
Article

Non Stationary Multi-Armed Bandit: Empirical Evaluation of a
New Concept Drift-Aware Algorithm

Emanuele Cavenaghi 1 , Gabriele Sottocornola 2,* , Fabio Stella 1 and Markus Zanker 2

����������
�������

Citation: Cavenaghi, E.; Sottocornola,

G.; Stella, F.; Zanker, M. Non

Stationary Multi-Armed Bandit:

Empirical Evaluation of a New

Concept Drift-Aware Algorithm.

Entropy 2021, 23, 380.

https://doi.org/10.3390/e23030380

Academic Editor: Carlo Cattani

Received: 9 February 2021

Accepted: 18 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Informatica, Sistemistica e Comunicazione, University of Milano-Bicocca,
20126 Milano, Italy; e.cavenaghi@campus.unimib.it (E.C.); stella@disco.unimib.it (F.S.)

2 Facoltà di Scienze e Tecnologie Informatiche, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
Markus.Zanker@unibz.it

* Correspondence: gsottocornola@unibz.it

Abstract: The Multi-Armed Bandit (MAB) problem has been extensively studied in order to address
real-world challenges related to sequential decision making. In this setting, an agent selects the
best action to be performed at time-step t, based on the past rewards received by the environment.
This formulation implicitly assumes that the expected payoff for each action is kept stationary by
the environment through time. Nevertheless, in many real-world applications this assumption
does not hold and the agent has to face a non-stationary environment, that is, with a changing
reward distribution. Thus, we present a new MAB algorithm, named f -Discounted-Sliding-Window
Thompson Sampling (f -dsw TS), for non-stationary environments, that is, when the data streaming is
affected by concept drift. The f -dsw TS algorithm is based on Thompson Sampling (TS) and exploits a
discount factor on the reward history and an arm-related sliding window to contrast concept drift
in non-stationary environments. We investigate how to combine these two sources of information,
namely the discount factor and the sliding window, by means of an aggregation function f (.). In
particular, we proposed a pessimistic (f = min), an optimistic (f = max), as well as an averaged
(f = mean) version of the f -dsw TS algorithm. A rich set of numerical experiments is performed
to evaluate the f -dsw TS algorithm compared to both stationary and non-stationary state-of-the-art
TS baselines. We exploited synthetic environments (both randomly-generated and controlled) to
test the MAB algorithms under different types of drift, that is, sudden/abrupt, incremental, gradual
and increasing/decreasing drift. Furthermore, we adapt four real-world active learning tasks to
our framework—a prediction task on crimes in the city of Baltimore, a classification task on insects
species, a recommendation task on local web-news, and a time-series analysis on microbial organisms
in the tropical air ecosystem. The f -dsw TS approach emerges as the best performing MAB algorithm.
At least one of the versions of f -dsw TS performs better than the baselines in synthetic environments,
proving the robustness of f -dsw TS under different concept drift types. Moreover, the pessimistic
version (f = min) results as the most effective in all real-world tasks.

Keywords: machine learning; time-series analysis; multi-armed bandit; Thompson Sampling; non-
stationary multi-armed bandit; concept drift

1. Introduction

In the context of sequential decision making, the Multi-Armed Bandit (MAB) problem
has been extensively studied by researchers in the field of reinforcement learning, since it
was firstly introduced in the middle of last century by Robbins [1]. The MAB problem [2],
is used to represent the exploration-exploitation dilemma in sequential decision problems,
that is, how to acquire knowledge about the set of available actions while exploiting
the most profitable ones. In particular, during each round of the sequential decision
problem, an agent selects one among the K available actions (called arms), and receives
a reward (or payoff) proportional to the goodness of its choice. The goal of the agent is

Entropy 2021, 23, 380. https://doi.org/10.3390/e23030380 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0235-0421
https://orcid.org/0000-0001-9983-2330
https://orcid.org/0000-0002-4805-5516
https://doi.org/10.3390/e23030380
https://doi.org/10.3390/e23030380
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23030380
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23030380?type=check_update&version=3

Entropy 2021, 23, 380 2 of 26

to maximize the collected reward (or minimizing the regret) over the complete set of T
rounds. In the literature, different policies have been studied to solve this problem, with
Thompson Sampling (TS), being one of the most used and successful. Through the years,
there have been many practical applications of MAB in real-world scenarios, that justify
the wide interest in the framework. For instance, in the field of clinical trials [3,4], online
advertising [5,6], dynamic routing [7], A/B testing [8], and recommendation systems [9,10].

Generally, MAB techniques explore the environment during the early stages of the
sequential decision problem to find the best arm to play. After this exploration phase,
sufficient knowledge over the different arms is acquired and the algorithm can exploit the
best arm to maximize the collected rewards (or to minimize the regret). Thus, standard
MAB formalization implicitly assumes that the reward distributions of different arms
are stationary (i.e., do not change over time). However, in real life, it is common to find
applications where this assumption does not hold and the reward distributions evolve over
time. A typical example is the one of online recommendations, in which products/contents
are subjected to trends or seasonality [11]. In this setting, a “stationary” policy may fail to
promptly detect the changes happening on the reward distributions through time. This
leads to sub-optimal decisions by the MAB agent (e.g., exploiting an arm, whose payoff has
decreased over time). Consequently, an improved policy is needed that takes the potential
shifts in reward distributions into account and adapts the agent’s choices accordingly. This
formulation of the MAB problem, in which reward distributions may change over time,
is said to be Non-Stationary [12] and it is still under-explored. In time series analysis, this
type of non-stationary behavior over the action (class) distributions is referred to as Concept
Drift [13]. In real-world scenarios, concept drifts may happen at any point in time due
to different reasons such as a switch in the costumers’ purchasing behavior for winter
clothes due to the approaching spring. Thus, the modification of the underlying reward
distributions of the available actions (e.g., recommending for winter gloves), requires the
MAB algorithm to quickly adapt to the evolving situation. Concept drifts could be of
various nature, namely abrupt (or sudden), incremental, gradual as well as reoccurring [14].
We borrow the formal definitions of these drift types from time series analysis literature
and adapt them to the context of non-stationary MAB.

