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Abstract: A mean-field type model with random growth and reset terms is considered. The
stationary distributions resulting from the corresponding master equation are relatively easy to
obtain; however, for practical applications one also needs to know the convergence to stationarity.
The present work contributes to this direction, studying the transient dynamics in the discrete version
of the model by two different approaches. The first method is based on mathematical induction by the
recursive integration of the coupled differential equations for the discrete states. The second method
transforms the coupled ordinary differential equation system into a partial differential equation for
the generating function. We derive analytical results for some important, practically interesting cases
and discuss the obtained results for the transient dynamics.
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1. Introduction

A challenge for physics in taming complexity is to create simple analytically treatable
models, with a wide range of applicability [1]. Mean-field type master equations [2] with
state-dependent transition rates represent such an example. Beside the diffusion and
growth processes such equations were used with success in understanding distributions
encountered in social or economic problems [3]. Recently Biró and Néda proposed an
analytically solvable master equation with a unidirectional growth and a reset term [4].
For simple growth and reset rates the equation leads to stationary distributions which
appear in many complex systems (for a review please consult [5]). Recent applications
are simple but powerful theories for explaining scientific citation and Facebook share
dynamics [6] or income distributions in modern societies [7]. It has been also proved that
the proposed system converges to these stationary distributions independently of the initial
condition [8]. For modeling purposes, it remains however an open question as to how fast
the convergence to the stationary solution is. Comparison of distributions generated by the
model with those derived from experimental data might be strongly biased if stationarity
is not reached. Frequently the relaxations are exponential in time, and the largest exponent
governs this convergence. In the present work, we intend to find an explicit formula for the
law of convergence in some simple, analytically treatable cases. Instead of the continuous
version of the growth and reset model we consider here the discrete version, where the
allowed states of the system are taken from a discrete, but infinite set—similarly to the
study performed in [9].

The present paper is organized as follows: first we present the simple growth and
reset model for discrete states and its general stationary solution. We consider two specific
solutions in compact forms: constant reset rate with constant growth rate and constant
reset rate with linear growth rate (preferential growth). We then present two methods
for studying the transient behavior: the recursive induction method and the generating
function approach. Explicit solutions for some practically important cases are given in these
two particular cases. Finally, we discuss the obtained results and exemplify numerically
the unveiled convergence.
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2. Master Equation for Unidirectional Growth with Reset

A general linear Master-equation for a system possessing discrete states, n writes as

∂Pn(t)
∂t

≡ Ṗn(t) = ∑
m
[wnmPm(t)− wmnPn(t)], (1)

where Pn is the probability of the system being in state n and wnm are the state-dependent
transition rates from the state m to n. In most of the cases, local transition rates are
considered, such as for the classical diffusion with a drift [10]:

wnm = µmδn,m+1 + λmδn,m−1. (2)

This choice leads to the evolution equation

Ṗn(t) = µn−1Pn−1(t) + λn+1Pn+1(t)− µnPn(t)− λnPn(t), (3)

being the discrete model of one-dimensional diffusion, with position dependent drift and
diffusion coefficients.

Here we concentrate on a different process: the local transition is allowed only in
one direction, increasing n by one unit. As it is discussed in [5] such a process is relevant
for many physical, biological and socio-economic phenomena. To make a stationary state
possible, this local growth is supplemented with a non-local transition, which resets the
system from any state to the ground state (n = 0). Accordingly, we have thus

wnm = µmδn,m+1 + γmδn,0 , (4)

leading to the evolution equation

Ṗn(t) = µn−1Pn−1(t) + δn,0〈γ〉 − (µn + γn)Pn(t), (5)

where 〈γ〉 = ∑
j

γjPj(t). Imposing the conservation of probability ∑
j

Pj(t) = 1, the above

equation can be written as:

Ṗn(t) = µn−1Pn−1(t)− (µn + γn)Pn(t), n > 0 (6)

Ṗ0(t) = −(µ0 + γ0)P0(t) + 〈γ〉, n = 0. (7)

This model is schematically illustrated in Figure 1.
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Figure 1. Schematic illustration of the unidirectional random growth with resetting.

