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Abstract: Statistical methods to produce inferences based on samples from finite populations have
been available for at least 70 years. Topics such as Survey Sampling and Sampling Theory have become
part of the mainstream of the statistical methodology. A wide variety of sampling schemes as well as
estimators are now part of the statistical folklore. On the other hand, while the Bayesian approach is
now a well-established paradigm with implications in almost every field of the statistical arena, there
does not seem to exist a conventional procedure—able to deal with both continuous and discrete
variables—that can be used as a kind of default for Bayesian survey sampling, even in the simple
random sampling case. In this paper, the Bayesian analysis of samples from finite populations is
discussed, its relationship with the notion of superpopulation is reviewed, and a nonparametric
approach is proposed. Our proposal can produce inferences for population quantiles and similar
quantities of interest in the same way as for population means and totals. Moreover, it can provide
results relatively quickly, which may prove crucial in certain contexts such as the analysis of quick
counts in electoral settings.

Keywords: survey sampling; superpopulation; predictive analysis; nonparametric modeling

1. Introduction

Survey sampling is one of the most popular areas of Applied Statistics. Neyman
(1934) [1] established the methodological foundations for statistical inference based on
random samples obtained from finite populations. This approach, known as design-based
inference, has become a standard mostly due to its early adoption by international agencies
for gathering and analyzing data from different countries.

The general spirit of these methods is nonparametric as no assumptions are made
regarding the distribution of the variable of interest. Given a population of size N and
a variable of interest X, inferences focus on some attributes of the set X = {X1, . . . , XN}.
Special interest is given to the population total, T = ∑N

i=1 Xi, and the population mean,
X̄(N) = T/N. For the simpler designs, point-wise estimates based on a sample of size
n, {xi1 , . . . , xin}, are least squares optimal and are often unbiased. Here, {i1, . . . , in} ⊂
{1, . . . , N} denotes the set of indices corresponding to the n sampled units within the
population. Interval estimation relies on the asymptotic normality of the corresponding
sampling distribution.

These techniques are widely applicable and extraordinarily useful. On the other hand,
however, the results are not necessarily optimal in a general statistical sense (see Godambe
(1955) [2] for an early discussion on this topic) and inferences might fail if asymptotic
normality does not hold.
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The application of Bayesian ideas to survey sampling has been explored for some time
now, and falls into the realm of model-based inference (Little (2004) [3]). Pearson (1928) [4]
applied inverse probability theory to produce inferences on the proportion of the elements
of a finite population satisfying a given condition. His assumptions that the population
is finite and that the sampling is without replacement lead to a unique, well-defined
model, namely, hypergeometric; thus, his analysis is fully parametric. Pearson produced
a posterior distribution for the unknown proportion under the assumption of a uniform
prior and showed that, in general, it is not compatible with the frequentist results based on
asymptotic normality.

Aggarwal (1959) [5] formulated the estimation of the mean of a finite population as
a decision problem and proved that under both simple random sampling and stratified
sampling, point-wise classical results can be recovered as a limit of the Bayesian solution
when a quadratic loss function is used and the prior variance goes to infinity. In a similar
fashion, Godambe (1965) [6] discussed a class of admissible classical estimates and proved
in passing that they can also be seen as Bayesian estimates, whereas Aggarwal (1966) [7]
generalized his previous results to the case of two-stage sampling.

On the other hand, Godambe (1966) [8], using a quadratic loss function, found a
Bayesian estimate for the population total which depends on the prior distribution only
through the predictive expected value of X for the nonsampled units. Specifically, if a
sample of size n is obtained whose elements have indexes in a set S ⊂ {1, . . . , N}, then
T̂ = ∑i∈S xi + ∑i/∈S E(Xi), where E(X) stands for the corresponding prior predictive mean.

Ericson (1969) [9] assumed X are obtained from a sequence of exchangeable random
variables; therefore, their joint distribution can be represented as p(x) =

∫
∏N

i=1 p(xi|θ)p(θ)dθ.
This representation motivated the idea of an infinite superpopulation from which X can
be considered a set of i.i.d. observations. The superpopulation is described through the
parametric model p(x|θ), and the remaining uncertainty regarding the parameter θ is taken
into account via a prior p(θ). If the selection probability for each unit does not depend on
the value of X (a noninformative sampling scheme), the sample {xi1 , . . . , xin} can also be
regarded as a set of i.i.d. observations from the superpopulation.

This framework provides a setting where inferences on the population total
T = ∑i∈S xi + ∑i/∈S Xi can be obtained by noting that, upon observing the sample,
Tobs = ∑i∈S xi is a known constant, whereas Tnobs = ∑i/∈S Xi can be described through its
corresponding posterior predictive distribution. Ericson derived the results for the case of
a continuous variable, assuming a normal distribution for the superpopulation. He proved
that the asymptotic classical results can be obtained as the prior becomes noninformative.
His approach can be replicated with any other model p(x|θ), although he recognized that
adoption of a specific model for the superpopulation is a restrictive assumption. In the
case where the support of X is finite and completely known, he proposed a multinomial
model for the superpopulation and, via a (Dirichlet) conjugate analysis, obtained a robust
solution which recovers Pearson’s results for the binary case. This approach, however, is
not general as it requires the support of X to be known and finite.

