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Abstract: The satisfiability (SAT) problem is a core problem in computer science. Existing studies
have shown that most industrial SAT instances can be effectively solved by modern SAT solvers
while random SAT instances cannot. It is believed that the structural characteristics of different
SAT formula classes are the reasons behind this difference. In this paper, we study the structural
properties of propositional formulas in conjunctive normal form (CNF) by the principle of structural
entropy of formulas. First, we used structural entropy to measure the complex structure of a formula
and found that the difficulty solving the formula is related to the structural entropy of the formula.
The smaller the compressing information of a formula, the more difficult it is to solve the formula.
Secondly, we proposed a λ-approximation strategy to approximate the structural entropy of large
formulas. The experimental results showed that the proposed strategy can effectively approximate
the structural entropy of the original formula and that the approximation ratio is more than 92%.
Finally, we analyzed the structural properties of a formula in the solution process and found that a
local search solver tends to select variables in different communities to perform the next round of
searches during a search and that the structural entropy of a variable affects the probability of the
variable being flipped. By using these conclusions, we also proposed an initial candidate solution
generation strategy for a local search for SAT, and the experimental results showed that this strategy
effectively improves the performance of the solvers CCAsat and Sparrow2011 when incorporated
into these two solvers.

Keywords: SAT problem; the structural complexity; structural entropy; CNF formula; structural
properties

1. Introduction

Given a propositional formula in conjunctive normal form with variables {x1, x2, . . . , xn}
and clauses {c1, c2, . . . , cm}, where ci is the disjunction of some literals, a literal refers to the
variable x or its negation ¬x. The satisfiability problem consists of finding an assignment
for the variables so that all clauses are satisfied. The satisfiability (SAT) problem is a core
problem in computer science, and many real-world applications, such as hardware and
software verification, planning, cryptography, scheduling, among others, can be directly or
indirectly encoded as a SAT problem. Therefore, the development of high-performance
SAT solvers has always been a hot research issue.

However, the SAT problem is NP-hard (non-deterministic polynomial time hard) [1],
which means that there is no polynomial time algorithm to solve it. Many efforts have been
made to design high-performance SAT solvers. It is recognized that solvers based on a
complete search technique can achieve good results in solving industrial SAT instances,
and solutions based on the stochastic local search technique show effectiveness in solving
random SAT instances. The performance of these solvers shows obvious differences in
different formula classes. It is speculated that this may be related to the complex structure
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of a SAT formula [2–5]. Different conjunctive normal form (CNF) formula classes have
different organizational structures, which leads to the differences in performance of SAT
solvers. In recent years, researchers have tried to clarify the structures of CNF formulas in
order to improve or design high-performance SAT solvers.

Ansótegui et al. studied the community structure of industrial SAT instances from
the perspective of complex networks [4,5]. They found that the community structure of
industrial SAT instances were obvious while the random SAT instances were not. They ver-
ified by experiments that the SAT solvers based on conflict-driven clause learning (CDCL)
destroyed the community structure of formulas during a search.

It is useful to study the community structure of CNF formulas. Newsham et al. [6,7] found
that the solving time of CDCL solvers was related to the community structure of a SAT
instance and used the community structure of the SAT instance to improve the performance
of several SAT solvers. Martins [8] used the community structure of formulas to partition
soft clauses and then used it to solve the MaxSAT problem. Sonobe et al. [9] improved
the performance of a parallel SAT solver by using community structured partitioning.
Giráldez-Cru and Levy [10,11] used the formula community to generate some highly
modular pseudo-random industrial instances.

Although research on the complex structure of formulas has made some progress,
it is still a challenging problem to explain the relationship between the difficulty solving
a formula and its structure. In recent years, Li and Pan [12] proposed the structural
information theory. They used random walks to capture information interaction between
the nodes in graphs and defined the structural entropy of graphs. They defined the
structural entropy of a graph to be the minimum overall number of bits required to
determine the code of the node that is accessible from a random walk in the graph. In their
definition, the structural entropy of graphs is essentially the metric that allows us to
fully or maximally detect the K-dimensional structure consisting of the rules, regulations,
and orders of the graphs against the random variations occurring in the graphs. It supports
the full analysis of networking data and unstructured big data. They used the structural
entropy of graphs to study the dynamic evolution of networks, information interaction
between nodes, and natural clustering of nodes and made some new progress [13–15].

Inspired by structural information theory, in this work, we studied the structural
properties of formulas by using the structural entropy of graphs. Combined with the
previous research, this paper attempts to give an explanation of the relationship between
the difficulty in solving and the complex structure of a formula. The goal is to explore the
success rules of SAT solution techniques and to possibly improve them.