3. Stationary Solution

For n > 0 the stationary distribution Qn = lim
t→∞

Pn(t), is given by the condition:

µn−1Qn−1 = (µn + γn)Qn. (8)

The recursive solution of the above gives:

Qn =
µ0Q0

µn

n

∏
j=1

µj

µj + γj
=

µ0Q0

µn

n

∏
j=1

(
1 +

γj

µj

)−1

. (9)
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For n = 0 one obtains Q0 from the normalization condition: ∑
i

Qi = 1. We con-

sider in the following two simple cases, where the stationary distributions are given in
compact form.

3.1. Constant Growth and Reset Rates

The simplest case is when both the growth rate µn = µ and the reset rate γn = γ are
constant, i.e., independent of the initial and final states in the microtransition. In such cases
the stationary distribution becomes an n-th power

Qn = Q0

(
1 +

γ

µ

)−n
, (10)

with:
Q0 = 1− 1

1 + γ
µ

=
γ

µ + γ
. (11)

This is the well known geometrical distribution and it can easily be transformed into
an exponential law, as follows:

Qn =
γ

µ + γ
e−n ln

(
1+ γ

µ

)
. (12)

If such a growth and reset process with constant growth and reset rates is relevant to a
physical system, and the index n quantifies the energy of the state (i.e., En = n ε), the equi-
librium distribution reminds us to the famous Gibbs-Boltzmann distribution. The system
behaves like a thermodynamic system in canonical ensemble with the “temperature”:

kBT =
ε

ln
(

1 + γ
µ

) . (13)

For such non-thermal applications, one can interpret this quantity as a generalized
temperature. In special cases when the reset rate is much smaller than the growth rate
γ� µ, one obtains:

kBT ≈ ε
µ

γ
. (14)

It worth mentioning here that the temperature-like combination for the growth and
reset rate parameters identified through the stationary distribution is a particular appear-
ance of the legendary “fluctuation-dissipation” theorem. When the rates are constant, their
sets the temperature.

3.2. Linear Growth Rate and Constant Reset Rate

More interesting, and application-wise much more exciting is to consider a linear
preference in the growth rate: µn = σ(n + 1) and keeping the reset rate constant γn = γ.
This is the mathematical realization of Matthew principle “For whosoever hath, to him
shall be given,...”. Such effects are common in complex systems, for a review one can
consult [11]. Here the state n can be thought of possessing n units of some arbitrary goods
such as money, energy, scientific citations, etc.

Using Equation (9) and the linear preference condition we obtain:

Qn =
σQ0

σ(n + 1)

n

∏
j=1

σ(j + 1)
σ(j + 1) + γ

= Q0
n!

n
∏
j=1

(
j + 1 + γ

σ

) . (15)
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Again, Q0 can be calculated from the normalization condition
∞
∑

n=0
Qn = 1 and the

normalized distribution becomes:

Qn =
γ

σ + γ

n!
n
∏
j=1

(
j + 1 + γ

σ

) =
γ

σ + γ

Γ(n + 1) Γ
(
2 + γ

σ

)
Γ
(
n + 2 + γ

σ

) . (16)

This is the Waring distribution [12], familiar from failure statistics. In the limit n→ ∞
it leads to the asymptotic behavior:

Qn→∞ ≈
γ

(σ + γ)
Γ
(

2 +
γ

σ

)
n−1− γ

σ . (17)

Whenever the reset is rare, i.e., γ � σ, we arrive at the well-known Zipf distribu-
tion [13], which is frequently encountered in many complex systems [14,15]:

Qn→∞ ∼ n−1. (18)

4. Convergence towards Stationarity for Constant Reset and Growth Rates

For constant reset and growth rates (γn = γ, µn = µ) we used two different methods
for studying the transient dynamics in the growth and reset model. Both of them leads to
the same compact analytical solution.

4.1. The Recursive Substitution Method

We rewrite the system of Equations (6) and (7) in a matrix form:

Ṗ =


−(γ + µ) 0 0 0 0

µ −(γ + µ) 0 0 0
0 µ −(γ + µ) 0 0

0 0
. . . . . . −(γ + µ)

P +


〈γ〉
0
0
0
...

