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Abstract: Many real-life processes are black-box problems, i.e., the internal workings are inaccessible
or a closed-form mathematical expression of the likelihood function cannot be defined. For continuous
random variables, likelihood-free inference problems can be solved via Approximate Bayesian
Computation (ABC). However, an optimal alternative for discrete random variables is yet to be
formulated. Here, we aim to fill this research gap. We propose an adjusted population-based MCMC
ABC method by re-defining the standard ABC parameters to discrete ones and by introducing a novel
Markov kernel that is inspired by differential evolution. We first assess the proposed Markov kernel
on a likelihood-based inference problem, namely discovering the underlying diseases based on a
QMR-DTnetwork and, subsequently, the entire method on three likelihood-free inference problems:
(i) the QMR-DT network with the unknown likelihood function, (ii) the learning binary neural
network, and (iii) neural architecture search. The obtained results indicate the high potential of the
proposed framework and the superiority of the new Markov kernel.

Keywords: Approximate Bayesian Computation; differential evolution; MCMC; Markov kernels;
discrete state space

1. Introduction

In various scientific domains, an accurate simulation model can be designed, yet
formulating the corresponding likelihood function remains a challenge. In other words,
there is a simulator of a process available that, when provided an input, returns an output,
but the inner workings of the process are not analytically available [1–5]. Thus far, the ex-
isting tools for solving such problems are typically limited to continuous random variables.
Consequently, many discrete problems are reparameterized to continuous ones via, for ex-
ample, the Gumbel-softmax trick [6] rather than being solved directly. In this paper, we aim
at providing a solution to this problem by translating the existing likelihood-free inference
methods to discrete space applications.

Commonly, likelihood-free inference problems for continuous data are solved via a
group of methods known under the term Approximate Bayesian Computation (ABC) [2,7].
The main idea behind ABC methods is to model the posterior distribution by approximating
the likelihood as a fraction of accepted simulated data points from the simulator model,
by the use of a distance measure δ and a tolerance value ε. The first approach, known
as the ABC-rejection scheme, has been successfully applied in biology [8,9], and since,
then many alternative versions of the algorithm have been introduced, with the three
main groups represented by Markov Chain Monte Carlo (MCMC) ABC [10], Sequential
Monte Carlo (SMC) ABC [11], and neural network-based ABC [12,13]. In the current paper,
we focus on the MCMC-ABC version [14] for discrete data application, as it can be more
readily implemented and the computational costs are lower [15]. Thus, the efficiency of
our newly proposed likelihood-free inference method will depend on two parts, namely (i)
on the design of the proposal distribution for the MCMC algorithm and (ii) the selected
hyperparameter values for the ABC algorithm.
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Our main focus is on optimal proposal distribution design as there is no “natural”
notion of the search direction and scale for discrete data spaces. Hence, the presented
solution is inspired by Differential Evolution (DE) [16], which has been shown to be an
effective optimization technique for many likelihood-free (or black-box) problems [17,18].
We propose to define a probabilistic DE kernel for discrete random variables that allows
us to traverse the search space without specifying any external parameters. We evaluate
our approach on four test-beds: (i) we verify our proposal on a benchmark problem of
the QMR-DTnetwork presented by [19]; (ii) we modify the first problem and formulate it
as a likelihood-free inference problem; (iii) we assess the applicability of our method for
high-dimensional data, namely training binary neural networks on MNIST data; (iv) we
apply the proposed approach to Neural Architecture Search (NAS) using the benchmark
dataset proposed by [20].

The contribution of the present paper is as follows. First, we introduce an alternative
version of the MCMC-ABC algorithm, namely a population-based MCMC-ABC method,
that is applicable to likelihood-free inference tasks with discrete random variables. Second,
we propose a novel Markov kernel for likelihood-based inference methods in a discrete state
space. Third, we present the utility of the proposed approach on three binary problems.