In this paper we propose f -Discounted-Sliding-Window Thompson Sampling (f -dsw TS)),
a novel MAB algorithm for solving sequential decision making problems in non-stationary
setting (i.e., under concept drift). Specifically, the method extends TS policy with both a
discount factor over the estimated reward distributions, and a sliding window to remember
the outcome of the last n actions taken by each arm. The discount is applied to increase the
uncertainty about the past knowledge of the actions’ payoffs, by increasing the variance
associated to each arm. In this way, we force the agent to maintain a certain degree of
exploration given the higher variance over the historic reward estimations, than in the
standard version of Thompson Sampling. The sliding window ensures that the agent can
adapt faster to the potential concept drift, because it takes into account only the last n
rewards for estimating the payoff of each arm. Unlike [15], that exploits a single window
for all the actions available to the agent, regardless of the arm that was played, we made
the decision to use one window for each arm. Thus, we keep K different lists with the
last n actions played, on which to update the estimations of the agent over the different
reward distributions.

We prove the effectiveness of f -dsw TS with a rich set of numerical experiments. In this
empirical evaluation, we compare the performances of f -dsw TS to other TS competitors,
both in synthetic and real-world environments. The synthetic data serve to evaluate and
compare the algorithms under different controlled settings, as well as in totally randomized
ones. Specifically, we design three custom environments: an environment in which the
expected payoff for the optimal arm suddenly decreases, an environment in which the
payoff for a sub-optimal arm suddenly increases (becoming the new optimal), and a
stationary environment (i.e., in which the reward distributions are kept constant for all the
rounds). Along with these, we define experiments on totally randomized environments,

Entropy 2021, 23, 380 3 of 26

with random initial reward distributions and random changes, for the two main drift types
(i.e., sudden drift and incremental drift). For the real-world evaluation, we consider an
heterogeneous set of four case studies, derived from different areas of active learning,
that is, dynamic prediction, time series classification/analysis, and non-personalized
recommendation. Also in the real-world simulation, we deal with heterogeneous types of
drifts, that include abrupt, incremental, gradual, and reoccurring drifts, as well as some
pseudo-stationary situations.

The rest of the paper is organized as follows—in Section 2, we illustrate the back-
ground of our work. We provide more details on the multi-armed bandit and concept
drift problems, as well as a review of existing techniques in the context of non-stationary
bandit. In Section 3, we give a formal description of the non-stationary multi-armed bandit
problem and describe the methodological approach we propose to solve it. In Section 4 we
illustrate the experimental setup and the different datasets considered for the evaluation
and comparison purposes. Finally, in Section 5 we present and comment the results ob-
tained by the different methods. Section 6 draws some conclusions and gives directions for
future activity on this challenging research topic.

2. Background

In this section, we present the MAB problem and the main solution policies. After-
wards, we describe the problem of concept drift in active learning environments. Finally, a
review of the state-of-the-art techniques related to MAB in non-stationary environment
is provided.

2.1. Multi-Armed Bandit

Multi-Armed Bandit (MAB) is a powerful framework that allows agents to solve
sequential decision making problems under uncertainty [16]. In the standard version, an
algorithm has K possible actions (or arms) to choose from and T rounds (or time-steps). In
each round, the algorithm chooses an arm, performs the associated action, and receives a
reward for its choice. The reward is drawn independently from some fixed but unknown
probability distribution, which depends only on the chosen arm. Thus, after each round the
algorithm observes the reward for the chosen arm, but not for the other arms. The algorithm
typically needs to explore: try out different arms to acquire new information in order to
find the optimal arm in the given environment. Thus, a trade-off between exploration, that
is, to explore different arms, and exploitation, that is, to exploit the acquired knowledge, is
required in order to make optimal near-term decisions based on the available information.
The goal of a MAB algorithm is to learn which arm is best (exploit its choices to maximize
the collected reward), while not spending too much time exploring sub-optimal arms.

More formally, Multi-Armed Bandit (MAB) solves the exploration-exploitation dilemma
in sequential decision problems [2]. LetK = {1, . . . , K} be the set of arms that the agent can
play and T = {1, 2, . . . , T} be the time instants; that is, at every time-step t ∈ T the agent
has to select one of the K arms. Given a time-step t ∈ T and a chosen action k ∈ K (i.e., the
agent selects arm k), the agent receives a reward rk(t) ∼ Dk, drawn from an unknown prob-
ability distribution Dk. Given the reward rk(t) for arm k, the agent refines its estimation of
the reward distribution Dk. In the specific case of a Bernoulli MAB, the reward is drawn
from a Bernoulli distribution with mean µk = E[rk]. Thus, the outcome of every action is
two-fold, failure or success, and the reward is rk ∈ {0, 1}. Given all the collected rewards
up to time t, the agent updates its estimation µ̃(t)k over the unknown expected value µk
of the probability distribution associated with arm k. The best arm at any round t is the
arm with highest expected reward, denoted as µ(t)∗ = maxk∈K{µ̃(t)k}. Hence, the actual
choice on which arm to choose next is made based on the estimated distribution and on
the policy applied for arm selection. Different policies have been developed over the years
to select the best arm to play at each round. These techniques differ in the way they handle
the exploration-exploitation trade-off. The most studied in the scientific literature are:

Entropy 2021, 23, 380 4 of 26

• ε-greedy. Given a small value ε, the agent selects a random arm with probability ε and
the best arm a, where a← argmaxk∈K{µ̃(t)k}, with probability 1− ε.

• Upper Confidence Bound. Given a parameter α which controls the exploration-exploitation
trade-off, the agent selects the best arm a, where a← argmaxk∈K{µ̃(t)k + α ∗ S(σ̃(t)k)},
and S(σ̃(t)k) is proportional to the plug-in standard deviation for the reward distribu-
tion of arm k [17,18].

• Thompson Sampling. The agent selects the best arm a, where a← argmaxk∈K{µ̂(t)k},
and µ̂(t)k is a sample from the unknown reward distribution with the estimated
expected value µ̃(t)k [19–21].