. (19)

When γ is constant, its expectation value, 〈γ〉, does not depend on time and the system
can be handled by solving recursively the equations, repeatedly substituting the obtained
solution for n into the equation for n + 1. We arrive at the transient behavior

Pn(t) = e−(γ+µ)t
n

∑
i=0

Ci
tn−i

(n− i)!
µn−i +

γ

µ

µn+1

(µ + γ)n+1 , (20)

where the Ci-s are integration constants that are determined from the Pn(0) initial condi-
tions. For t → ∞ the first term will vanish because the exponential term dominates the
polynomial, therefore we get:

Qn = lim
t−→∞

Pn =
γ

µ

µn+1

(µ + γ)n+1 =
γ

µ(1 + γ
µ )

1
(1 + γ

µ )
n =

γ

γ + µ

(
1 +

γ

µ

)−n
. (21)

This is exactly the result announced in (10) and (11) demonstrating that the system
converges to the presumed stationary distribution, in agreement with the classical H-
theorem for master-equations [16].

We consider now a specific initial condition:

P0(0) = 1, (22)

Pn(0) = 0, n > 0. (23)
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In this case we obtain

C0 = 1− γ

γ + µ
= 1− γµ0

γ + µ
, (24)

Cn = − γµn

(γ + µ)n+1 , (25)

leading to the compact form:

Pn(t) = e−t(γ+µ) (tµ)
n

n!
+

µnγ

(γ + µ)n+1

[
1− Γ[n + 1, t(γ + µ)]

n!

]
. (26)

Using the properties of the Γ[q, x] upper incomplete gamma function in the limit
t→ ∞

Γ[q, x → ∞] ≈ xq−1 e−x, (27)

we get:

Pn(t→ ∞) ≈ µnγ

(γ + µ)n+1 +
(tµ)n

n!
e−t(γ+µ) γ

γ + µ
. (28)

In agreement with the intuitive reasoning, this result suggests that the convergence is
quick if γ is large and µ is small.

An important and simply treatable case is when t(γ + µ)→ 0. In this case we use the
property Γ[n + 1, 0] = n! leading in this limit to:

Pn(t) ∼
(tµ)n

n!
. (29)

This result indicates that at the beginning of the dynamics one observes a Poisson
distribution instead of the exponential one.

4.2. Generating Function Method

The generating function of the Pn(t) distribution writes as:

G(t, z) =
∞

∑
n=0

Pn(t)e−nz. (30)

Normalization of Pn(t) leads to:

G(t, 0) = 1. (31)

The initial conditions Pn(0) defines

G(0, z) =
∞

∑
n=0

Pn(0)e−nz = G0(z), (32)

and the stationary state defines:

G(∞, z) =
∞

∑
n=0

Qne−nz = G∞(z). (33)

The deviation from stationarity at time t is

∆n(t) = Pn(t)−Qn, (34)

and in the generating function formalism it takes the following form:

∆(t, z) = G(t, z)− G∞(z). (35)
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For constant rates (γn = γ and µn = µ), the generating function at the stationary state
can be easily computed:

G∞(z) =
γ
µ ez(

1 + γ
µ

)
ez − 1

. (36)

We can now rewrite the growth and reset master Equation (6) in the G space, leading to:

∂G(t, z)
∂t

= µ G(t, z)e−z − (µ + γ) G(t, z) + γ. (37)

The above equation can be integrated and gives the solution

G(t, z) = c(z) eµ t
(

e−z−1− γ
µ

)
+

γ
µ

1 + γ
µ − e−z = c(z) eµ t

(
e−z−1− γ

µ

)
+ G∞(z), (38)

with c(z) a function that can be determined from the initial conditions. The convergence to
the stationary state in the generating function formalism is immediate:

G(∞, z) = lim
t→∞

(
c(z) eµ t

(
e−z−1− γ

µ

)
+

γ
µ

1 + γ
µ − e−z

)
=

ez γ
µ(

1 + γ
µ

)
ez − 1

. (39)

From Equation (38) and using c(z) = ∆(0, z) we arrive at

∆(t, z) = e−γteµt(e−z−1)∆(0, z). (40)

In the above solution one observes the generating function of the Poisson-distribution.
By straightforward mathematical steps that are detailed in the Appendix A, we arrive at:

∆n(t) = e−(γ+µ)t
n

∑
k=0

(µt)k

k!
∆n−k(0). (41)

Using the definition (35), the initial conditions (22), (23) and the form of the stationary
distribution given by (12) we get the same result as the one given in (26).