The first contribution of this work is to improve an algorithm to solve the two-
dimensional structural entropy of graphs. We added a random perturbation to the al-
gorithm E proposed in [12,16] and made it more diversified for the selection of maximum
entropy increment. In addition, we also introduced a λ-approximation strategy to approxi-
mate the structural entropy of large formulas.

The second contribution of this work is to analyze the relationship between the
structural entropy of a formula and the difficulty of its solution and to give an explana-
tion of the difficulty solving the formula from the perspective of structural information
theory. First, we represented a CNF formula as a variable graph and then calculated
the one-dimensional and two-dimensional structural entropy, community information,
and compressing information of the variable graph of the formula. The experimental
results showed that the compressing information of a formula is inversely proportional to
the difficulty solving the formula. In other words, the smaller the compressing information
of a formula, the more complex the essential structure of the formula and, thus, the more
difficult the formula is to solve. On the contrary, the bigger the compressing information of
a formula, the simpler the essential structure of the formula and the easier it is to solve.

The third contribution of this work is to analyze structural properties of formulas in
the process of solving. In particular, We focus on whether the entropy of a variable affects
its flipping frequency during solving and focus on the relationship between the selected
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variables when the local search algorithms encounter a local optimum and the communities
to which they belong. The experimental results show the provability of the variable to
be assigned or flipped. The variable with large entropy is more likely to be flipped
repeatedly. Based on this conclusion, we proposed an initial solution candidate solution
generation strategy, which further improved the performance of the solvers CCAsat [17]
and Sparrow2011 [18] when integrating this strategy. In addition, the experimental results
also showed that a local search solver tends to select variables in different communities for
flipping when using it to solve SAT.

The rest of this paper is organized as follows. Some necessary concepts and basic
notations are introduced in Section 2. In Section 3, we introduce the methods of graph
representation of a formula and provide some definitions about the structural entropy of
graphs. In Section 4, we introduce an algorithm to calculate the two-dimensional structural
entropy of graphs. An analysis of the structural properties of formulas and the relationship
between the structural entropy of a formula and its hardness are presented in Section 5.
In Section 6, we present our conclusions.

2. Preliminaries

Given a set of Boolean variables X = {x1, x2, . . . , xn}, a literal refers to the variable x or
its negation ¬x. A clause c of length s is a disjunction of s literals, i.e., c = l1 ∨ l2 ∨ · · · ∨ ls;
we note s = |c|. We say that a variable x ∈ c means that c contains the literal x or
¬x. A CNF formula or a SAT instance of length t refers to the conjunction of t clauses,
F = c1 ∧ c2 ∧ · · · ∧ ct. A k-CNF formula means that the length of each clause in a CNF
formula is k.

Solving a CNF formula F refers to finding a truth assignment τ on a set of boolean
variables X such that all clauses in F are true under τ.

For a CNF formula F, we usually use V(F) and C(F) to represent the set of all
variables and the set of all clauses that appear in the formula F, respectively, and use N(x)
to represent the neighboring variable set of the variable x in F. Two variables x and y are
neighbors if and only if x and y appear together in at least one clause.

An undirected and weighted graph G is an ordered pair G = (V, w), where V is a
set of vertexes and w is a weighted function w : V × V → R+. For x, y ∈ V , we have
w(x, y) = w(y, x).

Definition 1. Given an undirected and weighted graph G = (V, w), let N(u) denote the set of
neighbor nodes of node u in G. Define the weighted degree of u to be du = ∑v∈N(u) w(u, v). For a
subset U ⊆ V, define the volume of U to be vol(U) = ∑v∈U dv. Define vol(G) = ∑v∈V dv to be
the volume of G.

3. Graphical Representation and Structural Entropy of Formulas
3.1. Graphical Representation of Formulas

To calculate the structural entropy of a formula, we need to represent a given SAT
instance as a graph. Among the existing graph models, the variable graph is a common
graph model. In variable graph model, a CNF formula F is represented as an undirected and
weighted graph G = (V, w). The vertices in G represent the variables in F, i.e., V = V(F),
and the edges in G represent the relationship between two neighboring variables. If two
variables x and y are neighbors, we connect them with an edge. w is the weighted function
of edges in G.

Definition 2. Given a SAT instance F over the set of variables X, the variable graph of F is an
undirected and weighted graph G = (X, w), where X is the boolean variables set, and the weight
function is as follows:

w(x, y) = ∑
x,y∈c∧c∈F

1(
|c|
2

) .
(1)
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3.2. Structural Entropy of Graphs

Representing a formula as a graph is convenient for us to study the structural char-
acteristics of the formula. Here, we first introduce the definitions of structural entropy of
graphs in [12].