In the case of complex survey designs, both parametric and nonparametric Bayesian
approaches have been proposed. Fox example, Si et al. (2015) [10] use a hierarchical
approach in which they model the distribution of the weights of the nonsampled units in
the population and simultaneously include them as predictors in a nonparametric Gaussian-
process regression model. More recently, Rahnamay Kordasiabi and Khazaei (2020) [11]
study a Bayesian nonparametric model, based on a Dirichlet process prior, that considers
the inverse-probability weights as the only available information. Their model is essentially
a Bayesian nonparametric mixture of regression models for the survey outcomes with the
weights as predictors. Unfortunately, as in the frequentist approach, there are several ways
of incorporating the inclusion probabilities into the analysis, and it is not always clear
which of the available methods is the most adequate in a given situation, see, for example,
Gelman (2007) [12]. Si, et al. (2020) [13] combine Bayesian prediction and weighting to
provide a unified approach to survey inference.
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The above notwithstanding, even in the simple random sampling case there does not
seem to exist a conventional procedure that can be used as a kind of default for Bayesian
survey sampling. In this paper, we discuss a flexible Bayesian nonparametric approach to
the analysis of samples from finite populations in the context of simple random sampling,
which can be easily generalized to the case of stratified sampling schemes. Our proposal
can deal with both continuous and discrete variables, and can produce inferences for
population quantiles and similar quantities of interest in the same way as for population
means and totals. Moreover, it can provide results relatively quickly, which may prove
crucial in certain contexts such as the analysis of quick counts.

The layout of the paper is as follows. In the next section, we make the case for the use
of nonparametric, robust models. We then present our proposal in Section 3. Details of
the implementation as well as some illustrative examples concerning some basic sampling
schemes are given in Section 4. Finally, Section 5 contains some concluding remarks.

2. The Search for Robustness

Several authors have followed the Bayesian approach to analyze complex survey
designs using specific superpopulation models (see Royall and Pfeffermann (1982) [14] and
Treder and Sedransk (1996) [15], for example). Other proposals have tried to robustify the
analysis with respect to the choice of the superpopulation distribution. Binder (1982) [16]
replaced the Dirichlet prior distribution of Ericson with a Dirichlet prior process and
removed the requirement on the support of X. However, he only offered an asymptotic
approximation to the complete posterior distribution of T, which happens to be normal.
The results coincide with their classical counterpart.

Lo (1988) [17] proposed a bootstrap mechanism, based on a Pólya urn scheme, to
simulate copies of the entire population from which estimates of the finite population distri-
bution and of some parameters of interest can be obtained. The underlying distribution is a
Dirichlet-multinomial process, which can be interpreted as an approximation to a posterior
distribution when a “noninformative” prior process is adopted. In that paper, the posterior
expected value for the population mean was calculated and shown to coincide with the
classical estimator. Conditions for asymptotic normality are established and the classical
interval estimates are also reproduced.

In Lazar, et al. (2008) [18], the idea of generating “copies” of the entire finite population
using the Pólya urn for a fixed sample size was pursued. There, the main interest was no
longer on asymptotic results. Instead, the population parameters were computed for each
copy, and thus the relevant posterior distribution was approximated via simulation. Point-
wise as well as interval estimates can then be computed for any sample size. This procedure
involves, however, a discrete predictive distribution whose support is restricted to that of
the observed sample. To get around this constraint, Martínez-Ovando, et al. (2014) [19]
proposed a nonparametric approach which allows one to incorporate any prior information
available. The uncertainty about the population distribution of the (continuous) variable
of interest was described through a species sampling model. The authors obtained an
expression for the marginal predictive distribution of each unsampled unit and exhibited
the posterior mean of the population total. They also argued that the complete posterior
distribution for the population total can be obtained via a convolution of the individual
predictive distributions. They illustrated their approach with simple random sampling,
as well as with strata and unplanned domains. This approach is somewhat limited as
the underlying variable is assumed to be continuous. This is a major issue, as in many
applications the variable of interest is discrete.

More recently, as pointed out in the previous section, other authors have dealt with
complex survey designs from a nonparametric Bayesian perspective. In that setting, one of
the main issues is how to take into account the sampling weights of the design. Among
other ideas, some authors have used the weights to build a pseudo-likelihood function (see
Savitsky and Toth (2016) [20], for example), whereas others have fitted a regression model
as part of the inference process (Rahnamay Kordasiabi and Khazaei (2020) [11]).



Entropy 2021, 23, 318 4 of 20

Our approach is based on a Bayesian nonparametric Dirichlet process mixture (DPM)
model. Such models are extremely flexible; a large class of population distributions
can in fact be consistently estimated using this kind of model (Ghosal, et al. (1999) [21];
Ghosh and Ramamoorthi (2003) [22]). Specifically, if the true density is in the Kullback–
Leibler support of the DPM prior, then the corresponding posterior is consistent.

3. Our Proposal

From a general perspective, inferences on the population total, as well as on any
other population parameter Q(X), can be obtained by recalling that Q is a function of
the complete set of values X = {X1, . . . , XN}, which can then be regarded as a set of
unknown parameters. Thus, a prior distribution must then be chosen to describe the
knowledge concerning X, and the sample must be used to update this knowledge and get
the corresponding posterior distribution. Once this distribution is available, the posterior
for Q must be obtained. The exchangeability assumption for X = {X1, . . . , XN} leads to
the use of a (parametric) model p(x|θ) for the population distribution. In this setting, the
random variables X1, . . . , XN are conditionally i.i.d. given θ according to this model, which
would correspond to the superpopulation distribution.

As discussed above, this parametric structure may be simple and the analysis leading
to the predictive distribution of Q(X) may be straightforward, but it has also been shown
to be rather restrictive as a proposal for a general Bayesian survey sampling methodology
as it depends on the specific superpopulation model that is used (see Sedransk (2008) [23],
for example). Some authors have relaxed the parametric assumption and assumed instead
that the population distribution belongs to some nonparametric family, see, for example,
Rahnamay Kordasiabi and Khazaei (2020) [11], who assume that the underlying variable
of interest is continuous.

Moving to a nonparametric framework, let us assume that Xj|θj ∼ p(x|θj), where
{θj} are conditionally independent and such that θj|G ∼ G. A widely used nonpara-
metric family of prior distributions for G is that corresponding to the Dirichlet Process
(Ferguson (1973) [24]). If a random probability measure G follows a Dirichlet Process with
precision parameter α and base probability measure G0—denoted G ∼ DP(α, G0)—then,
according to Sethuraman (1994) [25], it can be represented as

G(·) =
∞

∑
j=1

ωjδθj(·), (1)

where θ1, θ2, . . . are independent and with distribution G0, and the weights {ωj}j are ob-
tained from a sequence {υj} of independent and identically distributed Beta(1, α) random
variables by setting ω1 = υ1 and ωsj = υj ∏l<j(1− υl), for j = 2, 3, . . . . In the stick breaking
representation (1), δθ denotes the measure with a point mass of 1 at θ.