5. Constant Reset Rate and Linearly Increasing Growth Rate
5.1. The Recursive Substitution Method

We proceed in a similar manner as before and rewrite the discrete evolution equation
into a matrix form. We consider for the moment arbitrary state dependent growth rates µn
and a constant reset rate, γ:

Ṗ =


−(µ0 + γ) 0 0 0 0

µ0 −(µ1 + γ) 0 0 0
0 µ1 −(µ2 + γ) 0 0

0 0
. . . . . . −(µn + γ)

P +


〈γ〉
0
0
0
...

. (42)

Proceeding now with the calculations as done for the constant growth rate, assuming
no degeneracy in the values of (µi + γ) (i.e., all µi values are different) we achieve the
following result by mathematical induction:

Pn =
n

∑
k=0

Cke−(µk+γ)t

n−1
∏
i=k

µi

n
∏

j=k+1
(µj − µk)

+
γ

µn

n

∏
i=0

µi
µi + γ

, (43)
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where Ci are integration constants that will be determined from the initial conditions. We

also assumed in the product notation
n
∏
m
(...) = 1 if m > n by definition.

Due to the fact that in the first term the exponential has a negative exponent, in the
t→ ∞ limit it vanishes, reconstructing the stationary distributions (9):

Qn = lim
t−→∞

Pn =
γ

µn

n

∏
j=0

µj

µj + γj
. (44)

By fixing the initial conditions Pn(0) it is possible to determine the integration con-
stants, Ck, in a recursive manner by solving a lower triangular system of equations. Intro-
ducing the notations

αn
k =

n−1
∏
i=k

µi

n
∏

j=k+1
(µj − µk)

, (45)

βn =
γ

µn

n

∏
i=0

µi
µi + γ

, (46)

we get the recursive form:

Cn = − 1
αn

n

(
−Pn(0) + βn +

n−1

∑
k=0

Ckαn
k

)
. (47)

In the case of linearly increasing growth rates, µn = σ(n + 1), and for the initial
conditions given in (22) and (23) one will get a complicated but still analytically computable
form after substituting these values.

5.2. Generating Function Method

For constant reset rates but general growth rates the differential equation in the
generator function formalism can be rewritten as an operator-equation. To do so we recall
the obvious identity:

∞

∑
i=1

f (n)Pn(t)e−nz =
∞

∑
i=1

f
(
− ∂

∂z

)
Pn(t)e−nz = f

(
− ∂

∂z

) ∞

∑
i=1

Pn(t)e−nz = f
(
− ∂

∂z

)
G(t, z) . (48)

Introducing thus the µ
[
− ∂

∂z

]
operator corresponding to the µn growth rate (replacing

in µn = µ(n) the value of n by − ∂
∂z ), we get the following partial differential equation:

∂∆
∂t

=
(
e−z − 1

)
µ

[
− ∂

∂z

]
∆− γ∆ . (49)

This evolution equation is analogous to the well-known Schrödinger equation. One
can immediately write the solution as:

∆(t, z) = et[(e−z−1)µ(− ∂
∂z )−γ]∆(0, z) . (50)

We follow now the same path as for the constant growth rate case. Let us consider the
growth rate in the form:

µn = σ(n + 1) . (51)

The final stationary distribution in this case is given by:

G(∞, z) =
∞

∑
n=0

γ

σ + γ

n!
∏n

j=1
(

j + 1 + γ
σ

) e−nz . (52)
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By introducing the notation

Φ(t, z) = σt(1− e−z) = σtΦ(z), (53)

we get:

∆(t, z) = e−γteσ t Φ(z)( d
dz−1)∆(0, z). (54)

In the exponent there is a −1 shift, which we can treat as:

Φ(z)
(

d
dz
− 1
)

f (z) = ezΦ(z)
d
dz
(
e−z f (z)