2. Likelihood-Free Inference and ABC

Let x ∈ X be a vector of parameters or decision variables, where X = RD or X =
{0, 1}D, and y ∈ RM is a vector of observable variables. Typically, for a given collection of
observations of y, ydata = {yn}N

n=1, we are interested in solving the following optimization
problem (we note that the logarithm does not change the optimization problem, but it is
typically used in practice):

x∗ = arg max ln p(ydata|x), (1)

where p(ydata|x) is the likelihood function. Sometimes, it is more advantageous to calculate
the posterior:

ln p(x|ydata) = ln p(ydata|x) + ln p(x)− ln p(ydata), (2)

where p(x) denotes the prior over x and p(ydata) is the marginal likelihood. The posterior
p(x|ydata) could be further used in Bayesian inference.

In many practical applications, the likelihood function is unknown, but it is possible to
obtain (approximate) samples from p(y|x) through a simulator. Such a problem is referred
to as likelihood-free inference [3] or a black-box optimization problem [1]. If the problem
is about finding the posterior distribution over x while only a simulator is available, then
it is considered as an Approximate Bayesian Computation (ABC) problem, meaning that
p(ydata|x) is assumed to be given represented as the simulator.

3. Population-Based MCMC

Typically, a likelihood-free inference problem or an ABC problem is solved through
sampling. One of the most well-known sampling methods is the Metropolis–Hastings algo-
rithm [21], where the samples are generated from an ergodic Markov chain, and the target
density is estimated via Monte Carlo sampling. In order to speed up the computations, it is
proposed to run multiple chains in parallel rather than sampling from a single chain. This
approach is known as population-based MCMC methods [22]. A population-based MCMC
method operates over a joint state space with the following distribution:

p(x1, . . . , xC) = ∏
c∈C

pc(xc) (3)

where C denotes the population of chains and at least one of pc(xc) is equivalent to the
original distribution we want to sample from (e.g., the posterior distribution p(x|ydata)).

Given a population of chains, a question of interest is what is the best proposal
distribution for an efficient sampling convergence. One approach is parallel tempering. It
introduces an additional temperature parameter and initializes each chain at a different
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temperature [23,24]. However, the performance of the algorithm highly depends on an
appropriate cooling schedule rather than a smart interaction between the chains. A different
approach proposed by [25] relies on a suitable proposal that is able to adapt the shape of
the population at a single temperature. We further expand on this idea by formulating
population-based proposal distributions that are inspired by evolutionary algorithms.

3.1. Continuous Case

Reference [26] successfully formulated a new proposal called Differential Evolution
Markov Chain (DE-MC) that combines the ideas of differential evolution and population-
based MCMC. In particular, he redefined the DE-1 equation [16] by adding noise, ε, to it:

xnew = xi + γ(xj − xk) + ε, (4)

where ε is sampled from a Gaussian distribution, γ ∈ R+. The created proposal automati-
cally implies the invariance of the underlying distribution, as the reversibility condition is
satisfied:

• Reversibility is met, because the suggested proposal could be inverted to obtain xi.

Furthermore, the created Markov chain is ergodic, as the following two conditions
are met:

• Aperiodicity is met, because the Markov chain follows a random walk.
• Irreducibility is solved by applying the noise.

Hence, the resulting Markov chain has a unique stationary distribution. The results
presented by [26] indicate an advantage of DE-MC over conventional MCMC with respect
to the speed of calculations, convergence, and applicability to multimodal distributions,
therefore positioning DE as an optimal method for choosing an appropriate scale and
orientation of the jumping distribution for a population-based MCMC.

3.2. Discrete Case

In this paper, we focus on binary variables, because categorical variables could always
be transformed to a binary representation. Hence, the most straightforward proposal for
binary variables is the independent sampler that utilizes the product of Bernoulli:

q(x) = ∏
d

B(θd), (5)

where B(θd) denotes the Bernoulli distribution with a parameter θd. However, the above
proposal does not utilize the information available across the population; hence, the perfor-
mance could be improved by allowing the chains to interact. Exactly this possibility we
investigate in the following section.