Adopting a Dirichlet Process as the prior distribution for G leads us to the DPM model
for the superpopulation distribution:

f (x|G) =
∫

p(x|θ)dG(θ).

Note that, using (1), we can write

f (x|G) =
∞

∑
j=1

ωj p(x|θj). (2)

Walker (2007) [26] provides a slice sampler MCMC algorithm which uses latent
variables to produce posterior samples from (2). In this sampling scheme, the assumption
that the random measure G has been integrated out is not required, and therefore the Pólya
Urn scheme is not used. Kalli, et al. (2011) [27] suggest some efficiency improvements to
the algorithm in Walker (2007) [26].
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Here, we propose a strategy that provides flexible approximations to the target predic-
tive distribution. In addition, we look for models for which the required unsampled units
can be easily simulated without any restriction on their values. Moreover, our proposal is
able to cope with both the continuous and the discrete cases.

3.1. Continuous Variables

In the continuous case, we use a Gaussian Dirichlet process mixture DPM model for
the unknown density function of the variable of interest in (2). Based on the experience with
this model, a reasonable level of flexibility can be expected when using it to approximate
continuous but otherwise arbitrary densities (see Escobar and West (1995) [28]). The analy-
sis of this DPM model produces a posterior distribution over the set of continuous densities
on the real line, and the predictive distribution for a single observation corresponds to the
expectation of that posterior distribution. For our purposes, however, we need a sample of
size M, say, from the joint posterior predictive distribution of the unsampled units. This is
a multivariate distribution of dimension N − n whose components are not independent.
Fortunately, this sample can be easily obtained if we independently simulate M densities
from the posterior distribution mentioned above (each of these densities will be a known
mixture of distributions) and then simulate (also independently) each unsampled unit from
this univariate model. The slice sampler algorithm in Kalli, et al. (2011) [27] is used to
follow these steps. See Appendix A for details concerning the MCMC algorithm used in
this paper.

3.2. Discrete Variables

The case of discrete variables is, by far, more challenging from a parametric point
of view. The use of Poisson and related models, as well as various mixtures thereof, has
proved to be insufficient to describe the population distribution in a variety of applications.
However, in a recent contribution, Canale and Dunson (2011) [29] developed a procedure
to estimate the probability function of a discrete random variable that parallels that of
Escobar and West (1995) [28]. Given a sample of a discrete random variable {Xj}, they
introduce a collection of continuous latent variables {Yj} from which the discrete variables
are obtained via a rounding process. The density of these latent variables f (y|G) is then
modeled using a Gaussian DPM model as in (2), and the probability mass function p(x|G)
of interest is obtained by integration over the rounding intervals which relate the latent
variable and the discrete data, namely, p(x = j|G) =

∫ aj+1
aj

f (y|G)dy, where aj and aj+1 are
thresholds lying on a suitable grid. Thus, this approach takes advantage of the flexibility of
the continuous model in order to deal with the discrete case. The algorithm of Canale and
Dunson (2011) [29] produces a nonparametric posterior distribution over the set of discrete
distributions. As in the continuous case, we use this mechanism as a building block to
simulate samples from the predictive distribution which corresponds to the expectation of
this posterior distribution.

At any rate, after the simulation process we get M copies of the unsampled units on
the population which, together with the units in the sample, provide M copies of the entire
population. For each copy, the parameter of interest Q(X) can be computed, and thus
a sample of size M from the predictive distribution of Q will be available for inference
purposes. This procedure applies to any parameter, not just for the usual population mean
or total. In the particular case of the total, it suffices to get the predictive distribution using
only the unsampled units; the observed part can be later added as a constant. This is not
the case for other nonlinear parameters such as the population quantiles. Nevertheless,
the algorithm is general and can be used to produce inferences for any parameter. In the
following section, several simulated examples as well as a real-data example are analyzed
to show the type of results that can be obtained with this procedure when estimating the
total, a quantile, and a ratio-type parameter of a finite population.
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4. Implementation and Examples

As explained in the previous section, we propose to use a Bayesian nonparametric
model as a prior for the distribution of θ in the population distribution p(x|θ). Here,
we follow Escobar and West (1995) [28] and use a Dirichlet Process for this purpose.
Specifically, we assume that, conditionally on G, the distribution of θ = (µ, V) follows
a Dirichlet Process, where the base measure G0 is given by a normal-inverse gamma
distribution. The corresponding density is given by

g0(µ, V|m, τ, s, S) = N(µ|m, τV)× InverseGamma(V|s/2, S/2),

with hyperparameters m, τ, s and S, where τ is a positive scale factor and the Inverse-
Gamma density has shape s/2 and scale S.

Let N(x|µ, V) denote a Normal distribution with mean µ and variance V. If
p(x|θ) = N(x|µ, V), then X follows a Gaussian DPM. In order to obtain posterior sam-
ples via a Gibbs Sampler, we use a more recent algorithm than that of Escobar and
West (1995) [28]. This algorithm is described in Kalli, et al. (2011) [27] and lies within
the framework of slice sampler methods (e.g., Walker (2007) [26]. Because the Bayesian
analysis for the Gaussian DPM produces a posterior distribution over the set of continuous
densities on the real line, we can conceptualize posterior samples as realizations of a ran-
dom continuous probability density. An important feature of the algorithms proposed by
Walker (2007) [26] and Kalli, et al. (2011) [27] is that at each loop of the Gibbs sampler we
have a posterior sample of this random density.