)
. (55)

Using the y =
∫ dz

Φ(z) substitution:

Φ(z)
(

d
dz
− 1
)

f (z)
∣∣∣∣
z=z[y]

= ezΦ(z)
d
dz
(
e−z f (z)

)∣∣∣∣
z=z[y]

= ez(y) d
dy

(
e−z(y) f (z[y])

)
. (56)

Considering the form of Φ(z) we get

y =
∫ dz

1− e−z =
∫ ez

ez − 1
dz = log(ez − 1) + K , (57)

from where it emerges the solution:

z[y] = log(1 + ey−K) . (58)

The property (56) is inherited to the n-th power[
Φ(z)

(
d
dz
− 1
)]n

f (z)
∣∣∣∣
z=z[y]

=

[
ez[y] d

dy
e−z[y]

]n
f (z[y]) = ez[y] dn

dyn

(
e−z[y] f (z[y])

)
, (59)

and accordingly the solution of (54) can be written as:

∆(t, z[y]) = e−γtez[y]eσt d
dy
(

e−z[y]∆(0, z[y])
)

. (60)

We recognize here the translational operator with σt, therefore:

∆(t, z[y]) = e−γtez[y](e−z∆(0, z)
)∣∣∣

z=z[y+σt]
. (61)

Using now the definition of ∆(0, z) we get:

∆(t, z[y]) = e−γtez[y]
∞

∑
n=0

e−z[y+σt](n+1)∆n(0) . (62)

In the case of linearly increasing growth rate, Equations (57) and (58) will lead us to:

z[y + σt] = log(1 + ey+σt−K) = z[y] + σt + log
(

1− e−z[y](1− e−σt)
)

. (63)

It follows therefore that:

ez[y]e−(n+1)z[y+σt] = e−n z[y]e−(n+1)σt ·
(

1− e−z[y](1− e−σt)
)−(n+1)

. (64)

With the help of the negative binomial expansion formula(
1− e−z[y](1− e−σt)

)−(n+1)
=

∞

∑
k=0

(
n + k

k

)
e−k z[y](1− e−σt)k, (65)
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we immediately get:

∆(t, z[y]) = e−γt
∞

∑
n=0

∆n(0)
∞

∑
k=0

e−n z[y]e−(n+1)σt
(

n + k
k

)
e−k z[y](1− e−σt)k . (66)

Finally, we regroup the two sums as follows: we take a sum with respect to r = n + k
and the remaining terms are contained in a sum with respect to k:

∆(t, z[y]) = e−(γ+σ)t
∞

∑
r=0

e−r z[y]
r

∑
k=0

∆r−k(0)(e−σt)r−k(1− e−σt)k
(

r
k

)
. (67)

Using now the definition of ∆(t, z[y]) from Equation (35)

∞

∑
n=0

∆n(t)e−n z[y] = e−(γ+σ)t
∞

∑
r=0

e−r z[y]
r

∑
k=0

∆r−k(0)(e−σt)r−k(1− e−σt)k
(

r
k

)
, (68)

and equating the corresponding terms leads to the solution we are looking for:

∆n(t) = e−(γ+σ)t
n

∑
k=0

(
n
k

)
(e−σt)n−k(1− e−σt)k∆n−k(0). (69)

This is again a compact form which can be analytically used if one knows the ∆n(0) =
Pn(0)−Qn initial conditions. As a particular case one can consider for example the Pn(0)
initial conditions given by (22) and (23).

6. Discussion on the Convergence Properties

From the compact formulas obtained with the generating function method it is easy
to show also the convergence to stationarity.

6.1. Constant Growth and Reset Rate

In this case according to Equation (41) one can write:

|∆n(t)| ≤ e−(γ+µ)t
n

∑
k=0

(µt)k

k!
|∆n−k(0)| < e−(γ+µ)t

∞

∑
k=0

(µt)k

k!
|∆n−k(0)| ≤

≤ e−(γ+µ)t
∞

∑
k=0

(µt)k

k!
= e−(γ+µ)teµt = e−γt. (70)

Here we used that |∆n−k(0)| ≤ 1 according to the definitions of the probabilities. Since
lim
t→∞

e−γt = 0 the convergence is proven.