For these approaches, many theoretic proofs of convergence to the optimal solution
exist in the case of a stationary setting [22–24]. A stationary setting is defined as an
environment in which the reward distributionDk for each arm k is assumed to be stationary
(i.e., the distribution does not change) through all the time-steps in T .

In this work, we rely on the Bernoulli Thompson sampling version of the MAB formu-
lation. This choice is motivated by a recent information-theoretic analysis of Thompson
Sampling [25], which shows how regret bounds scale with the entropy of the optimal-
action distribution. This analysis not only strengthens previous results and yields new
insight into how information improves MAB performance, but it motivates the study of
the interplay between MAB and entropy. A relevant contribution in this direction is offered
by information-directed sampling [26], a new approach where each action is sampled to
minimize the ratio between squared expected single-period regret and the mutual informa-
tion between the optimal action and the next observation. It is worthwhile to mention that
for the Bernoulli bandit problem, in the case of stationary environment, [26] demonstrates
state-of-the-art simulation performance. Therefore, our choice to study, develop and apply
the Bernoulli Thompson Sampling version of MAB, is further motivated by the fact that it
can be modified to fully exploit the interplay between entropy and MAB when considering
a non-stationary environment.

Through the years the MAB framework has been exploited by researchers to address
different real-world applications. For instance, Scott [8] describes an heuristic for managing
multi-armed bandits called randomized probability matching. It exploits this method to
optimize for A/B testing in experimental design. A popular application of these techniques,
from the early years, is the one on adaptive clinical trials [4], for which a review of the
methodologies is illustrated in [27]. Another application of MAB and Gaussian optimiza-
tion concerns the management of large network of sensors, such as the one presented by
Srinivas et al. [28]. In the context of recommendation systems, many MAB applications
have been presented, for the possibility to adapt them in online fashion. We mention the
empirical evaluation on different bandit policies conducted in [9], and the hybrid UCB
news recommender system based on Yahoo! data [10]. Finally, a peculiar application is
presented in the work by Brochu et al. [29]. The authors apply MAB techniques to optimize
the setting of the parameters in a procedural fluid animation system by showing the user
examples of different parametrized animations and asking for feedback. This method
exploits “prior” belief based on previous runs of the system and/or expert knowledge, to
assist users in finding good parameter settings in as few steps as possible.

2.2. Concept Drift

In the context of online learning in dynamically changing environments, concept drift
may happen whereas the distribution of the data stream shows a non-stationary behaviour.
Concept drift refers to changes in the conditional distribution of the output (i.e., target
variable) given the input (i.e., input features), while the distribution of the input may
stay unchanged [13]. A typical example of concept drift is related to the change in user’s
interests when following an online news stream. Whilst the distribution of the incoming
news may remain the same, the conditional distribution of the interesting news for that
user may evolve and change over time (e.g., following trending topics or periodic events).

Entropy 2021, 23, 380 5 of 26

The idea of active learning is to adapt the learning model in order to cope with the changing
distribution and promptly react to concept drift [13,30].

In a classification problem, given a data instance (X, y), we aim at predicting the target
variable (class) y ∈ {y1, y2, . . . , yc} based on its p-dimensional set of features X ∈ Rp. Based
on Bayesian Decision Theory, the classification problem is defined by the prior probabilities
of the classes p(y) and the class conditional probability density functions (also known as
likelihoods) p(X|y) for all classes y = {y1, y2, . . . , yc}, where c is the number of classes. The
classification decision is made according to the posterior probabilities of the classes, which
for class yi is p(yi|X) ∝ p(X, yi) = p(X|yi)p(yi). Thus, given a stream of T classification
instances S = {(X, y)t1 , (X, y)t2 , . . . , (X, y)tT} concept drift between two time-points tl and
tm formally occurs when:

∃(X, y) : ptl (X, y) 6= ptm(X, y) (1)

where ptl (X, y) defines the joint distribution at time tl between the set of input variables X
and the target class y. Thus, in a classification problem, the drift in Equation 1 may happen
due to class priors p(y), or class conditional probabilities (likelihoods) p(X|y).

Please notice that, in this work, we are interested just in the first change, namely the
one affecting the class prior p(y). This is due to the fact that in a standard multi-armed
bandit the inference is based on the class (reward) distributions, while ignoring the possible
input variables (i.e., covariate shift).

We further distinguish four different types of concept drift that may affect a stream of
data [14].

• Sudden/Abrupt: the switch of concept p(y) happens abruptly, from time ti to the
subsequent time ti+1.

• Incremental: the switch of concept p(y) happens incrementally (slowly), with many
smaller intermediate changes, from time ti to time ti+n.

• Gradual: the switch of concept p(y) happens gradually, by switching back and forth to
the old and new concept, from time ti to time ti+n, before stabilizing to the new one.

• Reocurring: The switch of concept p(y) happens abruptly at time ti, but after time ti+n
the concept reverses back to the old one. It could be cyclic.

In Figure 1, we provide a representation of the four types of concept drift. In this
illustrative example, we consider three classes, that is, Class 1, Class 2, and Class 3, with
corresponding prior distributions p(y), evolving over time t: the distributions of Class
1 and Class 2 are not affected by any concept drift (i.e., they are stationary), while the
prior distribution of Class 3 presents in each graph a different type of concept drift (i.e.,
sudden/abrupt, incremental, gradual, and reoccurring). In our experimental analysis
we consider all these different drift scenarios to provide a broader evaluation of the
performances of the MAB algorithms.

Many algorithms and real-world applications were presented through the years,
related to the problem of the concept drift. Most of them are summarized in literature
reviews, such as [30,31]. For instance, [32] propose a set of statistical hypothesis methods
in order to detect concept drift. In particular, the authors propose ad-hoc test statistics
to be dynamically adapted to the multivariate data distribution—that is, a rank statistic
on density estimates, and linear error margins induced by two classes of support vector
machine (SVM). Classification through SVM is also proposed by [33] in order to handle the
concept drift in a information filtering of textual data scenario. The key idea of this work is
to automatically adjust the sliding window size, such that the estimated validation error is
minimized. Again, a drift detection method that uses a statistical test of equal proportions
(STEPD) to detect various types of concept drift is presented in [34]. A method based on an
ensemble of classifiers for incremental learning of concept drift is instead described in [35].
The peculiarity of the proposed approach is that streaming data are processed through
batches and a new classifier for each batch of data is trained. Then, these classifiers are
combined using a dynamically weighted majority voting, based on time-adjusted accuracy
on current and past batches.

