1

gλ(log(νi)) ≥
n

∑
i=1

gλ(log(ν↓↓i )). (45)

As in Case (i) (or (ii)), the eigenvalues of Σ1/2
1 Σ2Σ1/2

1 correspond to the eigenvalues of
Λ↓1Λ↓2 (or Λ↓1Λ↑2 , respectively), the corollary follows.

Note that a special case of Corollary 2 for the ordinary Wasserstein metric (λ = 0)
has been studied in the context of fidelity and the Bures distance in quantum information
theory. See Lemma 3 of [47]. Their proof is not directly applicable to our generalized result;
thus, we used another approach to prove it.

4. Extension to Tsallis Entropy Regularization

In this section, we consider a generalization of entropy-regularized optimal transport.
We now focus on the Tsallis entropy [32], which is a generalization of the Shannon entropy
and appears in nonequilibrium statistical mechanics. We show that the optimal coupling
of Tsallis entropy-regularized optimal transport between two q-normal distributions is also
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a q-normal distribution. We start by recalling the definition of the q-exponential function
and q-logarithmic function based on [32].

Definition 7. Let q be a real parameter, and let u > 0. The q-logarithmic function is defined as:

logq(u) :=

{
1

1−q (u
1−q − 1) if q 6= 1,

log(u) if q = 1
(46)

and the q-exponential function is defined as:

expq(u) :=

[1 + (1− q)u]
1

1−q
+ if q 6= 1,

exp(u) if q = 1
(47)

Definition 8. Let q < 1 or 1 < q < 1 + 2
n ; an n-variate q-normal distribution is defined by two

parameters: µ ∈ Rn and a positive definite matrix Σ, and its density function is:

f (x) :=
1

Cq(Σ)
expq

(
−(x− µ)TΣ−1(x− µ)

)
, (48)

where Cq(Σ) is a normalizing constant. µ and Σ are called the location vector and scale
matrix, respectively.

In the following, we write the multivariate q-normal distribution Nq(µ, Σ). We note
that the property of the q-normal distribution changes in accordance with q. The q-normal
distribution has an unbounded support for 1 < q < 2

n and a bounded support for q < 1.
The second moment exists for q < 1 + 2

n+2 , and the covariance becomes 1
2+(n+2)(1−q)Σ.

We remark that each n-variate
(
1 + 2

ν+n
)
-normal distribution is equivalent to an n-variate

t-distribution with ν degrees of freedom,

Γ[(ν + n)/2]
Γ(ν/2)νn/2πn/2|Σ|1/2

[
1 +

1
ν
(x− µ)TΣ−1(x− µ)

]−(ν+n)/2
, (49)

for 1 < q < 1 + 2
n+2 and an n-variate normal distribution for q ↓ 1.

Definition 9. Let p be a probability density function. The Tsallis entropy is defined as:

Sq(p) :=
∫

p(x) logq
1

p(x)
dx =

1
q− 1

(
1−

∫
p(x)qdx

)
. (50)

Then, the Tsallis entropy-regularized optimal transport is defined as:

minimize
∫
‖x− y‖2π(x, y)dxdy− 2λSq(π) (51)

subject to
∫

π(x, y)dx = q(y) for ∀ y ∈ Rn,∫
π(x, y)dy = p(x) for ∀ x ∈ Rn . (52)

The following lemma is a generalization of the maximum entropy principle for the
Shannon entropy shown in Section 2 of [48].

Lemma 3. Let P be a centered n-dimensional probability measure with a fixed covariance matrix
Σ; the maximizer of the Renyi α-entropy:

1
1− α

log
∫

f (x)αdx (53)
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under the constraint is N2−α(0, ((n + 2)α− n)Σ) for n
n+2 < α < 1.

We note that the maximizers of the Renyi α-entropy and the Tsallis entropy with q = α
coincide; thus, the above lemma also holds for the Tsallis entropy. This is mentioned,
for example, in Section 9 of [49].

To prove Theorem 2, we use the following property of multivariate t-distributions,
which is summarized in Chapter 1 of [50].