Definition 3. Let G = (V, w) be an undirected and weighted graph with n nodes, and the weight
function is w. The one-dimensional structural entropy of G is defined as follows:

H1(G) = −
n

∑
i=1

di
vol(G)

log2
di

vol(G)
. (2)

We call the one-dimensional structural entropy of the variable graph of a formula
the one-dimensional structural entropy of the formula or the original information of
the formula. As we know, entropy is a measure of uncertainty of random variables or
random systems. If the entropy of a random variable or random system is larger, then the
greater the uncertainty of the variable or the more uncertainty is embedded in the system,
the worse the stability of the variable or the system. By calculating the one-dimensional
structural entropy of the variable graph of a formula, we can know how much uncertainty
is embedded in the formula.

Definition 4. Let G = (V, w) be an undirected and weighted graph with n nodes, and w is the
weight function. Suppose that P = {X1, X2, . . . , Xl} is a partition of vertices and that P is
disjoint; we define the structural entropy of graph G by partition P as follows:

HP (G) = −
l

∑
j=1

Vj

vol(G) ∑
i∈Xj

dj
i

Vj
log2

dj
i

Vj
−

l

∑
j=1

gj

vol(G)
log2

Vj

vol(G)
(3)

where Xj is called a module or a community, Vj is the volume of module Xj, l is the number of

modules, nj is the number of nodes in Xj, dj
i is the weight degree of the ith node of Xj, and gj is the

sum of the weights of the edges with exactly one endpoint in module Xj.

Definition 5. Given a graph G, the two-dimensional structural entropy of G is defined as follows:

H2(G) = min
P
{HP (G)} (4)

where P runs over all the partitions of G.

The two-dimensional structural entropy of a graph G is defined by the partition

of vertices in G. It contains two parts. The former part, −∑l
j=1

Vj
vol(G) ∑i∈Xj

dj
i

Vj
log2

dj
i

Vj
,

refers to the number of bits needed to determine the code of node v in its own module X,
where v is the node accessible from a step of the random walk in G. The second part is

−∑l
j=1

gj
vol(G)

log2
Vj

vol(G)
, which refers to the number of bits needed to determine the code

of a module X, where X is the module accessible from a step of the random walk from
nodes outside of X.

It can be seen from Definitions 4 and 5 that the two-dimensional structural entropy
of a graph is a quantitative measure of the information interaction between nodes in the
graph. It measures the minimum amount of information to position the two-dimensional
code of the node that is accessible from random walk in G with stationary distribution [12].
From the perspective of information theory and coding, the two-dimensional structural
entropy of a graph describes the minimum bits required to encode a graph. Therefore, the
two-dimensional structural entropy of a graph is understood as an essential structure of the
graph and describes how much intrinsic information is hidden in the graph, which cannot
be encoded or decoded by any encoder or decoder. By calculating the two-dimensional
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structural entropy of the variable graph of a formula, we can obtain the essential structure
of the formula, i.e., we know how much intrinsic information is hidden in the formula.

It can be seen from the above definition that, for a weighted graph G = (V, w),
if there is a partition P of vertices V of G such that H2(G) = minP{HP (G)}, then P is
an optimal partition of V. We call P a community structure of G, in which most of the
edges are within a community and few of them connect vertices of distinct communities.
We can obtain the modularity of P by partition P . The modularity of P is defined by
Newman and Girvan [19] as follows:

Q = ∑
Xk∈P

∑i,j∈Xk
w(i, j)

vol(G)
−
(

∑i∈Xk ∑j∈V w(i, j)
2vol(G)

)2
. (5)

Note that the modularity defined by Newman and Girvan [19] measures the quality
of community structure of a network. They define modularity as the fraction of edges
connecting vertices of the same community minus the expected fraction of edges for a
random graph with the same number of vertices and same degree. It is different from
the definition of the structural entropy of graphs. The structural entropy of graphs is an
information theoretical measure of the quality of community structures of graphs. It has
many properties, but the definition of modularity has only some of them [16].

In the next section, we present a greedy algorithm to approximate the two-dimensional
structural entropy of graphs. By calculating the two-dimensional structural entropy of a
graph, we can obtain a partition of vertices of a graph. Here, we continue to present the
definition of the compressing information of graphs.

Definition 6. Given a weighted graph G, we define the compressing information of graph G as
C(G) = H1(G)−H2(G). The compression ratio of graph G can be defined as ρ(G) = C(G)

H1(G)
.