Entropy 2021, 23, 380 6 of 26

Figure 1. Examples of the four types of concept drift affecting the probability distribution of Class 3.

2.3. Non-Stationary Multi-Armed Bandit

In this section we review the most relevant algorithms developed to solve the Non-
Stationary MAB problem (i.e., under concept drift) which have been proposed and dis-
cussed in the specialized literature.

The two approaches inspiring the f -dsw TS algorithm are presented by Raj et al. [36]
and Trovo et al. [15]. In the first one, the authors propose a Discounted Thompson Sampling
(dTS) [36], which adds a discount to systematically increase the variance of the prior
distribution and maintain exploration during time, reducing the effect of past observations.
Instead, Sliding Window Thompson Sampling (SW-TS) [15] uses a sliding window approach
to tackle, in a unified fashion, two different forms of non-stationarity: abruptly changing
and incremental changing. This method exploits a sliding window of size n in order to
process only the most recent n actions performed by the agent for the reward estimation.
The paper provides the regret upper bounds on the dynamic pseudo-regret of SW-TS for
the abruptly changing environment, for the smoothly changing one, and for the setting in
which both of the above forms are present. Both algorithms adapt Thompson Sampling [19]
to a Non-Stationary MAB. With respect to the UCB policy, Garivier et al. [37] introduce two
kinds of UCB-like algorithms: Discounted UCB and Sliding-Window UCB (SW-UCB). The
former uses a discount to keep the exploration of the environment by gradually vanishing
the older experiences while the latter uses a sliding window over the last n actions to
completely forget older actions. A proof over both an upper-bound and a lower-bound for
the expected regret are established, showing that both algorithms match the lower bound up
to a logarithmic factor. An interesting approach, that extends the sliding window technique,
is used in [38] to handle Scaling MAB. The goal addressed in the paper is to maximize
cumulative rewards while minimizing the cost of selecting multiple arms per round. In this
work, the authors suggest to combine Thompson Sampling with ADWIN [39], an adaptive
sliding window method for change-point detection. This algorithm automatically grows
the window size when it detects no changes and shrinks it when observing a change in
the data.

Another class of algorithms uses a change point detection method to restart the agent’s
knowledge when detecting a change in the environment. A good example is Adapt-EvE,
proposed in [40], that uses an adaptive change point detection test based on Page-Hinkley
statistics to detect abrupt changes in the environment. Other algorithms combine the use

Entropy 2021, 23, 380 7 of 26

of different techniques. For example Bayes-UCB [41] combines a Bayesian approach with
an UCB algorithm to unify different variants of UCB. This framework provides a unified
view for several variants of the UCB algorithm, addressing different bandit problems, for
example, parametric multi-armed bandits, Gaussian bandits with unknown mean and vari-
ance, linear bandits. Similarly, Optimistic Bayesian Sampling (OBS) [42] merges Thompson
Sampling with a Bayesian approach. The probability of playing an action increases with
the uncertainty in the estimation of the action value. Thus, it results in better directed
exploratory behaviour. In a similar way many algorithms combine Change Point Detec-
tion with TS, for example, Change-Point Thompson Sampling (CTS) proposed in [43] uses a
Bayesian Change Point Detection, and UCB like Change Detection UCB (CD-UCB) [44] and
GLR-klUCB [45] uses a Bernoulli Generalized Likelihood Ratio Test in order to detect a
change in the environment.

In the more specific context of Referral Learning, [46] addresses the problem of time-
evolving expertise in referral networks. Specifically an algorithm, called Hybrid, that
combines DIEL reset with Thompson Sampling, or TS variants, is used in order to learn an
effective referral strategy. For every action choice, Hybrid randomizes between one of the
two selection strategies. In this case, non-stationary behaviour is handled by resetting the
DIEL reset algorithm after each referral windows, while Thompson Sampling keeps trace
of the entire experience gathered.

Finally, we mention different kinds of methods like Differential Evolution (DE), pro-
posed in [47], that uses an evolutionary approach. In this work the variation of the
distributions depends on the number of times an option is evaluated rather than on the
evolving time. This definition allows to apply these algorithms over a wide range of
problems such as black-box portfolio selection. In [48] the authors introduce SER4, an
algorithm that resets the reward estimators randomly during the game and then starts a
new phase of optimization.

3. Methodology

In this section we outline the research methodology, formally define the problem and
describe the proposed solving approach.

3.1. Problem Definition

We aim at solving the multi-armed bandit problem in a non-stationary setting (i.e., in
presence of concept drifts). In the non-stationary setting we assume that the reward of
the arms can change at every step, that is, µk

t no longer represents the whole sequence
of rewards for one arm. We denote with µk the sequence of expected rewards for arm k:
µk = {µk

t }T
t=1. Furthermore, we represent with P the family of admissible policies and

let π ∈ P denote the candidate policy that, at every step, selects the arm to pull. At each
time-step, the agent following the policy π selects an arm Iπ

t based on the initial prior U
and past observations {X Iπ

n
n }t−1

n=1. We denote the policy at the step t with πt as:

πt =

{
π1(U), t = 1
πt(U, r1, r2, . . . , rt−1), t ≥ 2.

(2)

In our formulation we focus on the Bernoulli TS approach. Specifically, we assume rewards
to be drawn from a Bernoulli distribution. Thus, the TS algorithm represents the history of
rewards as a Beta distribution for every arm, since it is the conjugate prior of the Bernoulli
distribution. This distribution has two parameters: α and β. We update the Beta distribution
of arm k, denoted with B(αk, βk), following the equation:

B(αk, βk) =

{
B(αk, βk), if Iπ

t 6= k
B(αk + rt, βk + 1− rt), if Iπ

t = k,
(3)

where Iπ
t is the action selected at step t and, as said, rt is the reward at step t.