Lemma 4. Let X be a random vector following an n-variate t-distribution with degree of freedom
ν. Considering a partition of the mean vector µ and scale matrix Σ, such as:

X =

(
X1
X2

)
, µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, (54)

X1 follows a p-variate t-distribution with degree of freedom ν, mean vector µ1, and scale matrix
Σ11, where p is the dimension of X1.

Recalling the correspondence of the parameter of the multivariate q-normal distri-
bution and the degree of freedom of the multivariate t-distribution q = 1 + 2

ν+n , we can
obtain the following corollary.

Corollary 3. Let X be a random vector following an n-variate q-normal distribution for 1 < q <
1 + 2

n+2 . Consider a partition of the mean vector µ and scale matrix Σ in the same way as in (54).

Then, X1 follows a p-variate
(

1 + 2(q−1)
2−(n−p)(q−1)

)
-normal distribution with mean vector µ1 and

scale matrix Σ11, where p is the dimension of X1.

Theorem 2. Let P ∼ Nq(µ1, Σ1), Q ∼ Nq(µ2, Σ2) be n-variate q-normal distributions for

1 < q < 1 + 2
n+2 and q̃ = − 2(q−1)

2−n(q−1) ; consider the Tsallis entropy-regularized optimal transport:

Cλ(P, Q) = inf
π∈Π(P,Q)

∫
Rn×Rn

‖x− y‖2π(x, y)dxdy− 2λS1+q̃(π). (55)

Then, there exists a unique λ̃ = λ̃(q, Σ1, Σ2, λ) ∈ R+ such that the optimal coupling π of the
entropy-regularized optimal transport is expressed as:

π ∼ N1−q̃

((
µ1
µ2

)
,
(

Σ1 Σλ̃
ΣT

λ̃
Σ2

))
, (56)

where:
Σλ̃ := Σ1/2

1 (Σ1/2
1 Σ2Σ1/2

1 + λ̃2 I)1/2Σ−1/2
1 − λ̃I. (57)

Proof. The proof proceeds in a similar way as in Theorem 1. Let α ∈ L(P) and β ∈ L(Q) be
the Lagrangian multipliers. Then, the Lagrangian function L(π, α, β) of (52) is defined as:

L(π, α, β) :=
∫
‖x− y‖2π(x, y)dxdy− 2λ

{
1
q̃

(
1−

∫
π(x, y)1+q̃dxdy

)}
−
∫

α(x)π(x, y)dxdy +
∫

α(x)p(x)dx

−
∫

β(y)π(x, y)dxdy +
∫

β(y)q(y)dy (58)
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and the extremum of the Tsallis entropy-regularized optimal transport is obtained by the
functional derivative with respect to π,

π(x, y) =
(

q̃
2(q̃ + 1)λ

(
−α(x)− β(y) + ‖x− y‖2

)) 1
q̃
. (59)

Here, α and β are quadratic polynomials by Lemma 3. To separate the normalizing
constant, we introduce a constant c ∈ R+, and π can be written as:

π(x, y) = c
1
q̃

(
α̃(x) + β̃(y) +

q̃‖x− y‖2

2c(q̃ + 1)λ

) 1
q̃

, (60)

with quadratic functions α̃(x) and β̃(y).
Let λ̃ = c(q̃+1)λ

q̃ > 0. Then, by the same argument as in the proof of Theorem 1 and
using Corollary 3, we obtain the scale matrix of π as:

Σ =

(
Σ1 Σλ̃
ΣT

λ̃
Σ2

)
, (61)

where:
Σλ̃ = Σ1/2

1 (Σ1/2
1 Σ2Σ1/2

1 + λ̃2 I)1/2Σ−1/2
1 − λ̃I. (62)

Let z = (xT, yT)T and Kq̃ =
∫
(1 + zTz)

1
q̃ dz; π can be written as:

π(x, y) =
1

Kq̃|Σ|
(1 + zTΣ−1z)

1
q̃ . (63)

The constant c is determined by:

1
Kq̃|Σ|

= c
1
q̃ . (64)