One can now investigate also the nature of convergence to the stationary distribution.
We consider for this a particular but practically important case (considered also in Section 4.1),
where the initial conditions are:

P0(0) = 1,

Pn(0) = 0, n > 0 . (71)

From Equations (10), (11) and (26) results:

∆n(t) = Pn(t)−Qn = e−t(γ+µ) (tµ)
n

n!
− µnγ

(γ + µ)n+1
Γ[n + 1, t(γ + µ)]

n!
. (72)

By using the derivative of the incomplete Gamma function

∂Γ[n, x]
∂x

= −x(n−1) e−x, (73)
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after some tedious but straightforward algebra we arrive at

d∆n(t)
dt

=
µn

n!
e−(γ+µ) t tn−1 (n− µ t). (74)

For the initial conditions defined by Equation (71) we have ∆0(0) > 1 and ∆n(0) < 0
for n > 0. For several n values the general shape of the time-evolutions of ∆n(t) are plotted
in Figure 2.

n=0

n=3

n=5

n=7

0 2 4 6 8 10
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Δ
n
(
)

Figure 2. Time evolution and convergence of ∆n(t) = Pn(t)−Qn resulting from Equation (72) for
γ = 0.2, µ = 1.3 and different n values.

Apart from the n = 0 case the convergence is non-monotonic. For the chosen initial
conditions (71) and for n > 0 at the beginning ∆n(t) < 0 and |∆n(t)| decreases. After
passing 0, it increases again and finally enters in the monotonic decreasing regime for
t > tc. The tc time-moment can be determined from the ∂∆n(t)/∂t|tc = 0 condition. From
Equation (74) it results: tc = n/µ. Turning around this condition, for a time moment t we
can get critical state nc =Integer(µt), up to where the convergence is already monotonic.
The above results are illustrated by plotting Equation (41) as a function of n for different
time moments t parametrized by various γ and µ values (Figure 3). Apart from the obvious
convergence to the stationary distribution, one also observes in the γ = 1 and µ = 2 case
that nc increases with t.

6.2. Constant Reset Rate and Linearly Increasing Growth Rate

Using Equation (69) we obtain the time-dependent deviation from the stationary
distribution as

|∆n(t)| ≤ e−(γ+σ)t
n

∑
k=0

(
n
k

)
(e−σt)n−k(1− e−σt)k|∆n−k(0)| <

< e−(γ+σ)t
n

∑
k=0

(
n
k

)
(e−σt)n−k(1− e−σt)k = e−(γ+σ)t. (75)

Here we used again the fact that |∆n−k(0)| ≤ 1 and the binomial theorem to show

that
n
∑

k=0
(n

k)(e
−σt)n−k(1 − e−σt)k = 1. According to the above inequality we see that

lim
t→∞
|∆n(t)| = 0.

In this case, Formula (69) for ∆n(t) and also the Qn stationary distribution given by
Equation (16) is more complicated than it was for constant γ and µ values. Even in the case
of simple initial condition given by Equation (71) we couldn’t find a compact analytical
formula that would allow some conclusions on the monotonic nature of the convergence.
Similarly with the constant reset and growth rates case, it is possible however to visualize
the convergence given by Equation (69). For the considered simple initial conditions (71)
the general trend for the time evolution of the ∆n(t) and |∆n(t)| values are rather similar to
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the case of the constant reset and growth rates and it is illustrated in Figure 4. According to
this, for a fixed n value there is again a tc time-moment, so that for t > tc the convergence
is monotonic. Similarly with the constant γ and µ case, the tc time-moment is increasing
with the value of n.
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Figure 3. Convergence to the stationary distribution measured by |∆n(t)| = |Pn(t)−Qn| in the case
of constant γ reset rate and constant µ growth rates. Initial condition are given by Equation (71).
Results are presented for different time-moments as indicated in the legend and for various γ and µ

values as shown in the insets.
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Figure 4. Time evolution and convergence of ∆n(t) = Pn(t)−Qn resulting from Equation (69) for
γ = 0.5 and σ = 3 and different n values.