Entropy 2021, 23, 380 8 of 26

Furthermore, we need to define a metric to compare different policies in non-stationary
environments. We decide to use a dynamic oracle [12] as the optimal policy to evaluate and
compare f -dsw TS to state-of-the-art algorithms. The dynamic oracle optimizes the expected
reward at each step t ∈ T by always selecting the best arm, with expected reward of µ∗t .
Thus, we define the cumulative expected reward D(T) for the dynamic oracle at the last
step T, as:

D(T) =
T

∑
t=1

µ∗t . (4)

We define the RegretRπ(T) for policy π at step T, as the difference between D(T) and
the cumulative expected reward at step T for policy π:

Rπ(T) =
T

∑
t=1

µ∗t −Eµ
π

[
T

∑
t=1

rt

]
= D(T)−Eµ

π

[
T

∑
t=1

rt

]
, (5)

where Eµ
π [·] is taken over both the randomization of the policy and the randomization of

the reward given by the environment.

3.2. f -Discounted-Sliding-Window Thompson Sampling

The MAB algorithm we propose, named f -Discounted-Sliding-Window Thompson Sam-
pling (f -dsw TS), mixes two different approaches: a discount approach, inspired by the
work of [36,37] and a sliding window approach, as in [15,37]. Our solution implicitly
assigns more relevance to the recent evidences from the environment, as in the sliding
window approach, given that these rewards are not discounted. At the same time, the
algorithm does not discard the older interactions by the agent, but it processes this history
of rewards using a discount factor, which decreases the importance of older ones. Fur-
thermore, the proposed sliding window method differs from the ones already presented
in the literature given that each arm (i.e., each class of actions) independently processes
its own sliding window. This optimization allows the agent to adapt to the specific drift
happening on a single arm distribution, while maintaining the original information on
the others. Thus, the f -dsw TS algorithm combines these two estimations of the reward:
the estimation of the entire (discounted) history of the rewards and the most recent n
rewards. We propose to aggregate the two views using a function f (.) that selects one of
the two values (e.g., max, min) or mix them (e.g., mean). These approaches differ in how
much the method is optimistic or pessimistic in the evaluation of different types of concept
drift, as well as how aggressively it trade-offs exploration and exploitation in stationary
situations. As an intuition, the max version is more sensitive to increasing drift, while
being more conservative to decreasing drift in the expected reward function. This is due to
the fact that the max function favours the higher estimation, which, in a increasing drift
scenario, is provided by the sliding window method on the recent reward history. At the
same time, in a situation where the expected reward function shows a decreasing drift, the
max function follows the inertial optimistic estimation (i.e., the historic discounted trace),
discarding pessimistic information about the decreasing reward, provided by the sliding
window method. Opposite considerations hold for the min function. In Section 5.2, we
provide further insights on the behavior of the algorithm variants, empirically derived from
simulation in custom (controlled) environments. A complete and formal mathematical
proof on the behavior (i.e., regret bounds) of the algorithm variants is outside the scope of
this paper and it is left as future work.

More formally, we consider the Bernoulli MAB and we save the rewards with K Beta
distributions (i.e., Bernoulli conjugate prior) where K = |K| is the number of arms in the
environment. We call these Beta distributions historic trace denoted as B(αk, βk) because we
save all the rewards received during the T steps. Furthermore, let γ ∈ (0, 1] be the discount
factor used to fade out the past observations in the historic trace. In addition, we define the
hot trace denoted as B̌(αn

k , βn
k) where we maintain K Beta distributions based on the last n

Entropy 2021, 23, 380 9 of 26

rewards taken from the arm k, where n ∈ [1, T] is the sliding-window size. We emphasize
that, for every arm k, for the first r < n rewards received from it, the hot trace B̌(αn

k , βn
k) is

formed with n = r.
The mix between the two components is performed before the selection of the arm to

be played at step t. For every arm k, the algorithm computes an aggregated score Sk(t), as:

Sk(t) = f (θk(t), θ̌k(t)), (6)

where f (.) is the aggregation function defined for the algorithm, θk(t) is a sample from
the historic trace distribution B(αk, βk), θ̌k(t) is a sample from the hot trace distribution
B̌(αn

k , βn
k) at step t for arm k. Finally, f -dsw TS chooses which arm to play at step t, as the

one maximizing the aggregated score:

I(t) = arg max
k

(f (θk(t), θ̌k(t))) = arg max
k

(Sk(t)). (7)

The complete pseudo-code of f -dsw TS is depicted in Algorithm 1. In lines (2–5), for
each arm we sample a reward estimate from both historic and hot traces Beta distributions.
In line (6) we apply the function f (.) to select one of the two estimates (or a mix of them)
and choose the arm with the highest aggregated score. We apply the selected action (arm)
and observe the reward at time t (i.e., rt) in line (7). In line (8) we update the historic trace
using the discount factor γ and in line (9) we update the hot trace in the same way as in the
original Thompson Sampling, but using only the last n rewards collected by each arm.

Algorithm 1: f -Discounted-Sliding-Window TS
input : k = |K| ≥ 2 number of arms

γ ∈ (0, 1] Discount factor
n ∈ [1, T] Sliding-window size

1 for t = 1, 2, . . . , T do
2 for k = 1, 2, . . . , K do
3 θk(t) = B(αk + 1, βk + 1)
4 θ̌k(t) = B̌(αk, βk)
5 end
6 Play arm I(t) = arg maxk(f (θk(t), θ̌k(t)))
7 Observe reward rt
8 Update B(αk, βk) as:

B(αk, βk) =

{
γ(αk, βk), ∀k 6= I(t)
γ(αIπ

t
, β Iπ

t
) + (rt, 1− rt).

9 Update B̌(αn
k , βn

k), where k = I(t), with the last n rewards taken for arm k
10 end

4. Experiments

In this section we report the structure of the experiments for evaluating the f -dsw TS
algorithm in comparison with state-of-the-art algorithms (The full code of the experiments
is available at https://github.com/CavenaghiEmanuele/Multi-armed-bandit). We first
highlight the setup of our experimental campaign and then describe the characteristics of
the data used in the evaluation (both synthetic and real-world). Finally, we illustrate the
parameters tuning phase, that is, the choice of best parameters used in each experiment.