4. Our Approach
4.1. Markov Kernels

We propose to utilize the ideas outlined by [26], but in a discrete space. For this
purpose, we need to relate the DE-1 equation to logical operators, as now the vector x is
represented by a string of bits, X = {0, 1}D, and properly defined noise. Following [19],
we propose to use the xoroperator between two bits b1 and b2:

b1 ⊗ b2 =

{
1, b1 6= b2
0, b1 = b2

(6)

instead of the subtraction in (4). Next, we define a difference between two chains xi and
xj as δk = xi ⊗ xj and a set of all possible differences between two chains, ∆ = {δk :
∀xi ,xj∈C δk = xi ⊗ xj} (a similar construction could be done for the continuous case). We
can construct a distribution over δk as a uniform distribution:
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q(δ|C) = 1
|∆| ∑

δk∈∆
I
[
δk = δ

]
, (7)

where |∆| denotes the cardinality of ∆ and I[·] is an indicator function such that I[δk =
δ] = 1 if δk = δ and zero otherwise. Now, we can formulate a binary equivalence of the
DE-1 equation by adding a difference drawn from q(δ|C):

xnew = xi ⊗ δk. (8)

However, the proposal defined in (8) is not a valid ergodic Markov kernel, as is shown in
the following Proposition.

Remark 1. The proposal defined in (8) fulfills reversibility and aperiodicity, but it does not meet
the irreducibility requirement.

Proof. Reversibility is met, as xi can be re-obtained by applying the difference to the left
side of (8). Aperiodicity is met because the general setup of the Markov chain is kept
unchanged (it resembles a random walk). However, the operation in (8) is deterministic;
thus, it violates the irreducibility assumption.

The missing property of (8) could be fixed by including the following mutation (mut)
operation:

xl =

{
1− xl if p f lip ≥ u

xl otherwise
(9)

where p f lip ∈ (0, 1) corresponds to an independent probability of flipping a bit and U(0, 1)
denotes the uniform distribution. Then, the following proposal could be formulated [19] as
in Proposition 1.

Proposition 1. The proposal defined as a mixture qmut+xor(x|C) = πqmut(x|C) + (1− π)qxor
(x|C), where π ∈ (0, 1), qmut(x|C) is defined by (9) and qxor(x|C) is defined by (8), is a proper
Markov kernel.

Proof. Reversibility and aperiodicity were shown in Proposition 1. The irreducibility is
met, because the mut proposal assures that there is a positive transition probability across
the entire search space.

However, we notice that there are two potential issues with the mixture proposal
mut+xor. First, it introduces another hyperparameter, π, that needs to be determined.
Second, improperly chosen π could negatively affect the convergence speed, i.e., a fixed
value that is either too frequent or scarce would drastically halt the convergence.

In order to overcome these issues, we propose to apply the mut operation in (9) directly
to δk, in a similar manner as the Gaussian noise is added to γ(xi − xj) in the proposition
of [26]. As a result, we obtain the following proposal:

xnew = xi ⊗ (mut(δk)). (10)

Importantly, this proposal fulfills all requirements for an ergodic Markov kernel.

Proposition 2. The proposal defined in (10) is a valid ergodic Markov kernel.

Proof. Reversibility and aperiodicity are met in the same manner as shown in Proposition
1. Adding the mutation operation directly to δk allows obtaining all possible states in the
discrete space; thus, the irreducibility requirement is met.

We refer to this new Markov kernel for discrete random variables as the discrete
differential evolution Markov chain (dde-mc).
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4.2. Population-MCMC-ABC

Since we formulated a proposal distribution that utilizes a population of chains,
we propose to use a population-based MCMC algorithm for the discrete ABC problems.
The core of the MCMC-ABC algorithm is to use a proxy of the likelihood-function defined
as an ε-ball from the observed data, i.e., ‖y− ydata‖ ≤ ε, where ε > 0 and ‖ · ‖ is a chosen
metric. The convergence speed and the acceptance rate highly depend on the value of
ε [27–29]. In this paper, we consider two approaches to determine the ε value: (i) by setting
a fixed value and (ii) by sampling ε ∼ Exp(τ) [30]. See the Appendix A for details.

A single step of the population-MCMC-ABC algorithm is presented in Algorithm 1.
Notice that in Line 5, we take advantage of the symmetricity of all the proposal. Moreover,
in the procedure, we skip an outer loop over all chains for clarity. Without loss of generality,
we assume a simulator to be a probabilistic program denoted by p̃(y|x).

Algorithm 1 Population-MCMC-ABC.