The compressing information of a graph G is a quantitative measure, which measures
how much uncertainty that can be eliminated is embedded into G. Eliminating the amount
of uncertainty embedded in G, we can obtain the essential structure of G. The essential
structure of graph G is the intrinsic information hidden in G that cannot be eliminated by
any lossless encoding of G.

For a CNF formula F, if the two-dimensional structural entropy of the variable graph of
F is larger, then the essential structure of the formula is more complicated. We have reason
to believe that this formula is very difficult to solve. In the following sections, we construct
experiments to reveal this problem from the perspective of structural information theory.

4. An Algorithm for Calculating Two-Dimensional Structural Entropy

In this section, We describe a greedy algorithm to approximate the two-dimensional
structural entropy of graphs.

4.1. Algorithm E
First, we introduce the concept of structural entropy increment as follows [16].

Definition 7. Given a graph G, suppose that P = {P1, P2, . . . , Pl} is a partition of vertices of
G and that P ′ = {P1, P2, . . . , Pi−1, Pi+1, . . . , Pj−1, Pj+1, . . . , Pl , Pij} is the new partition after
merging modules Pi, Pj in P, where Pij = Pi ∪ Pj. We define the structural entropy increment
∆P

i,j as

∆Pij (G) = HP (G)−HP ′(G). (6)

As can be seen from Definition 7, if ∆Pij (G) > 0, then the partition after merging is
better than before. An approximate greedy algorithm E for calculating the two-dimensional
structural entropy of graphs is described as follows:
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(1) First, each node v of graph G is divided into a single set. That is, ifP = {P1, P2, . . . , Pn}
is the initial partition, then Pi = {vi}.

(2) For any 1 ≤ i, j ≤ n, compute ∆Pij (G).

(3) If there is no 1 ≤ i, j ≤ n, such that ∆Pij (G) > 0, then terminate and output the partition

P . Otherwise, find i, j such that ∆Pij (G) is maximized among all ∆Pij (G), then merge
Pi, Pj. Let Pij = Pi ∪ Pj, P = {P1, P2, . . . , Pi−1, Pi+1, . . . , Pj−1, Pj+1, . . . , Pl , Pij}, and go
back to (2).

(4) Compute the two-dimensional structural entropy of graphs by P according to Equa-
tion (3).

The time complexity of algorithm E is O(n logO(1) n), which means that we can
quickly calculate the two-dimensional structural entropy of a formula with a certain scale.

In algorithm E , each iteration always selects the modules with the largest ∆Pij (G) to
merge. We think such conditions are too strict. In practice, we found that merging slightly
smaller ∆Pij (G) produces better results. Therefore, we add a random perturbation to the
algorithm E , and step (3) is modified as follows:

(3) If there is no 1 ≤ i, j ≤ n, such that ∆Pij (G) > 0, then terminate and output the

partition P . Otherwise, Among the first q largest ∆Pij (G), randomly select a ∆Pij (G),
find the corresponding i, j, and merge Pi, Pj to obtain the partition P . Finally go back
to (2).

Note that there are some restrictions on the first q largest ∆Pij (G). Small increments of

∆Pij (G) are useless to us. Therefore, the difference between the values of the first q largest

∆Pij (G) should be small and the variance should be as small as possible. In our experiment,

the value of q is set as follows: (i) Select the first s structural entropy increments ∆Pij (G) in
turn, and calculate the average structural entropy increment ∆mean. (ii) If the maximum
entropy increment ∆max · 0.99 < ∆mean and s ≤ 10, then set q = s; otherwise, set q = 10.

4.2. λ-Approximation Strategy

In addition, in order to quickly calculate the two-dimensional structural entropy of
some large instances, we propose a λ-approximation strategy. This strategy is based on
the singular value decomposition (SVD) of matrices. In other words, an m× n real matrix
A can be factored into A = UΣVT , where U and V are unit orthogonal matrices, Σ is a
diagonal matrix, and the elements on the main diagonal are the eigenvalues.

Given a CNF formula F with variables set X and clauses set C, our λ-approximation
strategy algorithm is described as follows:

(1) Construct the formula matrix Mn×m. Here, n is the number of variables and m is
the number of clauses in F. If the variable x appears in clause c, then set Mx,c = 1
(positive occurrence) or Mx,c = −1 (negative occurrence). Otherwise, set Mx,c = 0.

(2) Compute the singular value of matrix M.
(3) Select the first λ eigenvalues in Σ to reconstruct the formula matrix M∗n×m, where

M∗n×m = Un×λΣ∗λ×λVT
λ×m. Considering the matrix M∗n×m as the adjacency matrix

of a graph, we can calculate the one-dimensional and two-dimensional structural
entropies of the graph by M∗n×m.