4.1. Experimental Setup

We test the f -dsw TS algorithm in different non stationary settings designed to evaluate
different aspects. In particular, we consider both synthetic and real-world data. The two

https://github.com/CavenaghiEmanuele/Multi-armed-bandit

Entropy 2021, 23, 380 10 of 26

modalities of analysis slightly differ in how experiments are carried on. In the synthetic
version, the environment is given (both in a custom or random way) and the reward
distributions for each arm are defined (but unknown to the MAB algorithms). At time-step
t, the algorithm selects an arm at to pull and receive a stochastic reward rt sampled from
the reward distribution for arm at, defined according to the environment. In this case, we
can measure the performance of a MAB algorithm based on the theoretic dynamic regret
(or just regret), as defined in Section 3. Another way to measure the actual performance
of an algorithm M relies on the computation of the cumulative reward collected, defined
as CR(M) = ∑T

t=1 rt, or the cumulative reward relative to the oracle O, RCR(M) = CR(M)
CR(O)

.
Vice versa, in most real-world settings the theoretic reward distributions are hidden in the
data, hence not accessible to the oracle. In this case, the evaluation of MAB algorithms
is performed as follows—given an instance such as a user purchase of an online product
in a real-world dataset, with a user feedback towards one action ft, the algorithm selects
which arm at to pull (e.g., which product to recommend). If the algorithm selects the
action for which the user provided positive feedback (at == ft), then a positive reward
rt = 1 is assigned to the algorithm, otherwise it receives a null reward rt = 0. Thus,
the regret computation is not feasible and we must rely on a classification-based metric,
that is, the accuracy at the end of the last round T. More formally for an algorithm M,
accuracy(M) = 1

T ∑T
t=1 rt.

We compare different variants of the f -dsw TS algorithm with a set of state-of-the-art
dynamic and stationary TS algorithms. In particular, in our experiments we investigate
and compare the following algorithms:

• Max-dsw TS: f -dsw TS with max as an aggregation function f .
• Min-dsw TS: f -dsw TS with min as an aggregation function f .
• Mean-dsw TS: f -dsw TS with mean as an aggregation function f .
• Discounted TS: the TS enhanced with a discount factor, presented in [36]: the parameter

γ controls the amount of discount.
• Sliding Window TS: the TS with a global sliding window, presented in [15]. The parameter

n controls the size of the sliding window.
• Thompson Sampling: the standard Beta-Bernoulli TS.
• Random: a trivial baseline that selects each arm at random.
• Oracle: an oracle always selecting the best action at time t. It is exploited for regret

computation.

4.2. Synthetic Datasets

In the synthetic evaluation, two different types of environments are designed—random-
generated environments and custom environments.

4.2.1. Random Environments

Firstly, we test f -dsw TS in randomly-generated environments, where the initial pay-
off probability for each arm is random and the drift probability is fixed. In this setting,
each arm has a random initial reward distribution; the parameter of the Bernoulli reward
distribution µk for each arm k is uniformly-sampled in [0, 1]. Then, at each time-step t,
each arm k has an independent drift probability d ∈ [0, 1] of changing its reward distribu-
tion to a new Bernoulli distribution with uniformly-sampled parameter µ(new)k ∈ [0, 1].
We set the number of classes (arms) to four and the number of time-steps to 1000, for
every randomly-generated environment. For experimental purposes, we define a ran-
dom scenario as a set of 1000 randomly-generated environments, with a fixed drift prob-
ability d and a fixed drift type (as defined in Section 2). The results for a random sce-
nario are computed as the average results over each randomly-generated environment
in that scenario. We propose a comparative evaluation of the MAB algorithms in differ-
ent random scenarios. Specifically, we consider the following set of drift probabilities:
d = [0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.015, 0.02] and the two main types of concept
drift, namely abrupt and incremental.

Entropy 2021, 23, 380 11 of 26

Thus, we introduce two different types of random scenarios: random-abrupt and
random-incremental. In the random-abrupt scenario, we compare the algorithms in different
randomly-generated environments where the changes are abrupt; that is, at every time-
step, for every arm k, the reward distribution with parameter µk has probability d to
suddenly change to a new reward distribution with uniformly-sampled parameter µ(new)k,
independently to the current reward distribution. In the random-incremental scenario, the
algorithms are compared in different randomly-generated environments where the changes
are incremental; that is, for every arm k, the reward distribution with parameter µk can
start changing at every time-step with probability d. When arm k starts the drift, we
uniformly sample a new reward distribution parameter, µ(new)k, and a rate of change,
δk ∈ (0.001, 0.01). Then, in the following time-steps, the arm k increments its distribution
parameter by δk at each step, until it reaches µ(new)k. We do not allow further changes on
arm k as long as a change is in progress on that arm.

4.2.2. Custom Environments

In custom environments, the initial reward distribution and the changes are set by the
experimenter. As before, the classes (arms) are four and each episode consists in 1000 steps.
Results are averaged over 100 independent runs. The reward probability behaviour (i.e.,
the evolution of the Bernoulli parameter) of the three custom environments is depicted in
Figure 2. This set of experiments is designed to investigate the behaviour of the f -dsw TS
algorithm when the variability of real-world data is taken into account.

In the first scenario, called custom-decreasing Figure 2a, we test how the different MAB
algorithms behave when the expected value of reward of the best arm suddenly decreases
below that of competing arms, whose expected reward values stay stationary along time.
In this situation, the agent has to discover the new best arm among those which did not
changed their reward distributions. The initial reward distribution parameter µ for the four
arms (Action 1, Action 2, Action 3, and Action 4) is set to 0.9, 0.7, 0.1, 0.3 respectively. After
250 steps the expected reward for Action 1 drops to 0.0 and after 500 steps the expected
reward for Action 2 becomes 0.0.