We will show that the above equation has a unique solution. Let {τ}n
i=1 be the eigen-

values of (Σ1/2
1 Σ2Σ1/2

1 )1/2; |Σ| can be expressed as ∏2n
i=1 2λ̃(

√
τ2

i + λ̃2 − λ̃). We consider:

f (c) = log(c
1
q̃ Kq̃|Σ|) (65)

=
1
q̃

log c +
2n

∑
i=1

log(
√

τ2
i + λ̃2 − λ̃) + 2n log(2λ̃) + log Kq̃. (66)

Because q̃ < 0, f (c) is a monotonic decreasing function, and limc↓0 f (c) = ∞,
limc→∞ f (c) = −∞, (64) has a unique positive solution, and λ̃ is determined uniquely.

5. Entropy-Regularized Kantorovich Estimator

Many estimators are defined by minimizing the divergence or distance ρ between
probability measures, that is arg minµ ρ(µ, ν) for a fixed ν. When ρ is the Kullback–Leibler
divergence, the estimator corresponds to the maximum likelihood estimator. When ρ is the
Wasserstein distance, the following estimator is called the minimum Kantorovich estimator,
according to [36]. In this section, we consider a probability measure Q∗ that minimizes
Cλ(P, Q) for a fixed P over P2(Rn), the set of all probability measures on Rn with finite sec-
ond moment that are absolutely continuous with respect to the Lebesgue measure. In other
words, we define the entropy-regularized Kantorovich estimator arg minQ∈P2(Rn) Cλ(P, Q).
The entropy-regularized Kantorovich estimator for discrete probability measures was
studied in [33], Theorem 2. We obtain the entropy-regularized Kantorovich estimator for
continuous probability measures in the following theorem:
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Theorem 3. For a fixed P ∈ P2(Rn),

Q∗ = arg min
Q∈P2(Rn)

Cλ(P, Q) (67)

exists, and its density function can be written as:

dQ∗ = dP ? φλ, (68)

where φλ(x) is a density function of N (0, λ
2 I), and ? denotes the convolution operator.

We use the dual problem of the entropy-regularized optimal transport to prove
Theorem 3 (for details, see Proposition 2.1 of [15] or Section 3 of [51]).

Lemma 5. The dual problem of entropy-regularized optimal transport can be written as:

Aλ(P, Q) = sup
α∈L1(P)
β∈L1(Q)

∫
α(x)p(x)dx +

∫
β(y)q(y)dy

− λ
∫

exp
{

α(x) + β(y)− ‖x− y‖2

λ

}
dxdy. (69)

Moreover, Aλ(P, Q) = Cλ(P, Q) holds.

Now, we prove Theorem 3.

Proof. Let Q∗ be the minimizer of minQ Cλ(P, Q). Applying Lemma 5, there exist α∗ ∈ L1(P)
and β∗ ∈ L1(Q∗) such that:

Cλ(P, Q∗) = Aλ(P, Q∗) =
∫

α∗(x)p(x)dx +
∫

β∗(y)q∗(y)dy

− λ
∫

exp
{

α∗(x) + β∗(y)− ‖x− y‖2

λ

}
dxdy. (70)

Now, Aλ(P, Q∗) is the minimum value of Aλ, such that the variation δAλ(P, Q∗) is
always zero. Then,

δAλ(P, Q∗) =
∫

β∗(y)δq∗(y)dy = 0⇒ β∗ ≡ 0 (71)

holds, and the optimal coupling of P, Q can be written as:

π∗(x, y) = exp
{

α∗(x) + β∗(y)
λ

− ‖x− y‖2

λ

}
(72)

= exp
{

α∗(x)
λ

}
exp

{
−‖x− y‖2

λ

}
. (73)

Moreover, we can obtain a closed-form of α∗(x) as follows from the equation∫
π(x, y)dy = p(x):

α∗(x)
λ

= log p(x)− log
∫

exp
{
−‖x− y‖2

λ

}
dy = log p(x)− n

2
log(πλ). (74)

Then, by calculating the marginal distribution of π(x, y) with respect to x, we can obtain:

q∗(y) =
∫ 1

(πλ)
n
2

exp
{
−‖x− y‖2

λ

}
p(x)dx = (p ? φλ)(y). (75)
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Therefore, we conclude that a probability measure Q that minimizes Cλ(P, Q) is
expressed as (75).