In the next subsection, we carry out experimental studies to illustrate the value of the
parameter λ and verify the effectiveness of the strategy.

4.3. Experimental Evaluation

First, we designed some experiments to study the value of λ. We generated ran-
dom 3-SAT instances (10 instances in each group) with different numbers of variables
(n = 20, 50, 100, 500, 1000) and different numbers of clauses (m = 91, 218, 403, 2130, 20, 000)
for the experiments. At the same time, we also selected some instances from the SAT
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competition 2018 industrial benchmark for experiments. In the experiment, we calcu-
lated the eigenvalues of each formula matrix and sorted the eigenvalues from large to
small. Then, we calculated the cumulative contribution rate of eigenvalues and the one-
dimensional and two-dimensional structural entropy of formulas under the contribution
rate. Some experimental results are shown in Figure 1. The experimental results of other
instances are basically consistent with Figure 1. We will not show them here.

(a)

(b)

Figure 1. The contribution rate of eigenvalues and the approximate situation of structural information
for instances A and B. The X-axis represents the number of selected eigenvalues in formula matrix,
where the eigenvalues have been arranged from largest to smallest. (a) Random instance A (contains
1000 variables); (b) Industrial instance B (contains 600 variables).

As we can seen from Figure 1, we found that the structural entropy of the new
formula can effectively approximate the structural entropy of the original formula when
the cumulative contribution rate of selected eigenvalues exceeds 70% whether it is a random
formula or an industrial formula. Therefore, in the subsequent experiments, we set the
value of λ as the number of selected eigenvalues, where the cumulative contribution rate
of selected eigenvalues was not less than 70%.

Second, we carried out experimental studies to evaluate the effectiveness of the λ-
approximation strategy. We calculated the structural entropy and the running time of
each group of instances on large random 5-SAT instances from the SAT competition 2009
benchmark by adopting the algorithm E and the λ-approximation strategy. These instances
were relatively complex and larger than the random 3-SAT instances used in Figure 1. The
experimental results are shown in Figure 2.

As can be seen from Figure 2, the average running time of our λ-approximation
strategy is better than algorithm E on random 5-SAT instances. Compared with the original
formula, the approximate ratio of one-dimensional and two-dimensional structural entropy
of the new formula is more than 96%.
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Figure 2. The average running time of two algorithms and the approximation ration.

At the same time, we also conducted experiments on some instances of the SAT
competition 2018 industrial benchmark. The experimental results are shown in Figure 3.
From Figure 3, we can see that the average running time of our λ-approximation strategy
is slightly worse than that of algorithm E on classes Jingchao and Biere. Compared with the
original formula, the approximate ratio of one-dimensional and two-dimensional structural
entropies of the new formula is more than 92%.

Figure 3. The average running time of two algorithms and the approximation ration.

5. Structural Characteristics of Formulas

The structure of a CNF formula is very complex, and the variables are related to
each other by some clauses. In fact, the variable graph model we introduced is a good
description of this complex structure. In general, a variable with more occurrences in
a formula is subject to more constraints, and it should be connected with more edges.
Our variable graph model just satisfies this condition. Therefore, analyzing the structural
entropy of the variable graph of a formula may help us further understand the complex
structure of the formula.

5.1. Structural Entropy of Formulas

To understand the complex structure of formulas, we carried out experiments to
analyze the structural entropy of formulas. Our first experiment studied the structural
entropy of random 3-SAT instances. We generated a number of random 3-SAT instances
(10 instances in each group) with different clause to variable ratios α = m/n = 1, 2, . . . , 7,
for a fixed number of variables n = 104. Simultaneously, we also generated a certain
number of random 3-SAT instances (10 instances in each group) with a fixed constraint
ratio α = 4.26 and different number of variables n = 102, 103, 104, 105. Then, we reported
the modularity Q of the partition returned by our algorithm as well as the one-dimensional
one-dim and two-dimensional two-dim structural entropies of these formulas. We also
reported the compressing information C and compression ratio ρ. Tables 1 and 2 show
the results.
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Table 1. The structural information of random 3-SAT instances with different α and n = 104.

n α = m/n Q ρ One-Dim Two-Dim C
10,000 1 0.419 0.321 13.027 8.841 4.186
10,000 2 0.228 0.172 13.162 10.901 2.261
10,000 3 0.161 0.118 13.206 11.652 1.554
10,000 4 0.130 0.090 13.227 12.033 1.194
10,000 4.25 0.125 0.085 13.231 12.103 1.128
10,000 4.5 0.121 0.081 13.234 12.161 1.072
10,000 5 0.113 0.074 13.239 12.260 0.979
10,000 6 0.101 0.064 13.247 12.402 0.845
10,000 7 0.091 0.057 13.253 12.498 0.756