In the second scenario, called custom-increasing Figure 2b, we analyze the case of a
data streaming where a sub-optimal action suddenly increases its expected value of reward,
becoming the best solution, while others stay unchanged. Thus, the agent has to explore
other arms to find the new optimal solution. Here, the initial reward distribution parameter
µ for the four arms (Action 1, Action 2, Action 3, and Action 4) is set to 0.0, 0.0, 0.1, 0.3
respectively. After 250 steps the expected reward for Action 1 increases to 0.7 and after 500
steps the expected reward for Action 2 becomes 0.9.

In the last scenario, called custom-stationary Figure 2c, we analyze the stationary case,
where the reward distribution of every arm maintains its original value. In this way,
we want to test how our solution performs when the environment is stable for a large
amount of time between two changes in the reward distributions. In this case, the reward
distribution parameter µ for the four arms (Action 1, Action 2, Action 3, and Action 4) are
stationary to the values of 0.2, 0.3, 0.4, 0.5 respectively, for all the 1000 steps.

Entropy 2021, 23, 380 12 of 26

(a) Custom-decreasing environment.

(b) Custom-increasing environment.

(c) Custom-stationary environment.

Figure 2. Reward distributions for custom-decreasing (a), custom-increasing (b), and custom-stationary
(c) environments. Every function represents the evolution over time t of an arm reward probability
in the custom environment.

4.3. Real Datasets

The second set of numerical experiments is devoted to test non-stationary MAB
approaches on real-world data. Specifically, we adapted four online machine learning tasks
to our framework. Namely, a prediction task on crimes in the city of Baltimore (Baltimore
Crime), a classification task on insects species (Insects datasets collection), a recommendation
task on local web-news (Local News), and a time-series analysis on microbial organisms in
the tropical air ecosystem (Air Microbes). This collection of datasets presents heterogeneous
characteristics in terms of number of instances, classes and time-granularity. Please, notice
that we consider every instance in the dataset as a time-step of the MAB problem. The
information related to each dataset is summarized in Table 1.

Entropy 2021, 23, 380 13 of 26

Table 1. Meta-information for each real-world dataset. We provide the number of classes (i.e., the
number of actions/arms in the Multi-Armed Bandit (MAB) setting), the number of instances (i.e., the
time-steps in the MAB setting), and the actual time span in which data were collected.

Dataset Classes Instances Time Span

Baltimore Crime 9 321,147 6 years
Insects-Incremental 6 452,045 3 months

Insects-Abrupt 6 355,276 3 months
Insects-Incremental-gradual 6 143,224 3 months

Insects-Incremental-abrupt-reoccurring 6 452,045 3 months
Insects-Incremental-reoccurring 6 452,045 3 months

Local News 5 13,526 1 year
Air Microbes 10 28,560 20 days

4.3.1. Baltimore Crime

The Baltimore Crime (https://data.baltimorecity.gov/search?q=crime%20data, accessed
on 22 March 2021) dataset is about the crimes committed in the city of Baltimore (US),
between 2014 and 2020. The dataset includes various features of the reported crime, such as
the weapon used, the type of crime and its location. The monthly distribution of the crimes
in the 9 city districts is depicted in Figure 3. Each function represents the crimes frequency
in a specific city district, through the months. It may be noticed that some variability exists
in the data, which exhibits few (gradual) concept drifts. Nevertheless, the fluctuations in
the data streaming are much closer to some random noise than to actual concept drifts, as
they are defined in the literature and represented in the artificially-generated environments.

Figure 3. Monthly frequency of crimes in each district for the Baltimore Crime dataset. Every line
represents the evolution of the relative frequency of crimes in each district, through the months.

The task we want to accomplish with f -dsw TS is to predict where the next crime is
happening (i.e., in which district of the city), based on the past history. This prediction
is relevant to help the local police department in organizing the allocation of the patrols.
Thus, we map each of the 9 districts of the city to an arm, in order to predict where a crime
will be committed at every step. If the predicted district at time-step t corresponds to the
one in which the crime actually happened, a positive reward of 1 is provided, 0 otherwise.

4.3.2. Insects

The Insects collection, introduced in [49], is composed by 11 independent open-source
datasets with different properties, to evaluate stream classifiers and drift detectors (https:
//sites.google.com/view/uspdsrepository, accessed on 22 March 2021). The datasets are
based on a real-world streaming application, which takes advantage of the use of optical
sensors to recognize flying insect species in real-time. To build the insect stream datasets
with concept drifts, the data from different species were collected by using optical sensor in
a non-stationary controlled environment for three months approximately. The drifts on the
insect species distribution were physically induced by modifying temperature conditions

https://data.baltimorecity.gov/search?q=crime%20data
https://sites.google.com/view/uspdsrepository
https://sites.google.com/view/uspdsrepository

Entropy 2021, 23, 380 14 of 26

within the environment. They collected around one million instances for 17 different insect
species. Afterwards, they post-processed the data by reducing the number of classes to the
most frequent 6 (three species of both sexes) and they provided two versions of each dataset
type—one with the original (imbalanced) class distribution and one with an artificially
balanced class distribution. In our experiments we exploit the imbalanced versions of four
of these datasets, namely the ones with incremental, abrupt, incremental-abrupt-reoccurring,
and incremental-reoccurring concept drifts. For a detailed description of each dataset, please
refer to the original paper [49]. Thus, the task here is to predict at each point in time which
class of insect has been detected by the sensors. Each arm is mapped to one of the 6 insects
classes; if the selected arm corresponds to the actual insect class recorded, a positive reward
of 1 is provided, 0 otherwise.

4.3.3. Local News

The Local News dataset is a private dataset, presented for the first time in [50]. The
dataset includes the logged interactions to an Italian local news website, for an entire
year (from 1 April 2016 to 30 March 2017). All the accesses to the news website are in
anonymous form, thus, only interactions within the same browsing session could be
personalized. Nevertheless, the length of these sessions is usually very short, with more
than 85% of sessions represented by just one interaction, with an average session length of
1.23 interactions. The distribution of session length is represented in the graph of Figure 4.