In the continuous case, once the convergence of the MCMC algorithm has been at-
tained, at iteration i, the algorithm in Kalli, et al. (2011) [27] provides us with posterior sam-
ples Ki, (π1, µ1, V1), . . . , (πi, µKi , VKi ), which in turn define the posterior probability density

f (x) = π1N(x|µ1, V1) + · · ·+ πKi N(x|µKi , VKi ). (3)

Samples from this density can be used to approximate the predictive distribution
of Q(X). With this in mind, we simulate the unobserved part of the population by (in-
dependently) sampling Xn+1, . . . , XN from (3) and then, with these values and the ob-
servations D = {x1, . . . , xn}, compute Q(X). We then repeat these steps for iterations
j = i + 1, . . . , i + M, to obtain a sample of size M from the predictive distribution of Q(X).
In the case of a discrete variable, the simulated continuous variable is treated as latent
and the observations of the variable of interest are obtained through the rounding process
described in Section 3.2.

4.1. Simulated Examples

In each of the examples discussed in this section, we used the following values for the
hyperparameters of the prior distribution: s = 4, S = 2, τ = 10,000, and m = x̄n, where x̄n
is the sample mean.

4.1.1. Continuous Case

A collection of N = 6000 independent observations of a random variable X were gen-
erated according to the mixture f (x) = 0.26N(x|10, 9) + 0.10N(x|7, 4) + 0.30N(x|13, 16) +
0.24N(x|22, 6.25) + 0.10N(x|30, 16). This data set will be our finite population. Its total is
T = 92,716.01. From this population, a random sample of size n = 120 was obtained. From
this sample, we get the posterior predictive distribution for Q(X) = T shown in Figure 1
(right panel). This corresponds to a simulation of M = 1000 copies of the entire population,
and the total T was computed for each copy. A Bayesian estimate for T can be produced
once we choose an appropriate loss function. In particular, if we use a quadratic loss func-
tion, the estimate is given by E(T|D). In this case, we have E(T|D)

∧

= 94,202.64. Moreover,
a 0.95 posterior predictive probability interval is given by (84,559.05, 103,520.17). These
results can be compared with those obtained via the classical procedures: T̂ = 93,914.97
and the (asymptotic) 95% confidence interval: (85836.7, 101993.2). Figure 1 (right panel)
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shows the true total value T = 92,716.01 with a red dotted vertical line. Figure 1 (left panel)
shows a simple approximation to the corresponding prior predictive distribution. This
approximation was obtained using the same algorithm as for the posterior, but based on a
minimal sample taken at random from the sample of size n. This shows how the sample
contributes to the posterior predictive distribution of the parameter of interest.
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Figure 1. Prior (left panel) and posterior (right panel) predictive distribution of the population total. Continuous case.

4.1.2. Discrete Case

Similar to the continuous case, for this illustration we generated a set of N = 6000
i.i.d. observations from the mixture f (x) = 0.10 Po(x|6) + 0.15 Po(x|14) + 0.20 Po(x|18) +
0.10 Po(x|22) + 0.25 Po(x|30) + 0.20 Po(x|32), where Po(x|λ) denotes the Poisson distribu-
tion with mean λ. This data set will take the role of our finite population. The corresponding
total is given by T = 135,692. From this population, we obtained a random sample of size
n = 30 and used our proposal to estimate T. The posterior predictive distribution of T
is shown in Figure 2. As before, this corresponds to a simulation of M = 1000 copies
of the entire population. Again, a Bayesian estimate for T, corresponding to a quadratic
loss function is given by E(T|D)

∧

= 127, 890.5, and a 0.95 posterior predictive probability
interval is given by (109, 463, 146, 872). The classical analysis leads to T̂ = 128,200 with a
95% (asymptotic) confidence interval given by (107,047, 149,353). Figure 2 shows the true
total value T = 135,692 with a red dotted vertical line. Both methods, Bayesian and classical,
yield similar results.

4.2. A Real-Data Example

In many countries, the final results of the elections for president and governors are
only released a few days after the election day. In order to mitigate the uncertainty that this
delay may bring, both civil organizations and the media produce statistical estimates of
the results, which are announced the very night of the election. In Mexico, the authority in
charge of the electoral processes—the Instituto Nacional Electoral (INE)—produces its own
estimates under the name of “INE Quick Count”.

To illustrate our proposal, we used a database with results for each one of the 7463 poll
stations that the INE installed on 1 July 2018, for the Governor election in the State of
Guanajuato (https://ieeg.mx/computos-finales/, accessed on 13 November 2020). A total
number of 2,281,115 votes were recorded that day, and the election was won by Diego
Sinhue Rodríguez Vallejo (DSRV) with 1,140,133 votes, 49.98% of the votes cast.

A random sample of 500 polling stations was chosen to produce our inferences. This is
the same size the INE used for its Quick Count in 2018. There were other candidates in that
election, but for the sake of simplicity, here we focus on the estimation of the proportion of

https://ieeg.mx/computos-finales/
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votes obtained by DSRV. To this end, we defined two variables for each polling station: X,
the number of votes in favor of DSRV, and Y, the total number of votes recorded. We need
to estimate the population total of the variable X (TX), the population total of the variable
Y (TY), and the parameter of interest P = TX/TY.

Population Total
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Figure 2. Posterior predictive distribution of the population total. Discrete case.

Figure 3 shows the posterior predictive distribution of TX . We observe that this dis-
tribution is unimodal and asymmetric with a heavy tail on the right. The 0.95 probability
interval is given by [1,080,506, 1,150,908], and it captures the true value 1,140,133. In
the case of TY, the posterior predictive distribution is shown in Figure 4. This distribu-
tion is also unimodal and looks more symmetric; the 0.95 probability interval results as
[2,182,122, 2,296,042]; it also captures the true value, 2,281,115. With the two simulated
samples, {TX

i : i = 1, . . . , M} and {TY
i : i = 1, . . . , M}, we obtained another sample

{Pi : i = 1, . . . , M}where Pi = TX
i /TY

i for i = 1, . . . , M. The approximation to the posterior
distribution of the parameter of interest P based on this sample appears in Figure 5. The
distribution is unimodal and fairly symmetric, and the 0.95 probability interval is given
by [0.4777, 0.5186]. This interval captures rather well the true voting proportion, 0.4998.
If these results were used to announce the outcome of the election the very night of the
election day, the Quick Count would report that, with probability 0.95, the percentage of
votes in favor of DSRV lies between 47.77% and 51.86% or, equivalently, that the percentage
of votes in favor of DSRV lies in the interval 49.815%± 2.045%.