1: Given x ∈ {0, 1}D

2: x′ ∼ q(x|C) . Either (5), mut+xor or dde-mc.
3: Simulate y ∼ p̃(y|x′).
4: if ‖y− ydata‖ ≤ ε then
5: α = min{1, p(x′)

p(x) }
6: u ∼ U(0, 1)
7: if u ≤ α then
8: x = x′

9: return x

5. Experiments

In order to verify our proposed approach, we use four test-beds:

1. QMR-DT network (likelihood-based case): First, we validate the novel proposal,
dde-mc, on a problem when the likelihood is known.

2. QMR-DT network (likelihood-free case): Second, we verify the performance of the
presented proposal by modifying the first test-bed as a likelihood-free problem.

3. Binarized Neural Network Learning: Third, we investigate the performance of the
proposed approach on a high-dimensional problem, namely learning binary neural
networks.

4. Neural architecture search: Lastly, we consider a problem of Neural Network Archi-
tecture Search (NAS).

With each test-bed, we increase the complexity of the problem. Hence, the number of
iterations chosen varies per experiment. The code of the methods and all experiments is
available at the following link: https://github.com/IlzeAmandaA/ABCdiscrete (accessed
on 5 March 2021).

5.1. A Likelihood-Based QMR-DT Network
5.1.1. Implementation Details

The overall setup was designed as described by [19], i.e., we considered a QMR-DT
network model. The architecture of the network follows a two-level or bipartite graphical
model, where the top level of the graph contains nodes for the diseases and the bottom level
contains nodes for the findings [31]. The following density model captures the relations
between the diseases (x) and findings (y):

p(yi = 1|x) = 1− (1− qi0)∏
l
(1− qil)

xl (11)

where yi is an individual bit of string y and qi0 is the corresponding leak probability, i.e., the
probability that the finding is caused by means other than the diseases included in the

https://github.com/IlzeAmandaA/ABCdiscrete
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QMR-DT model [31]. qil is the association probability between disease l and finding i,
i.e., the probability that the disease l alone could cause the finding i to have a positive
outcome. For a complete inference, the prior p(x) is specified. We follow the assumption
made by [19] that the diseases are independent:

p(x) = ∏
l

pxl
l (1− pl)

(1−xl) (12)

where pl is the prior probability for disease l.
We compare the performance of the dde-mc kernel to the mut proposal, the mut-xor

proposal, the mut+crx proposal (see [19] for details), and the independent sampler (ind-
samp) as in (5) with sampling probability θd = 0.5. We expect the DE-inspired proposals
to outperform ind-samp, and dde-mc to perform similarly, if not surpass, mut+xor. Out
of the possible parameter settings we investigate, the following population sizes C =
{8, 12, 24, 40, 60}, as well as bit-flipping probabilities p f lip = {0.1, 0.05, 0.01, 0.005}. All
experiments were run for 10,000 iterations, as in earlier work by [19], it was observed that
the performance differences after 10,000 steps were negligible, and initial experiments
revealed that in the current work, all proposals approximately converged at this mark.
Furthermore, the performance was validated over 80 random problem instances, and the
resulting mean and its standard error are reported.

In this experiment, we used the error that is defined as the average Hamming distance
between the real values of x and the most probable values found by the population-MCMC
with different proposals. The number of diseases was set to m = 20, and the number of
findings was n = 80.

5.1.2. Results and Discussion

DE-inspired proposals, dde-mc and mut+xor, are superior to kernels stemming from
genetic algorithms or random search, i.e., mut+crx, mut, and ind-samp (Figure 1). In partic-
ular, dde-mc converged the fastest (see the first 4000 evaluations in Figure 1), suggesting
that an update via a single operator rather than a mixture is most effective. As expected,
ind-samp requires many evaluations to obtain a reasonable performance. Even more so,
the obtained difference in wall-clock time between dde-mc and ind-samp was negligible,
148 versus 117 min, respectively, even though the computational complexity of the new
method is theoretically higher: given a search space of {0, 1}D, the dde-mc proposal costs
O(D), while the time complexity of ind-samp is O(1).

Based on the obtained results, the subsequent experiments were carried out only with
dde-mc, mut+xor, and ind-samp as a baseline. mut+crx and mut were not selected due to to
their very slow convergence with high-dimensional problems.
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Figure 1. A comparison of the considered proposals using the population average error. The obtained
mean and its corresponding standard error (shaded area) across 80 random problem instances are
plotted. The following settings were used: C = 24, p f lip = 0.01, pcross = 0.5. The corresponding
equations for each proposal are as follows: mut as in (9), ind-samp as in (5), dde-mc as in (10), and
mut+xor, mut+crx as in [19].