Table 2. The structural information of random 3-SAT instances with different numbers of variables
and fixed clause to variable ratios α.

n α = m/n Q ρ One-Dim Two-Dim C
100 4.26 0.164 0.132 6.587 5.718 0.868

1000 4.26 0.147 0.098 9.909 8.936 0.974
10,000 4.26 0.125 0.085 13.231 12.104 1.126
100,000 4.26 0.111 0.085 16.552 15.138 1.414

As we can see, the modularity Q and the compression ratio ρ of random 3-SAT
instances with a fixed number of variables are very low (see Table 1). As the constraint ratio
increases, the two-dimensional structural entropy of random 3-SAT instances gradually
increases, which is very close to the one-dimensional structural entropy. We can also see
that the compressing information C of these formulas decreases with the increase in the
constraint ratio α. For random 3-SAT instances with a constraint ratio near the phase
transition point (see Table 2), the modularity Q and compression ratio ρ did not change
much with the increase in the number of variables n and their values are very low. The two-
dimensional structural entropy of these formulas are very close to the one-dimensional
structural entropy, and the compression ratio is less than 15%.

For random 3-SAT instances, the difficulty solving them gradually increases with the
increase in the constraint ratio α and it is very difficult to solve when the constraint ratio is
close to the phase transition point [20–22]. From the experiment, we observe that, as the
constraint ratio increases, the two-dimensional structural entropy of this formulas gradu-
ally increases to be close to the one-dimensional structural entropy and the compressing
information of formulas gradually decrease to less than 15% of the original information.
We can conclude that the difficulty solving a formula is related to the compressing informa-
tion of the formula. If the two-dimensional structural entropy of a formula is close to the
one-dimensional structural entropy, that is, the compressing information of the formula is
very little, then the intrinsic information hidden in the formula is bigger and the essential
structure of the formula is more complex due to the large amount of uncertainty embedded
in the formula, which makes the formula more difficult to solve.

In addition, we also observe that the community structure of random 3-SAT instances
is not obvious except the constraint ratio α = 1. This finding is consistent with the finding
in [4,5]. Note that a network is considered to have a distinct community structure when
the module value of the network is in the interval [0.3, 0.7] [19].

In the second experiment, we analyzed the structural entropy of industrial SAT
instances. As far as we know, it is relatively easy to solve industrial SAT instances.
Now, we observe the structural entropy of industrial SAT instances by experiments and see
if the compressing information of industrial SAT instances is relatively large. Our experi-
ment was operated on the industrial benchmark from SAT competition 2018. We also report
the one-dimensional and two-dimensional structural entropies, community structure, and
compressing information of each instance class. The results are shown in Table 3.
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Table 3. The structural information of industrial SAT instances.

Instance_Class #ins Q ρ One-Dim Two-Dim C
biere 20 0.650 0.490 13.031 6.646 6.385
chen 20 0.159 0.103 8.319 7.464 0.855

chowdhury 19 0.534 0.332 9.249 6.179 3.069
deriendt 15 0.918 0.332 11.585 7.739 3.846
harder 11 0.803 0.366 15.930 10.093 5.837
heule 20 0.694 0.261 14.393 10.640 3.754

Heusser 17 0.600 0.413 16.737 9.827 6.910
jingchao 20 0.366 0.223 9.752 7.578 2.173

scheel 20 0.674 0.497 14.817 7.457 7.360
Porkhunov 9 0.670 0.423 10.674 6.159 4.514

In Table 3, the notations instance_class and #ins represent instance classes and the
number of instances in each instance class, respectively. As you can see, the community
structure of the industrial SAT instance is very obvious and it is consistent with the finding
in [4,5]. The gap between two-dimensional structural entropy and one-dimensional struc-
tural entropy of industrial SAT instances is obvious, that is, the compressing information
of industrial SAT instances is large. Meanwhile, we can also see that the compression ratio
of industrial SAT instances is generally higher than 15%. This shows that a large amount of
uncertainty embedded in the formula can be eliminated and that the essential structure of
the formula is relatively simple. This may be one reason why industrial SAT instances are
relatively easy to solve.

Through experiments, we can conclude that the structural entropy of a formula can
approximately measure the complex structure of the formula. For a given CNF formula F,
if the two-dimensional structural entropy of formula F is larger, then the essential structure
of F is more complex. At the same time, we can see that the compressing information of a
formula can approximately measure the difficulty solving the formula. If the compression
information of a formula is larger, then a large amount of uncertainty embedded in formula
can be eliminated, the essential structure of the formula is relatively simple, and the formula
will be easier to solve. On the contrary, if the compressing information of a formula is
smaller, then the uncertainty that can be eliminated in the formula is less, the essential
structure of the formula is more complex, and the formula is more difficult to solve.