4.3. Larger Population Sizes

To obtain an approximation which is close to the predictive distribution of Q(X), M
may need to be in the range of thousands. On the other hand, in many real-life applications
the population size N can be in units of tens or hundreds of thousands; in some cases, it
could even reach millions. Thus, a loop implementing computations leading to the esti-
mation of Q(X), as described after Equation (3), could easily require millions of iterations,
making the procedure computationally unfeasible if results are required in a short period of
time. Reducing the size of M will reduce the accuracy and precision of the approximation
to the predictive density for Q(X). However, a more important issue is that the impact of
taking smaller values of M may be insignificant if the value of N is sufficiently large. To
get around this problem, we shall focus on a procedure to compute the simulated values of
Q(X), which uses only a fraction of the unobserved part of the population. Specifically, in
this section we will discuss how to take advantage of asymptotic theory in order to use only
a rather small fraction of the unobserved population to approximate the value of Q(X).
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Figure 3. Posterior predictive distribution of the number of votes in favor of Diego Sinhue Rodríguez
Vallejo (DSRV).
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Figure 4. Posterior predictive distribution of the total number of votes recorded.
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Figure 5. Posterior predictive distribution of P.

For the sake of illustration, let us consider the case where the parameter Q(X) is the
population total Q(X) = ∑N

i=1 Xi, and let

X̄(N) = Q(X)/N =
1
N

N

∑
i=1

Xi, (4)

be the population mean. This mean can be written as

X̄(N) =
1
N
{x1 + · · ·+ xn +

N

∑
i=n+1

Xi},

where the set {Xn+1, . . . , XN} represents the unobserved part of the population. As de-
scribed before, computing a predictive value of X̄(N) can be very expensive, depending on
the magnitude of M and, more dramatically, on the magnitude of N. Note that by defining
x̄(n) =

1
n ∑n

i=1 xi and X̄(N−n) =
1

N−n ∑N−n
j=1 Xn+j, we can write

X̄(N) =
1
N

{
n x̄(n) + (N − n)X̄(N−n)

}
. (5)

We propose to approximate X̄(N−n) with X̄(R−n) = 1
R−n ∑R−n

j=1 Xn+j, where R is an
integer substantially smaller than N. Then, we will be using the approximation

X̃N =
1
N
{n x̄(n) + (N − n)X̄(R−n)},

for the predictive value of X̄(N). This requires us to simulate R− n (instead of N− n) values
from (3). As for the value of R, a simple argument based on the Central Limit Theorem can
be used to propose a convenient value of R for the approximation.

For a large enough value of R, we have

X̄(R−n) ∼ N
(

X̄(N), σ2/(R− n)
)

,
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where X̄(N) is given by (4) and σ2 = VAR(X). These are the mean and the variance of the
variable of interest X in the finite population of size N. Thus, for α ∈ (0, 1),

P
{
|X̄(R−n) − X̄(N)| ≤

σ√
R− n

Z(1−α/2)

}
= 1− α

or, in terms of the relative error,

P

{
|X̄(R−n) − X̄(N)|

X̄(N)
≤
(

σ

X̄(N)

)
Z(1−α/2)√

R− n

}
= 1− α,

where we assume X̄(N) > 0. Now assume this relative error is not larger than ε. Then, we
must use R such that (

σ

X̄(N)

)
Z(1−α/2)√

R− n
= ε,

leading to

R− n =

(
σ

X̄(N)

)2(Z(1−α/2)

ε

)2

.

Finally, using the observed data, we can estimate X̄(N) and
σ2 by x̄(n) and s2

(n) =
1
n ∑n

i=1(xi − x̄(n))2, respectively, so that

R ≈ n +

(Z(1−α/2)

ε

)2

×
(

s(n)
x̄(n)

)2

.

A Numerical Example

A population of size N = 100,000 was simulated from the model in Section 4.1.1,
resulting in the population total of T = 1,548,577. From these simulated values we take a
sample of n = 1000 observations. For these data we have x̄(n) = 15.724, s(n) = 7.908. If, for
example, we fix α = 0.05 and ε = 0.05, we get

R = n +

(
1.96
0.05

)2
×
(

7.908
15.24

)2

= n + (39.2)2 × (0.5029663)2

≈ 1000 + 1537× 0.252 = 1388.

Thus, in this case we set R = 1400. Following the argument of the previous section,
once the convergence of the MCMC algorithm has been attained, at each loop we can
simulate R − n = 1400− 1000 = 400 observations from the density (3) in order to ap-
proximate X̄(N−n) in Equation (5). The reader may want to compare this with the task
of simulating N − n = 99,000 observations at each loop, assuming that this procedure is
repeated M = 1000 times, say.