5.2. A Likelihood-Free QMR-DT Network
5.2.1. Implementation Details

In this test-bed, the QMR-DT network is redefined as a simulator model, i.e., the
likelihood is assumed to be intractable. The Hamming distance is selected as the distance
metric, but due to its equivocal nature for high-dimensional data, the dimensionality of the
problem is reduced. In particular, the number of diseases and observations (i.e., findings)
are decreased to 10 and 20, respectively, while the probabilities of the network are sampled
from a beta distribution, Beta(0.15, 0.15). The resulting network is more deterministic
as the underlying density distributions are more peaked; thus, the stochasticity of the
simulator is reduced. Multiple tolerance values are investigated to find the optimal settings,
ε = {0.5, 0.8, 1., 1.2, 1.5, 2.}, respectively. The minimal value is chosen to be 0.5 due to
variability across the observed data ydata. Additionally, we checked sampling ε from
the exponential distribution. All experiments were cross-evaluated 80 times, and each
experiment was initialized with different underlying parameter settings.

5.2.2. Results and Discussion

First, for the fixed value of ε, we notice that dde-mc converged faster and to a better
(local) optimum than mut+xor. However, this effect could be explained by a lower dimen-
sionality of the problem compared to the first experiment. Second, utilizing the exponential
distribution had a profound positive effect on the convergence rate of both dde-mc and
mut+xor (Figure 2). This confirmed the expectation that an adjustable ε has a better balance
between exploration and exploitation. In particular, ε ∼ Exp(2) brought the best results
with dde-mc converging the fastest, followed by mut+xor and ind-samp. This is in line with
the corresponding acceptance rates for the first 10,000 iterations (Table 1), i.e., the use of
a smarter proposal allows increasing the acceptance probability, as the search space is
investigated more efficiently.
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Figure 2. A comparison of the considered proposals using the population error for exponentially
adjusted ε and the fixed ε (indicated by *). The shaded area corresponds to the standard error across
80 random problem instances. The parameter settings are as follows: C = 24, p f lip = 0.01, ε = 2.0.
The following equations describe the proposal distributions utilized in Algorithm 1: ind-samp as in
(5), dde-mc as in (10), and mut+xor as in [19].

Table 1. Percentage of acceptance ratio, α.

Proposal Mean (std)

dde-mc 24.47 (1.66)
mut+xor 25.81 (1.38)
ind-samp 13.14 (0.33)

Furthermore, the final error obtained by the likelihood-free inference approach is
comparable with the results reported for the likelihood-based approach (Figures 1 and 2).
This is a positive outcome as any approximation of the likelihood will always be inferior to
an exact solution. In particular, the final error obtained by the dde-mc proposal is lower;
however, this is accounted for by the reduced dimensionality of the problem. Interestingly,
despite approximating the likelihood, the computational time only increased twice, while
the best performing chain was already identified after 4000 evaluations (Figure 3).

Figure 3. A comparison of the considered proposal using the minimum average error (i.e., the lowest
error found by the population) on QMR-DTwith adjusted ε. The shaded area corresponds to the
standard error across 80 random problem instances. The parameter settings are as follows: C = 24,
p f lip = 0.01, ε = 2.0. The corresponding equations represent the proposal distributions: ind-samp in
(5), dde-mc in (10), and mut+xor as in [19].
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Lastly, the obtained results were validated by comparing the true approximate poste-
rior distribution to the approximate posterior distribution of the last five generations of
the multi-chain ensemble. In Figure 4, the negative logarithm of the posterior distribution
is plotted. The main conclusion is that all proposals converge towards the approximate
posterior, yet the obtained distributions are more dispersed.

Figure 4. Approximate posterior distribution. The approximate posterior distribution, p(x|ydata) ≈
p(ydata|x) ∗ p(x), was computed using the last population of each chain for all 80 random problem
instances. To reconstruct the true posterior, the true underlying parameters were used.