For various γ and σ values we can visualize also for different time moments the |∆n(t)|
values as a function of the state index n. Results in this sense are plotted in Figure 5. The
figures illustrates nicely that there is an intermediate time moment tn where the ∆n(tn)|
drops strongly due to the change from negative ∆n to positive ∆n values as it is illustrated
in the general trend in the dynamics in Figure 4. We can also see that as t evolves, this
minima shifts to higher n values.
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Figure 5. Convergence to the stationary distribution measured by |∆n(t)| = |Pn(t) − Qn| for a
constant reset rate, γ, and linearly increasing growth rates, µ = σ(n + 1). Initial condition are given
by Equation (71). Results are presented for different time-moments as indicated in the legend and for
various γ and σ values as shown in the insets.

7. Conclusions

We studied the convergence to the stationary distribution of the growth and reset
master equation [5] applied to discrete states in two cases: (i) constant growth and reset rate,
and (ii) constant reset rate with linearly increasing growth rate. Two different methods were
used for obtaining analytical expressions describing this convergence. Our calculations
can be viewed as an alternative proof of the convergence to stationarity and it differs
from the one given by Biró, Néda and Telcs using the concept of generalized entropy [8].
The main advantage of the present method is that it not only proves that the stationary
distributions are stable fix-points, but also gives a compact formula for the transient
behavior of the relevant distribution functions. The revealed transient behavior is of
importance, since in many complex systems we usually do not observe the stationary
distributions experimentally, but only the distributions characteristic for the transient
dynamics. For example, using our result for the case of constant reset and growth rates,
Equation (26), we realize that one would fallaciously predict a Poisson distribution instead
of the exponential one if studying the initial phase of the dynamics only. We obtained the
explicit solution for the practically important µn = σ(n + 1) and γn = γ case, too. This
is the case when the Matthew or “rich gets richer” principle holds and, as we discussed
previously [5,6], it is relevant to a large number of social phenomena. Our results in this
respect are interesting for the application of the growth and reset model when interpreting
experimentally derived distributions in complex social systems, such as income or wealth
distributions, citation statistics in science or even Facebook shares or YouTube likes on
the Internet.
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Appendix A

We detail here the steps leading to Equation (41).
We start from Equation (40) for ∆(t, z):

∆(t, z) = e−γteµt(e−z−1)∆(0, z) . (A1)

One observes the generating function of the Poisson-distribution. The Poisson distri-
bution is

pλ(k) =
e−λλk

k!
, (A2)

and its generating function writes as:

Hλ(s) = ∑
k≥0

pλ(k)sk = ∑
k≥0

e−λλk

k!
sk = e−λ ∑

k≥0

(λs)k

k!
= e−λ(1−s) . (A3)

Using λ = µt and s = e−z Equation (A1) can be written as:

∆(t, z) = e−γt
∞

∑
k=0

(µt)k

k!
e−µte−zk∆(0, z) . (A4)

The definition of ∆(0, z) leads us to:

∆(t, z) = e−γt
∞

∑
k=0

(µt)k

k!
e−µte−zk

∞

∑
n=0

[Pn(0)−Qn(0)]e−nz =

= e−γt
∞

∑
k=0

∞

∑
n=0

(µt)k

k!
e−µte−z(n+k)[Pn(0)−Qn(0)] . (A5)

Considering the r = n + k variable instead of n the double sum from above rewrites as:

∆(t, z) = e−γt
∞

∑
r=0

r

∑
k=0

(µt)k

k!
e−µte−zr[Pr−k(0)−Qr−k(0)] . (A6)

Taking now into account that

∆(t, z) =
∞

∑
n=0

[Pn(t)−Qn]e−nz =
∞

∑
n=0

∆n(t)e−nz , (A7)

we obtain
∞

∑
n=0

∆n(t)e−nz = e−γt
∞

∑
r=0

r

∑
k=0

(µt)k

k!
e−µte−zr∆r−k(0) . (A8)

Changing now the r summation index to n on the right side of the equation we finally
arrive to:

∆n(t) = e−(γ+µ)t
n

∑
k=0

(µt)k

k!
∆n−k(0) . (A9)
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