It should be noted that when P in Theorem 3 are multivariate normal distributions, Q∗

and P are simultaneously diagonalizable by a direct consequence of the theorem. This is
consistent with the result of Corollary 2(1) for minimization when all eigenvalues are fixed.

We can determine that the entropy-regularized Kantorovich estimator is a measure
convolved with an isotropic multivariate normal distribution scaled by the regularization
parameter λ. This is similar to the idea of prior distributions in the context of Bayesian
inference. Applying Theorem 3, the entropy-regularized Kantorovich estimator of the
multivariate normal distribution N (µ, Σ) is N (µ, Σ + λ

2 I).

6. Numerical Experiments

In this section, we introduce experiments that show the statistical efficiency of en-
tropy regularization in Gaussian settings. We consider two different setups, estimating
covariance matrices (Section 6.1) and the entropy-regularized Wasserstein barycenter
(Section 6.2). To obtain the entropy-regularized Wasserstein barycenter, we adopt the
Newton–Schulz method and a manifold optimization method, which are explained in
Sections 6.3 and 6.4, respectively.

6.1. Estimation of Covariance Matrices

We provide a covariance estimation method based on entropy-regularized optimal
transport. Let P = N (µ, Σ) be an n-variate normal distribution. We define an entropy-
regularized Kantorovich estimator P̂λ, that is,

P̂λ = arg min
Q

Cλ(P, Q). (76)

We generate some samples from N (µ, Σ) and estimate the mean and covariance
matrix. We compare the maximum likelihood estimator P̂MLE = N (µ̂MLE, Σ̂MLE) and P̂λ

with respect to the prediction error:

KL(P, P̂MLE), KL(P, P̂λ). (77)

In our experiment, the dimension n is set to 5, 15, 30, and the sample size is set to
60, 120. The experiment proceeds as follows.

1. Obtain a random sample of size 60 (or 120) from N (0, Σ) and its sample covariance
matrix Σ̂.

2. Obtain the entropy-regularized minimum Kantorovich estimator of Σ̂ obtained in
Step 1.

3. Compute the prediction error between Σ and the entropy-regularized minimum
Kantorovich estimator of Σ̂

4. Repeat the above steps 1000 times and obtain a confidence interval of the predic-
tion error.

Table 1 shows the average prediction error of the MLE and entropy-regularized
Kantorovich estimator of covariance matrices from 60 samples from an n-variate normal
distribution with the 95% confidential interval. We can see that the prediction error is
smaller than the maximum likelihood estimator under adequately small λ for n = 15, 30,
but not for n = 5. Moreover, the decrease in the prediction error is larger for n = 30 than
for n = 15, which indicates that the entropy regularization is effective in a high dimension.
On the other hand, Table 2 shows in all cases that the decreases in the prediction error are
more moderate than Table 1. We can see that this is due to the increase in the sample size.
Then, we can conclude that the entropy regularization is effective in a high-dimensional
setting with a small sample size.
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Table 1. Average prediction error of the MLE and entropy-regularized Kantorovich estimator of
covariance matrices from 60 samples from an n-variate normal distribution with the 95% confiden-
tial interval.

λ KL(P, P̂W), n = 5 KL(P, P̂W), n = 15 KL(P, P̂W), n = 30

0(MLE) 0.062 ± 0.005 1.346 ± 0.022 10.69 ± 0.112
0.01 0.051 ± 0.005 1.242 ± 0.021 8.973 ± 0.087
0.1 0.104 ± 0.004 0.841 ± 0.013 4.180 ± 0.033
0.5 0.647 ± 0.003 0.931 ± 0.007 3.093 ± 0.010
1.0 1.166 ± 0.003 1.670 ± 0.006 5.075 ± 0.009

Table 2. Average prediction error of the MLE and entropy-regularized Kantorovich estimator of
covariance matrices from 120 samples from an n-variate normal distribution with the 95% confiden-
tial interval.