With the aim of studying the effect of the magnitude of R in the estimates, we
shall perform a brief simulation study using different values of R. To this end, for each
fixed value of R we compute 10 different estimates of the population total T. Let us
denote these by T̂(R)

1 , . . . , T̂(R)
10 ; Figure 6 reports the root mean squared error (RMSE),√

1
10 ∑10

t=1(T̂
(R)
t − T)2, for different values of R as indicated in the horizontal axis. The blue

horizontal line corresponds to the value of the RMSE
√

1
10 ∑10

t=1(T̂
(100,000)
t − T)2, obtained

when
R = N = 100,000, Note that, as all these RMSEs are not larger than 2500, then rel-
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ative to the magnitude of the population total, the error in all cases is bounded by
25,000

T = 0.016, i.e. 1.6%. Additionally, for each value of R in the horizontal axis, Figure 7

shows the sample standard deviation
√

1
9 ∑10

t=1(T̂
(R)
t − T̄(10))

2 obtained from T̂(R)
1 , . . . , T̂(R)

10 ,

T̄10 = 1
10 ∑10

t=1 T̂(R)
t , again as a percentage of the population total. These deviations are

bounded by 3000
T = 0.0019× 100%, i.e., 0.19%. Figure 8 compares two simulated posterior

predictive distributions, obtained using R = 1400 (upper panel) and R = 100,000 (lower
panel). As expected, the predictive distribution with the smaller value of R involves a
larger amount of uncertainty. However, as the previous calculations show, this increase has
a rather small relative effect on the value of the point-wise estimate. A similar conclusion
is reached if the length of the probability intervals is also measured in relative terms.

We shall now use these simulated data to illustrate the estimation of Q(X) given by
the 95% quantile of the population values. Following the scheme described at the beginning
of Section 4, at each loop of the Gibbs sampler we simulate the unobserved part of the
population and use these values together with the sample D to compute the 95% quantile,
so we end up with a sample of M = 1000 simulated values of Q(X). The upper left panel
in Figure 9 shows the model considered as the superpopulation model (this is described in
Section 4.1.1). The upper right panel shows the finite population of N = 100,000 samples
from the superpopulation model, there a (dotted) vertical red line shows the true 95%
quantile of the finite population, which corresponds to a value of X(0.95) = 30.12. The
lower left panel shows the sample D of size n = 1000. The lower right panel shows our
approximation to the predictive distribution of the 95% quantile, and the blue (dotted)
vertical lines show a 95% predictive interval for X(0.95). This interval is given by (29.5, 32.3)
and contains the true value. Again, if a quadratic loss function is used, the point-wise
estimate for X(0.95) is given by E(Q(X)|D)

∧

= 30.94; this is indicated in Figure 9 with a
magenta dotted vertical line. In this example, all the unsampled values were simulated
within the MCMC algorithm. In practice, however, a shortcut as that proposed for the
means or totals can be explored to reduce the cost of the computation.
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20
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Figure 6. Root mean squared errors for different values of R.
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Figure 7. Sample standard deviation for different values of R.
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Figure 8. Simulated posterior predictive distributions.

The approximate procedure to obtain inferences for the population mean and total is
simple and feasible. With regard to other parameters, a similar asymptotic argument can
be used to provide approximate inferences. In particular, in the case of quantiles, there
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are many contributions discussing the convergence of a sample quantile to its respective
population counterpart. For example, the following result can be found in Section 2.3 of
Serfling (1980) [30]. Let X be a random variable with density function f , for which the
quantile of order q is given by x(q), and assume f (x(q)) > 0. Then, if x(q:n) is a sample
quantile of order q from a random sample of size n of X, it follows that

n1/2 f (x(q))(x(q:n) − x(q))

{q(1− q)}1/2 is AN(0, 1)

where AN stands for “asymptotically normal”.
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Figure 9. Superpopulation model, finite population, sample, and predictive distribution for the
95% quantile.

Thus, for n large enough

P

(
|x(q:n) − x(q)| ≤

Z(1−α/2)(q(1− q))1/2

n1/2 f (x(q))

)
= 1− α.

If we fix the error bound

Z(1−α/2)(q(1− q))1/2

n1/2 f (x(q))
= ε

We get

n =
Z2
(1−α/2)(q(1− q))

ε2( f (x(q)))2 .
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Here, all components are known with the exception of f (x(q)). However, in our case
this quantity can be approximated with f̃ (x(q:n)), where f̃ is the predictive density provided
by the simulation process. Alternatively, we can use f̃ (x̃(q)), where x̃(q) is the quantile of
order q corresponding to the predictive density f̃ . For other quantities of interest defined
as functions of parameters for which asymptotic normality holds, the delta method could
be used to provide the corresponding approximation rule.

We close this section with an example that illustrates how to produce joint inferences
about the first and third population quartiles, X(0.25) and X(0.75), respectively. We repeated
the steps described after Equation (3) but, instead of the 95% quantile, at each iteration of
the Gibbs sampler we computed Q(X) = (X(0.25), X(0.75)). Thus, we end up with a sample
of size M = 1000 from the posterior predictive distribution of the vector Q(X). Figure 10
shows a scatter plot of this sample; the red dot represents the true values of the population
quartiles, X(0.25) = 9.35 and X(0.75) = 21.35. The sample can also be used to produce an
estimate of the joint density of X(0.25) and X(0.75); this is shown in Figure 11.