5.3. Binary Neural Networks
5.3.1. Implementation Details

In the following experiment, we aimed at evaluating our approach on a high-dimensional
optimization problem. We trained a Binary Neural Network (BinNN) with a single fully-
connected hidden layer on the image dataset of ten handwritten digits (MNIST [32]).
We used 20 hidden units, and the image was resized from 28px × 28px to 14px × 14px.
Furthermore, the image was converted to polar values of +1 or −1, while the network
was created in accordance to [33], where the weights and activations of the network were
binary, meaning that they were constrained to +1 or −1 as well. We simplified the problem
to a binary classification by only selecting two digits from the dataset. As a result, the total
number of weights equaled 3940. We used the tanhactivation function for the hidden units
and the sigmoid activation function for the outputs. Consequently, the distance metric
becomes the classification error:

‖ydata − y‖ = 1− 1
N

N

∑
n=1

I[yn = yn(x)], (13)

where N denotes the number of images, I[·] is an indicator function, yn is the true label
for the n-th image, and yn(x) is the n-th label predicted by the binary neural net with
weights x.

For the Metropolis acceptance rule, we define a Boltzmann distribution over the prior
distribution of the weights x inspired by the work of [34]:

p(x) =
h(x)

∑i h(xi)
, (14)

where h(x) = exp(− 1
D ∑D

i=1 xi) and D denotes the dimensionality of x. As a result, the prior
distribution acts as a regularization term as it favors parameter settings with fewer active
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weights. The distribution is independent of the data y thus, the partition function ∑i h(xi)
cancels out in the computation of the Metropolis ratio:

α =
p(x′)
p(x)

=
h(x′)
h(x)

. (15)

The original dataset consists of 60,000 training examples and 10,000 test examples.
For our experiment, we selected the digits 0 and 1; hence, the dataset size was reduced
to 12,665 training and 2115 test examples. Different tolerance values were investigated
to obtain the best convergence, ranging from 0.03 to 0.2, and each experiment was run
for at least 200,000 iterations. All experiments were cross-evaluated five times. Lastly, we
evaluated the performance by computing both the minimum test error obtained by the
final population, as well as the test error obtained by using a Bayesian approach, i.e., we
computed the true predictive distribution via majority voting by utilizing an ensemble of
models. In particular, we selected the five last updated populations, resulting in 5 × 24 × 5
= 600 models per run, and we repeated this with different seeds 10 times.

Because the classification error function in (13) is non-differentiable, the problem
could be treated as a black-box objective. However, we want to emphasize that we do not
propose our method as an alternative to gradient-based learning methods. In principle, any
gradient-based approach will be superior to a derivative-free method, as what a derivative-
free method tries to achieve is to implicitly approximate the gradient [1]. Therefore,
the purpose of the presented experiment is not to showcase a state-of-the-art classification
accuracy, as that already has been done with gradient-based approaches for BinNN [33],
but rather showcase the population-MCMC-ABC applicability to a high-dimensional
optimization problem.

5.3.2. Results and Discussion

For the high-dimensional data problem, the mut+xor proposal converged the fastest
towards the optimal solution in the search space (Figure 5). In particular, the minimum
error on the training set was already found after 100,000 iterations, and a tolerance thresh-
old of 0.05 had the best trade-off between the Markov chain error and the likelihood
approximation bias.

With respect to the error within the entire population (Figure 6), dde-mc converged
the fastest, although its performance was on par with ind-samp. In general, the drop
in performance with respect to the convergence rate of the entire population could be
explained by the high dimensionality of the problem, i.e., the higher the dimensionality,
the more time is needed for every chain to explore the search space. This observation
was confirmed by computing the test error via utilizing all the population members in
a majority-voting setting. In particular, the test error based on the ensemble approach
was alike across all three proposals, yet the minimum error (i.e., for a single best model)
was better for dde-mc and mut+xor compared to ind-samp (Table 2). This result suggests
that there seems to be an added advantage of utilizing DE-inspired proposals in faster
convergence towards a local optimal solution.
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Figure 5. A comparison of the considered proposals using the minimum training error on MNIST.
The mean minimum error across five cross-evaluations is plotted with the shaded area corresponding
to the standard error. Tolerance is set to ε = Exp(0.05), with the prior and the Metropolis ratio as
described in (14) and (15). The following equations describe the proposals: ind-samp in (5), dde-mc in
(10), and mut+xor as in [19].