λ KL(P, P̂W), n = 5 KL(P, P̂W), n = 15 KL(P, P̂W), n = 30

0(MLE) 0.024 ± 0.002 0.490 ± 0.007 2.810 ± 0.021
0.01 0.020 ± 0.002 0.459 ± 0.006 2.528 ± 0.018
0.1 0.101 ± 0.002 0.397 ± 0.005 1.700 ± 0.001
0.5 0.659 ± 0.002 0.875 ± 0.004 2.833 ± 0.005
1.0 1.180 ± 0.002 1.730 ± 0.004 5.124 ± 0.005

6.2. Estimation of the Wasserstein Barycenter

A barycenter with respect to the Wasserstein distance is definable [52] and is widely
used for image interpolation and 3D object interpolation tasks with entropy regulariza-
tion [3,33].

Definition 10. Let {Qi}m
i=1 be a set of probability measures in P(Rn). The barycenter with respect

to Cλ (entropy-regularized Wasserstein barycenter) is defined as:

arg min
P∈P(Rn)

m

∑
i=1

Cλ(P, Qi). (78)

Now, we restrict P and {Qi}m
i=1 to be multivariate normal distributions and apply our

theorem to illustrate the effect of entropy regularization.
The experiment proceeds as follows. The dimensionality and the sample size were set

the same as in the experiments in Section 6.1.

1. Obtain a random sample of size 60 (or 120) from N (0, Σ) and its sample covariance
matrix Σ̂.

2. Repeat Step 1 three times, and obtain {Σ̂}3
i=1.

3. Obtain the barycenter of {Σ̂i}3
i=1.

4. Compute the prediction error between Σ and the barycenter obtained in step 3.
5. Repeat the above steps 100 times and obtain a confidence interval of the prediction error.

We show the results for several values of the regularization parameter λ in Tables 3 and 4.
A decrease in the prediction error can be seen in Table 3 for n = 30, as well as Tables 1 and 2.
However, because the computation of the entropy-regularized Wasserstein barycenter uses
more data than that of the minimum Kantorovich estimator, the decrease in the prediction
error is mild. The entropy-regularized Kantorovich estimator is a special case of the
entropy-regularized Wasserstein barycenter (78) for m = 1. Our experiments show that the
appropriate range of λ to decrease the prediction error depends on m and becomes narrow
as m increases. In addition, we note that there is a small decrease in the prediction error in
Table 4 for n = 30.
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Table 3. Average prediction error of the entropy-regularized barycenter with the 95% confidential
interval (random sample of size 60).

λ KL(P, P̂W), n = 5 KL(P, P̂W), n = 15 KL(P, P̂W), n = 30

0 0.455 ± 0.395 1.318 ± 0.006 4.875 ± 0.035
0.001 0.429 ± 0.396 1.318 ± 0.004 4.887 ± 0.036
0.01 0.434 ± 0.270 1.344 ± 0.006 4.551 ± 0.164
0.025 0.780 ± 0.223 1.456 ± 0.064 5.710 ± 0.536
0.005 1.047 ± 0.029 1.537 ± 0.064 7.570 ± 0.772

Table 4. Average prediction error of the entropy-regularized barycenter with the 95% confidential
interval (random sample of size 120).

λ KL(P, P̂W), n = 5 KL(P, P̂W), n = 15 KL(P, P̂W), n = 30

0 0.154 ± 0.600 1.303 ± 0.010 5.091 ± 0.035
0.001 0.212 ± 0.070 1.305 ± 0.010 5.072 ± 0.037
0.01 0.306 ± 0.046 1.328 ± 0.008 5.274 ± 0.252
0.025 0.671 ± 0.028 1.337 ± 0.073 5.851 ± 0.424
0.005 1.109 ± 0.063 1.603 ± 0.184 8.072 ± 0.725

6.3. Gradient Descent on Sym+(n)

We use a gradient descent method to compute the entropy-regularized barycenter.
Applying the gradient descent method to the loss function defined by the Wasserstein
distance was proposed in [4]. This idea is extendable to entropy-regularized optimal
transport. The detailed algorithm is shown below. Because Cλ(P, Q) is a function of a
positive definite matrix, we used a manifold gradient descent algorithm on the manifold of
positive definite matrices.