●●

●

●●●

●
●●

●●

●
●

●

●●

●

●

●
●

●
●
●

●

●

●●●

●

● ●

●

●●●●

●

●

●●●
●

●

●
●

●●
●

● ●

●

● ●
●

●
●

●
●

●
●

●●

●

●
●

●
●

●

●

●●

●
●

●

●
●●
●

●

●

●

●
●

●
●●

●
●

●●

● ●
●

●

●
●
●

●
●●

●
●
●

●●

●

●

●

●●

●
●

●

●

●
●

●●
●

●

●
●

●
●●

●

●
●

●
●
●

●
● ●

●
●

●●

●

●

●

●

●

●●

●
●●

●
●
●●●●
●
●
●●

●
●
●

●

●●●●●
●

●

●●
●●

● ●
●

●

●●●●●●●●● ●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●●
●
●●

●

●

●
●
●

●

●

●

●

●
●●
●● ●

●

●
●

●

●

●

●●
●

●

●

●
●

●●

●
●

●
●● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●
●
●

●

●
●

●
●

●● ●
●●

●
●

●●

●

●

●●●
●●

●

●

●●
●●

●
●

●

●
●

●
●●

●

●●●
●

●
●

●

●
●

●●
● ●

●
●●●

● ●●

●

●

●
●●●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●
●

●●●

●

●
●●
●

● ●
●●
●●

●

● ●●●
●

●

●
●

●

●●

●
●●●●

●

●

●

● ●
●●●

●

●
●

●

●●
●

●
●

●
●

●

●●
●●

●
●

●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●●

●●
●●

●
●
●

●

●

●
●

●

●

●●
●●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●
●

●

●
●

●

●●

●
●

●●
● ●
●●●●

●

●
●

●

●

●
●●

● ●

●

●

●

●●●
●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●
●

●●

●

●
●●

●

●●●
●

●
●
●

●

●●● ●

●●
●●

●
● ●

●

●●
●

●●
●

●●●

●

●●

●●

●

●●

●

●
●

●
●

●●
●●

●●
●●

●

●

●

●

●

●●●
●

●

●●●

●

●

●
● ●●
●

●
●

●

●●

●●

●●●

●

●
●

●●

●
●●
●●

●●●

●

●

●

●
●

●●●

●
●

●●

●●

●

●
●

●
●●●

●
● ●

●●●
●●●

●
●

●

●
●

●
●

●
●

●●●
●●●●

●

●

●

●

●

●
●

●
●

●
● ●●●

●●

●
●●

●
●

●

●

●
●●

●

●
●

●

●
●

●

● ●
●
●

●
●

●

●
●

●

●

● ●
●

●

●
●●

●

●

●

●

●
●

●
● ●●

●

●

●

●
●
●

● ●●●●●
●

●

●● ●●●●

●

●

●●
●

●●

●
●

●

●
●●

●
●

● ●

●

●
●

●

●●

●●

●
●

●

●
● ●

●
●

●●

●
● ●

●

●

●

●●

●●

●
●

●
●

● ●

●

●●●

●●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
● ●●

● ●●●
●

●
●

●

●●

●●●

●

●

●
● ●●

●
●●

●
●

●

●
●●
●
●

● ●
●●

●●
●●●

●

●

●

●

●●
●●
●

●

●

● ●●
●

●●●

● ●
●●●

●

●

●
●

●
●●●●

●

●
●
●●●●●●

●●●

●●
●
●●

●●

●●
●●
●
●

●●●
●

●
●●●

●

●

●

●

●

●

●
●
●●●●●
●●
●

●

●●

●

●●

●●

●
●●
●

●

●

●

●

●
●

●

● ●●

●●●●

●
●

●

●

●
●●

●●

●
●
● ●

●●
●

9 11 13 15 17 19 21 23

9
11

13
15

17
19

21
23

x_(0.25)

x_
(0

.7
5)

Figure 10. Simulated values from the joint posterior predictive distribution of X(0.25) and X(0.75).

Figure 11. Joint posterior predictive density of Q(X) = (X(0.25), X(0.75)).
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Finally, the same simulated sample can also be used to provide inferences on other
relevant quantities such as the interquartile range X(0.75) − X(0.25). Figure 12 shows the
posterior predictive distribution of the interquartile range. The vertical dotted red line
shows the true value of the population interquartile range, which is 12 in this case.
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Figure 12. Posterior predictive distribution of the interquartile range X(0.75) − X(0.25).

5. Discussion

In recent years, a number of methods have been proposed to produce Bayesian
inferences in the setting of survey sampling, with emphasis on the case of complex designs.
One of the main differences among these contributions has to do with the way in which
they incorporate the sampling weights into the analysis. Often, these procedures are
nonparametric and rely on simulation techniques that render them uncompetitive, in
terms of computing time, when compared with their frequentist counterparts. We would
argue that there is no such thing as a standard Bayesian survey sampling method, even
for the simpler designs. In this paper, we have focused on the simple random sampling
case. The Bayesian survey sampling approach proposed here is nonparametric, and thus
it avoids specific parametric assumptions that are often unwarranted. It can deal with
both the continuous and the discrete cases in a unified manner, provides inferences for any
parameter of the finite population of interest, and can be easily generalized to stratified
sampling schemes. We propose that our approach be used as a kind of default procedure in
the simple random sampling case. Moreover, we believe it can also be used as a benchmark
for other proposals applicable to complex designs.

Admittedly, in its original formulation our approach can be as computationally expen-
sive as the other methods. Fortunately, however, asymptotic results can be used to avoid
the simulation of the entire unsampled part of the population. The modified procedure
discussed in Section 4.3 is computationally efficient; this can be crucial in certain contexts,
such as the analysis of quick counts in electoral settings. A limitation of this method, how-
ever, is that its applicability in the case of arbitrary parameters (other than the population
mean, total, or quantiles) depends on the availability of suitable asymptotic results.

A proper comparison would involve a more thorough simulation exercise under
a wide range of scenarios. Nevertheless, note that even in this limited first study, our
proposal produces competitive results and provides the user with a set of samples from
the predictive distribution of X that can be used to estimate any characteristic of interest



Entropy 2021, 23, 318 17 of 20

in the population under study. An important instance arises when we are interested in a
population quantile instead of the total of an attribute in the population. In such a case,
commonly used frequentist procedures no longer provide a simple, automatic way to
produce interval estimates except in the asymptotic scenario.