Figure 6. A comparison of the considered proposals using the avg. training error on MNIST. The mean
population error across five cross-evaluations is plotted with the shaded area corresponding to the
standard error. Tolerance is set to ε = Exp(0.05), with the prior and the Metropolis ratio as described
in (14) and (15). The following equations describe the proposals: ind-samp in (5), dde-mc in (10), and
mut+xor as in [19].

Table 2. Test error of BinNN on MNIST.

Proposal Error (ste)
Single Best Ensemble

dde-mc 0.045 (0.002) 0.013 (0.001)
mut+xor 0.046 (0.002) 0.014 (0.002)
ind-samp 0.051 (0.002) 0.012 (0.001)
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5.4. Neural Architecture Search
5.4.1. Implementation Details

In the last experiment, we aimed at investigating whether the proposed approach is
applicable for efficient neural architecture search. In particular, we made use of the NAS-
Bench-101 dataset, the first public architecture dataset for NAS research [20]. The dataset is
represented as a table, which maps neural architectures to their training and evaluations
metrics, and as such, it represents an efficient solution for querying different neural topolo-
gies. Each topology is captured by a directed acyclic graph represented by an adjacency
matrix. The number of vertices was set to seven, while the maximum amount of edges
was nine. Apart from these restrictions, we limited the search space by constricting the
possible operations for each vertex. Consequently, the simulator was captured by querying
the dataset, while the distance metric now was simply the validation error. The prior
distribution was kept the same as for the previous experiment.

Every experiment was run for at least 120,000 iterations, with five cross-evaluations.
To find the optimal performance, the following tolerance threshold values were investigated
ε = {0.01, 0.1, 0.2, 0.3}. As we are approaching the problem as an optimization task, the aim
is to find a chain with the lowest test error, rather than covering the entire distribution.
Therefore, to evaluate the performance, we plot the minimum error obtained through the
training process, as well as the lowest test error obtained by the final population.

5.4.2. Results and Discussion

dde-mc identified the best solution the fastest with ε set to ε ∼ Exp(0.2) (Figure 7).
The corresponding test error is reported in Table 3, and it follows the same pattern, namely
dde-mc is superior. Interestingly, here, the mut+xor proposal performed almost on par with
the ind-samp proposal for the first 10,000 iterations, and then, both methods converged
to almost the same result. Our proposed Markov kernel obtained again the best result,
and also it was the fastest.

Figure 7. A comparison of the considered proposals using the minimum training error on NAS-
Bench-101. The mean minimum error with its corresponding standard error (shaded area) across five
cross-evaluations is plotted. Tolerance is set to ε = Exp(0.2). The prior distribution is as described in
(14), with the corresponding Metropolis ratio (15). The following equations describe the proposals:
ind-samp in (5), dde-mc in (10), and mut+xor as in [19].
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Table 3. Test error on NAS-Bench-101.

Proposal Error (ste)

dde-mc 0.058 (0.001)
mut+xor 0.060 (<0.001)
ind-samp 0.062 (<0.001)

6. Conclusions

In this paper, we note that there is a gap in the available methods for likelihood-free
inference on discrete problems. We propose to utilize ideas known from evolutionary
computing similarly to [26], in order to formulate a new Markov kernel, dde-mc, for a
population-based MCMC-ABC algorithm. The obtained results suggest that the newly
designed proposal is a promising and effective solution for intractable problems in a
discrete space.

Furthermore, Markov kernels based on differential evolution are also effective to
traverse a discrete search space. Nonetheless, great attention has to be paid to the choice of
the tolerance threshold for the MCMC-ABC methods. In other words, if the tolerance is set
too high, then the performance of the DE-based proposals drops to that of an independent
sampler, i.e., the error of the Markov chain is high. For high-dimensional problems,
the proposed kernel seems to be most promising; however, its population error becomes
similar to that of ind-samp. This is accounted for by the fact that for high dimensions, it
takes more time for the entire population to converge.