We review the manifold gradient descent algorithm used in our numerical experiment.
Let Sym+(n) be the manifold of n-dimensional positive definite matrices. We require a
formula for a gradient operator and the inner product of Sym+(n) in the gradient descent
algorithm. In this paper, we use the following inner product from [44], Chapter 6. For a
fixed X ∈ int(Sym+(n)), we define an inner product of Sym+(n) as:

gX(Y, Z) = tr
(

YX−1ZX−1
)

, Y, Z ∈ Sym+(n), (79)

Equation (79) is the best choice in terms of the convergence speed according to [53].
Let f : Sym+(n) → R be a differential matrix function. Then, the induced gradient of f
under (79) is:

grad f (X) = X
(

∂ f (X)

∂X

)
X. (80)

We consider the updating step after obtaining the gradient of f . grad f (X) is an
element of the tangent space, and we have to project it to Sym+(n). This projection map
is called a retraction. It is known that the Riemannian metric gX leads to the following
retraction:
expX x = X Exp

(
X−1x

)
, where Exp is the matrix exponential. Then, the corresponding

gradient descent method becomes as shown in Algorithm 1.

6.4. Approximate the Matrix Square Root

To compute the gradient of the square root of a matrix in the objective function,
we approximate it using the Newton–Schulz method [54], which can be implemented by
matrix operations as shown in Algorithm 2. It is amenable to automatic differentiation,
such that we can easily apply the gradient descent method to our algorithm.
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Algorithm 1 Gradient descent on the manifold of positive definite matrices.

Input: f (X)
initialize X
while no convergence do

η : step size
grad← X

(
∂ f (X)

∂X

)
X

X ← expX(ηgrad) = XExp(ηX−1grad)
end while

Output: X

Algorithm 2 Newton–Schulz method.

Input: A ∈ Sym+(n), ε > 0
Y ← A

(1+ε)‖A‖ , Z ← I
while no convergence do

T ← (3I − ZY)/2
Y ← YT, Z ← TZ

end while
Output:

√
(1 + ε)‖A‖Y

7. Conclusions and Future Work

In this paper, we studied entropy-regularized optimal transport and derived several
result. We summarize these as follows and add notes on future work.

• We obtain the explicit form of entropy-regularized optimal transport between two
multivariate normal distributions and derived Corollaries 1 and 2, which clarified the
properties of optimal coupling. Furthermore, we demonstrate experimentally how
entropy regularization affects the Wasserstein distance, the optimal coupling, and the
geometric structure of multivariate normal distributions. Overall, the properties of
optimal coupling were revealed both theoretically and experimentally. We expect that
the explicit formula can be a replacement for the existing methodology using the (non-
regularized) Wasserstein distance between normal distributions (for example, [4,5]).

• Theorem 2 derives the explicit form of the optimal coupling of the Tsallis entropy-
regularized optimal transport between multivariate q-normal distributions. The op-
timal coupling of the Tsallis entropy-regularized optimal transport between multi-
variate q-normal distributions is also a multivariate q-normal distribution, and the
obtained result has an analogy to that of the normal distribution. We believe that this
result can be extended to other elliptical distribution families.

• The entropy-regularized Kantorovich estimator of a probability measure in P2(R)
is the convolution of a multivariate normal distribution and its own density func-
tion. Our experiments show that both the entropy-regularized Kantorovich estimator
and the Wasserstein barycenter of multivariate normal distributions outperform the
maximum likelihood estimator in the prediction error for adequately selected λ in a
high dimensionality and small sample setting. As future work, we want to show the
efficiency of entropy regularization using real data.
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