6. Materials and Methods

All of the examples of Section 4 were implemented using the R statistical language
and environment (R Core Team, 2020 [31]).
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Appendix A

Consider the Sethuraman [25] representation for the Dirichlet process given in
Section 3 which leads to Equation (2), where f (x|θ) = N(x|µ, V). For the data {x1, . . . , xn},
Walker (2007) [26] and Kalli, et al. (2011) [27] introduce latent variables {ui : i = 1, . . . , n}
and {di : i = 1, . . . , n}, such that 0 < ui < 1, i = 1, . . . , n and di is a finite integer,
i = 1, . . . , n. Walker (2007) [26] states that the vector (xi, ui, di) has joint density given by

f (xi, ui, di = k|G) = 1(ui < ωk)N(xi|µk, Vk),

with corresponding marginal f (xi|G) given in (2). For each i, the role of ui is to simplify (2)
to a finite sum, with a number of terms given by the cardinality Ni of the set A(ui) = {j :
ui < ωj}, on the other hand, di is a selector, whose value indicates which term in this finite
sum generated the observation xi. A usual problem with slice sampler algorithms, is that
posterior samples of the latent (augmented) variables feature high correlation implying
slow mixing. Additionally, for the method proposed in Walker (2007) [26], when sampling
u1, ..., un, the cardinality of the sets A(ui) may increase, making numerical computations
slow. To overcome these problems, Kalli, et al. (2011) [27] suggest using a deterministic

https://ieeg.mx/computos-finales/
https://ieeg.mx/computos-finales/
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and decreasing sequence {ξ j}∞
j=1, such that ξ j > 0, j = 1, 2, . . . , in order to define the

joint density

f (xi, ui, di = k|G) = 1(ui < ξk)

(
ωk
ξk

)
N(xi|µk, Vk), (A1)

which also has corresponding marginal for xi given by (2). For our implementation, we
used one of the possibilities suggested by Kalli, et al. (2011) [27] for the sequence {ξ j}∞

j=1,

namely, ξ j = { 1
2}j, j = 1, 2, . . . .

For each i = 1, . . . , n, let us denote by Ni the cardinality of the finite set {j : ξ j > ui},
the selector di takes values in the set 1, 2, . . . , Ni. Kalli, et al. (2011) [27] state that the
augmented likelihood corresponding to the a sample of size n, {xi, ui, di}n

i=1 is

l({xi, ui, di}n
i=1|G) =

n

∏
i=1

1(ui < ξdi
)

(
wdi

ξdi

)
N(xi|µdi

, Vdi
). (A2)

Let us denote by g0(µ, V|m, τ, s, S) the Normal-Inverse gamma density with hyper-
parameters m, τ, s, S, the prior distribution for the sequences {θj = (µj, Vj)}j and {υj}j in
Sethuraman representation for a Dirichlet Process is given by

(a) {(µj, Vj)}∞
j=1 is a sequence of independent random variables from g0(µ, V|mτ, s, S).

(b) {υj}∞
j=1 are independent and with distribution beta(υ|1, α).

The augmented likelihood (A2) and the prior for the sequences {(µj, Vj)}j and {υj}j
given in (a) and (b) can be used with Bayes’ theorem to obtain the full conditional distri-
butions for all unknown quantities. Note that as the introduction of the latent variable ui
yields a finite sum and the selector di takes values in the set {1, 2, ..., Ni}, then at each loop
of the Gibbs sampler, samples of the parameters (µj, Vj) and υj are required only for j in
the set {1, . . . , N}, where N = max{N1, . . . , Nn}. Let Dj denote the set {i : di = j} and nj
be the cardinality of Dj, the full conditional distributions for the Gibbs sampler are

(fc1) π(µj| · · · ) = N
(

µj

∣∣∣∣ m
τ +∑i∈Dj

xi

1
τ +nj

;
τVj

1+τnj

)
.

(fc2) π(Vj| · · · ) = InverseGamma
(

Vj

∣∣∣∣ nj+s+1
2 ;

(µj−m)2

2τ + S
2 +

∑i∈Dj
(xi−µj)

2

2

)
.

(fc3) π(υj| · · · ) = Beta(υj|1 + nj; α + ∑n
i=1 1(di > j)).

(fc4) π(ui| · · · ) ∝ 1(0 < ui < ξdi
).

(fc5) π(di = k| · · · ) ∝ 1(k : ui < ξk)
wk
ξk

N(xi|µk, Vk).

We use the next algorithm to implement a Gibbs sampler based on the full conditional
distributions above.

Algorithm

• At the t-th step, assume we have sampled values

{ui,t−1}n
i=1; {di,t−1}n

i=1; {(µj,t−1, Vj,t−1)}N(t−1)

j=1 ; {υj,t−1}N(t−1)

j=1 ,

where the number of components in the mixture is N(t−1).
• Begin by obtaining samples u1,t, . . . , un,t, where each ui,t is sampled from a

Uniform(u|0, ξdi,t−1
) density, i = 1, . . . , n. Use these to obtain Ni = max{l : ξl > ui,t},

i = 1, . . . , n, then update the number of components N(t) = max{N1, . . . , Nn}.
• To obtain {(µj,t, Vj,t)}N(t)

j=1 ; {υj,t}N(t)

j=1 consider two cases:

(i) If N(t) <= N(t−1), then for each j = 1, 2, . . . , N(t)

(i.1) if nj > 0, then replace (µj,t−1, Vj,t−1) by a sample (µj,t, Vj,t) from (fc1) and
(fc2) above.

(i.2) if nj = 0, then replace (µj,t−1, Vj,t−1) by a sample (µj,t, Vj,t) from
g0(µ, V|m, τ, s, S).
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Then, obtain a sample υj,t from (fc3). These steps define the updated set of

parameters {(µj,t, Vj,t)}N(t)

j=1 ; {υj,t}N(t)

j=1 .

(ii) if N(t) > N(t−1), then for each j = 1, 2, . . . , N(t−1) produce a sample (µj,t, Vj,t) by
repeating steps (i.1) or (i.2) depending on the value of nj. For each j = N(t−1) +

1, . . . , N(t), produce a sample (µj,t, Vj,t) from g0(µ, V|m, τ, s, S). Then, for each
j = 1, 2, . . . , N(t) obtain a sample υj,t from (fc3). These steps define the updated

set of parameters {(µj,t, Vj,t)}N(t)

j=1 ; {υj,t}N(t)

j=1 .

• Use {υj,t}N(t)

j=1 to compute {wj,t}N(t)

j=1 by using the relations w1 = υ1, wj = υj ∏l<j(1− υl),
then update the selectors by sampling {di,t}n

i=1 from the full conditional (fc5).
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