Now, a natural question is as follows: since the structural entropy of a formula can
approximately measure the complex structure of the formula, does the structural entropy
of the formula contribute to solving the formula? We continued to construct experiments
to reveal this problem.

5.2. Structural Properties of Formulas during Solving

Given a formula F, G is the variable graph of F. The entropy of node u in G is defined as
H(u) = − du

vol(G)
log2

du
vol(G)

, which represents the uncertainty of random walks in G arriving
at node u. The one-dimensional structural entropy of G is the sum of these uncertainties.
Entropy describes the uncertainty of a random variable or a random system. In a variable
graph, the greater the entropy of a node, the greater the degree of uncertainty freedom of
the node. Therefore, we conjecture that the probability of the variable (node) with a large
entropy to be flipped is high when solving the formula with a local search solver.

To verify our conjecture, we used the local search solver CCAsat to solve these random
instances that were used in SAT competition 2009. At the same time, we also used the
local search solver CCAsat to solve some industrial instances from SAT competition 2018.
CCAsat is a competitive local search solver for random SAT instances, which was proposed
by Cai in [17]. In the process of solving, we separately counted the number of times each
variable was flipped and computed its entropy. Figure 4 shows the relationship between
the frequency of a variable being flipped and its entropy for random instance unif-k3-r4.2-
v2000-c8400-S1494472801-040 in the process of solving. Due to limited space, we do not
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show the statistical results for other instances, including industrial instances, but their
results are highly consistent with the results shown in Figure 4.

Figure 4. The flip times and entropy of variables (only some variables are shown) for the instance
unif-k3-r4.2-v2000-c8400-S1494472801-040 during a search. These data have been normalized.

From the experiment, we can observe that, indeed, the greater the entropy of a variable,
the greater the frequency of the variable being flipped. This conclusion is useful to us.
On the one hand, it can further explain our previous conclusion, i.e., the difficulty solving a
formula is related to the structural entropy of the formula. If there are many variables with
large entropy in a formula, it will take more time to fix the values of these variables when
solving the formula. Therefore, it is difficult to solve. On the other hand, we can use it to
improve some local search solvers for SAT. For a given formula F, if the structural entropy
of a variable is large, which means that the probability of this variable being repeatedly
assigned is higher when solving F with a local search solver, then we can generate a better
initial candidate solution according to the structural entropy of variables when solving F
and use it to guide the algorithm to search.

Given a formula F, G is the variable graph of F. The process of generating an initial
candidate solution with the structural entropy of variables is as follows.

(1) Calculate the structural entropy of nodes in G.
(2) Reorder variables according to the structural entropy (from small to large).
(3) Take out the sorted variables in turn and count their positive and negative occurrence

times in the remaining unsatisfied clauses. If the times of positive occurrence are
more than negative, then assign the value of the variable to 1 and to 0 otherwise.

This strategy can be effectively integrated into some other local search solvers for SAT.
In our previous work, we integrated this method and clause weighting strategy into the
solvers CCAsat and Sparrow2011 [18], resulting in solvers SICCAsat and SISparrow2011,
which further improved their performance. Figure 5 shows the performance of these
solvers on the SAT competition 2009 benchmark.
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Figure 5. The performance comparison results of the solvers CCAsat, Sparrow2011, SICCAsat,
and SISparrow2011 on the SAT competition 2009 benchmark.

We designed experiments to analyze the structure of a formula during a search.
Ansótegui et al. [5] have verified by experiments that the community structure of industrial
SAT instances is gradually destroyed with the increase in iteration times when using a
complete solver CDCL to solve it. Here, we solved a SAT instance with the local search
solver SICCAsat and observed whether the instance shows some structural characteristics
during a search. In the experiment, we outputted each flipped variable and the community
it belongs to when the solver encounters a local optimum. Figure 6 shows the results of
the solver on a random instance. The numerical results are shown in Table 4. In Table 4,
the notation times represents the number of times a algorithm encounters a local optimum,
var represents the selected variables, and com represents the communities to which the
selected variables belong. Since the results of other SAT instances are consistent with the
one showed in Figure 6, we do not show more results here.

Table 4. The selected variables and the communities they belong to for the instance CBS_k3_n100_m403_b10_55 during
a search.