In conclusion, we would like to highlight that the present work offers new research di-
rections:

• Alternative ABC algorithms like SMC should be further investigated.
• In this work, we focused on calculating distances in the data space. However, utilizing

summary statistics is almost an obvious direction for future work.
• As the whole algorithm is based on logical operators and the input variables are

also binary, the algorithm could be encoded using only bits, thus saving consider-
able amounts of memory storage. Consequently, any matrix multiplication could
be replaced by an XNORoperation followed by a sum, thus reducing the computa-
tion costs and possibly allowing implementing the algorithm on relatively simple
devices. Therefore, a natural consequence of this work would be a direct hardware
implementation of the proposed methods.

• In this paper, we outline a number of potential applications of the presented method-
ology and indicate that the obtained results are of great practical potential. From the
optimization perspective, a discrete ABC gives an opportunity to solve a problem in a
principled manner. This is extremely important for applications associated with deep
learning, e.g., NAS [20,35], neural network quantization, and learning binary neural
networks, but also in other domains like topology or relationship discovery in biologi-
cal networks (e.g., Boolean networks) [36]. Moreover, ABC as a Bayesian framework
allows calculating model evidence that is crucial for model selection. In practice, very
often, a problem is of combinatorial (discrete) nature, e.g., contamination control or
pest control [35]. Therefore, our approach could be seemingly applied without the
necessity of dequantizing a problem.
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Abbreviations

ABC Approximate Bayesian Computation
SMC Sequential Monte Carlo
DE Differential Evolution
MCMC Markov Chain Monte Carlo
DE-MC Differential Evolution Markov Chain
mut+xor a mixture of a mutation-based proposal and an xor-based proposal
dde-mc discrete differential evolution Markov chain
Population-MCMC-ABC a population-based MCMC ABC
NAS Neural Network Architecture Search
ind-samp independent sampler
mut+crx a mixture of a mutation-based proposal and a cross-over-based proposal
BinNN a binary neural network

Appendix A. ε Determination

The choice of ε defines which data points are going to be accepted; as such, it implicitly
models the likelihood. Setting the value too high will result in a biased estimate; however,
it will improve the performance of Monte Carlo as more samples are utilized per unit time.
Hence, as [4] already has stated: “the goal is to find a good balance between the bias and
the Monte Carlo error”.

Appendix A.1. Fixed ε

The first group of tolerance selection methods are all based on a fixed ε value. The pos-
sible approaches are summarized as follows:

• Determine a desirable acceptance ratio: For example, define a proportion, 1%, of the
simulated samples that should be accepted ([2]).

• Re-use the generated samples: Determine the optimal cutoff value by a leave-one-out
cross-validation approach of the underlying parameters of the generated simulations.
In particular, minimize the Root Mean Squared Error (RMSE) for the validation
parameter values [28].

• Use a pilot run to tune: Based on the rates of convergence [27], define fixed alterations
to the initial tolerance value in order to either increase the number of accepted samples,
reduce the mean-squared error, or increase the (expected) running time.

• Set ε to be proportional to N−1/(d+5)
s : where d is the number of dimensions (for a

complete overview, see [4]).

Nonetheless, setting ε to a fixed value hinders the convergence as it clearly is a sub-
optimal approach due to its static nature. Ideally, we want to promote exploration at the
beginning of the algorithm and, subsequently, move towards exploitation, hence alluding
to the second group of tolerance selection methods: adaptive ε.

https://github.com/IlzeAmandaA/ABCdiscrete
https://github.com/IlzeAmandaA/ABCdiscrete
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Appendix A.2. Adaptive ε

In general, the research on adaptive tolerance methods for MCMC-ABC is very limited
as traditionally, adaptive tolerance is seen as part of SMC-ABC. In the current literature,
two adaptive tolerance methods for MCMC-ABC are mentioned:

• An exponential cooling scheme: Reference [29] suggested using an exponential tem-
perature scheme combined with a cooling scheme for the covariance matrix ∑t.

• Sample from the exponential distribution: Similarly, Reference [30] assumed a pseudo-
prior for ε : π(ε), where π(ε) ∼ Exp(τ) and τ = 1/10, thus allowing occasionally
generating larger tolerance values to adjust mixing.

In order to establish a clear baseline for MCMC-ABC in a discrete space, we decided to
implement both fixed and adaptive ε. Such an approach allows us to evaluate what is the
effect of an adaptive ε in comparison to a fixed ε in a discrete space, as well as to compare
how well our observations are in line with the observations drawn in a continuous space.
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