Times var com Times var com Times var com Times var com Times var com

1 156 45 21 422 9 41 450 8 61 515 18 81 44 5
2 402 34 22 346 5 42 491 46 62 237 18 82 318 5
3 301 40 23 283 36 43 272 13 63 250 18 83 498 26
4 274 2 24 369 15 44 533 46 64 398 19 84 114 32
5 141 28 25 44 5 45 255 46 65 345 37 85 309 45
6 354 39 26 318 5 46 222 39 66 159 37 86 456 4
7 402 34 27 596 5 47 300 22 67 500 39 87 484 10
8 502 25 28 313 39 48 286 22 68 475 34 88 227 10
9 57 39 29 516 18 49 564 22 69 377 8 89 115 7
10 245 31 30 225 24 50 454 21 70 51 8 90 51 8
11 224 25 31 453 17 51 262 21 71 350 8 91 227 10
12 238 18 32 458 17 52 469 42 72 562 1 92 55 43
13 206 10 33 281 41 53 463 43 73 528 18 93 263 46
14 49 41 34 132 9 54 327 42 74 238 18 94 269 46
15 410 24 35 429 23 55 605 42 75 380 15 95 547 46
16 63 30 36 288 23 56 596 5 76 516 18 96 488 33
17 40 3 37 253 32 57 44 5 77 100 25 97 483 15
18 378 6 38 368 44 58 544 26 78 411 9 98 415 32
19 596 5 39 350 8 59 458 17 79 143 9 99 503 24
20 148 47 40 172 8 60 466 17 80 422 9 100 199 24

As shown in Figure 6, to jump out of the local optimum, the variables selected by the
solver each time are different in most cases and the communities to which they belong are
also different. This shows that a local search solver tends to select variables in different
communities to flip on each iteration.
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Figure 6. The selected variables and the communities to which they belong for the instance
CBS_k3_n100_m403_b10_55 during a search. The horizontal axis represents the number of times that
the algorithm encounters a local optimum when solving the instance with the local search solver
SICCAsat, and the vertical axis represents the selected variables and the communities they belong to.

Combining the research of Ansótegui et al. [5], we can conclude that, when solving
SAT instances with a solver, the solver tends to select variables among different com-
munities to form a new learning clause (CDCL) or perform the next round of searches
(local searches). This conclusion may be useful to us. After understanding the structural
characteristics of a formula in the process of solving, we may be able to develop some
high-performance SAT solvers.

6. Conclusions

Modern SAT solvers show obvious differences in solving different formula classes.
The reason may be that different SAT formula classes have different structural characteris-
tics. In this work, we studied the structural properties of CNF formulas and discussed the
relationship between the structural properties of a formula and its solving difficulty.

Firstly, we represented a CNF formula as a graph, on which we studied the structural
entropy and community structure of the formula. In the experiment, we found that the
compressing information of a formula decreases with an increase in the constraint ratio
for random 3-SAT instances. When the constraint ratio is close to the phase transition
point, the compressing information of the formula gradually decreases to less than 15%
of the original information. For industrial SAT instances, the compressing information is
generally larger than 15% of the original information, and the gap between two-dimensional
structural entropy and one-dimensional structural entropy is larger than random SAT
instances. Therefore, we believe that the difficulty solving a formula is related to its
structural entropy. Meanwhile, we gave an explanation of the difficulty solving a formula
from the perspective of information theory. In addition, we also found that the community
structure of industrial SAT instances are obvious while the random SAT instances are not.

Secondly, we proposed a λ-approximate strategy to approximate the two-dimensional
structural entropy of formulas. The strategy is based on singular value decomposition of a
matrix. The experimental results verified the effectiveness of the strategy on large random
SAT instances.

Finally, we analyzed the structural properties of formulas in the process of solving.
In particular, we experimentally verified that the structural entropy of a variable affects the
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frequency of the variable being flipped. By using this conclusion, we proposed an initial
solution generation strategy for some stochastic local search solvers. Combined with the
clause weight method, this strategy can effectively improve the performance of some local
search solvers. In addition, we experimentally verified that, in solving SAT instances with
a solver, the solver tends to select variables in different communities to form new learning
clauses (complete solvers) or perform the next round of searches (local search solvers).

The study of the complex structure of formulas has significant implications for better
understanding why some solvers perform better on industrial SAT instances and why
others perform better on random SAT instances. Moreover, we can use these findings to
develop or improve some existing solvers for SAT. Meanwhile, this analysis also serves
as the basis for new random SAT generation models that produce more realistic pseudo-
industrial random instances. This problem is distinguished as one of the ten challenge
problems in SAT [23–25].

The findings in the present paper not only help us to design new SAT solvers but also
help us to construct harder instances by the principle of structural entropy of CNF formulas.
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