Together with each news article a snippet of the news content was provided. Therefore,
we were able to apply a Latent Dirichlet Allocation (LDA) topic model [51], to extract 5 topics
from the article corpus. Hence, each article was represented by a probabilistic distribution
over the topics. We binarize the topic representation of each news article by retaining those
topics with a relevance of above 10% for that article. Hence, an article could be mapped to
more than one topic. The relative frequency of the topic interactions (and thus the drifting
concepts) through the weeks is represented in Figure 5. From the graph, it could be easily
noticed how concept drifts affect this data stream, that is, the sudden drift of Topic 1 after
the 10th week and the gradual drift of Topic 2 distribution between the 20th and the 30th
week. Nevertheless, some other topic distributions show an evolution that is more similar
to a stationary behavior with some noise variance (i.e., Topic 3 and Topic 4). We apply
the MAB approach to construct a non-personalized recommendation system for the news
topics. Namely, at each time step (i.e., user interaction) we select a topic to recommend to
the user; each topic is mapped to an arm choose by the MAB algorithm. If the selected arm
corresponds to one of the topics associated to the article the user interacted with, a positive
reward of 1 is provided, 0 otherwise.

Figure 4. Histogram of the session length in the Local News dataset.

Entropy 2021, 23, 380 15 of 26

Figure 5. Frequency of the weekly topic interactions for the Local News dataset.

4.3.4. Air Microbes

The Air Microbes dataset, presented in [52], includes observations of microbial commu-
nities in the tropical air ecosystem. The data are collected along five weeks (each composed
by five days); we consider only the last four weeks, given that the first one was used for in-
struments calibration and it is subjected to measurement errors. Every sample was gathered
every two hours from three different sequencing devices positioned on an airplane. Hence,
every observation in the raw dataset is represented by three counts (one for each device) of
the number of occurrences for each microbial community. The number of communities (or
classes) considered in the dataset is 10. We pre-processed the dataset to adapt it to the MAB
evaluation. Firstly, we average the three frequency counts to obtain a single time-series
for each community. Then, we convert the absolute count into a relative frequency of each
community. The graph representing the evolving relative frequency of each microbial
community is depicted in Figure 6. From this representation it can be noticed how concept
drifts naturally occur in the data distribution. For example, several abrupt, incremental,
and reoccurring drifts can be spotted due to changing atmospheric conditions (i.e., day and
night alternation or air humidity variation). We exploit this computed relative frequency
for each class as an estimation of the theoretic expected reward (i.e., the p parameter of a
Bernoulli distribution), and we map each class into a MAB arm. At each time-step (i.e.,
one minute), we select an arm (i.e., a predicted microbes class) and we sample from the
current estimated reward distribution for that arm a stochastic reward (1 for success, or 0
for failure). Please notice that we keep fixed the two-hours frequency value for 120 steps in
order to simulate a sample every minute.

Entropy 2021, 23, 380 16 of 26

Figure 6. Frequency of the classes of air microbial organisms for the Air Microbes dataset. Every line
represents the evolution of the relative frequency of a microbe class every two hours for 20 days.

4.4. Parameters Tuning

The MAB algorithms depend of two parameters, namely γ, that is, the discount factor
for the reward estimation, and n, that is, the sliding window size. Therefore, to find their
optimal values in different environments we performed parameters tuning.

For random-abrupt and random-incremental settings, we search the optimal parameters
when setting p = 0.005, on 100 environments with 20 test each. The results are shown in
Table 2.

Table 2. Best parameters selected after the tuning phase for random-abrupt and random-incremental
scenarios.

Algorithm Random-Abrupt Random-Incremental

Max-dsw TS γ = 0.99 n = 25 γ = 0.99 n = 50
Min-dsw TS γ = 0.95 n = 100 γ = 0.95 n = 75

Mean-dsw TS γ = 0.95 n = 25 γ = 0.99 n = 50
Discounted TS γ = 0.98 γ = 0.99

Sliding Window TS n = 100 n = 100

For real-world datasets, we retain a separate portion of the dataset (validation set)
and run the evaluation to select the best set of parameters for that task. For the Baltimore
Crime and Local News dataset, the validation set consists in the first 20% of the original
dataset, for the Insects datasets we optimize the parameters over an independent dataset of
the Insects collection, called incremental-gradual. Finally, for the Bacteria dataset we use the
second week to select the best parameters. The results of the tuning for real-world datasets
are shown in Table 3.

Table 3. Best parameters selected after the tuning phase for real-world datasets, that is, Baltimore Crime, Insects, Local News
and Air Microbes.

Algorithm Baltimore Crime Insects Local News Air Microbes

Max-dsw TS γ = 0.9999 n = 800 γ = 0.999 n = 800 γ = 0.999 n = 800 γ = 0.9999 n = 800
Min-dsw TS γ = 0.999 n = 800 γ = 0.99 n = 200 γ = 0.95 n = 800 γ = 0.99 n = 800

Mean-dsw TS γ = 0.9999 n = 800 γ = 0.999 n = 800 γ = 0.99 n = 400 γ = 0.9999 n = 800
D-TS γ = 0.9999 γ = 0.999 γ = 0.999 γ = 0.9999

SW-TS n = 12, 800 n = 3200 n = 3200 n = 12, 800

5. Results
5.1. Random Environments

We report the results of the MAB algorithms on random scenarios with abrupt and
incremental concept drift, as described in Section 4. We test how MAB algorithms behave

Entropy 2021, 23, 380 17 of 26

when different rates of change d are considered. The performance of MAB algorithms are
measured with the cumulative reward relative to the oracle, defined as RCR(M) = CR(M)

CR(O)

where CR(M) is the cumulative reward of algorithm M as described in Section 4.1.
The results for the random-abrupt scenario under different values of the drift probability

d are reported in the Figure 7. Generally, the best performing algorithm is the mean-dsw TS,
which achieves an RCR of around 96% in the most stationary scenario with probability of
change d = 0.001, whereas it scores a relative cumulative reward of 85% in the situation
where the changes occurs with d = 0.02. A similar behavior is showed by the algorithm
max-dsw TS, while the pessimistic version min-dsw TS, seems to be impacted the most by
the increased probability of change, being the overall best for d = 0.001, but performing
worse than the two baselines sliding window TS and discounted TS for the case of d = 0.02.
As expected, when d increases the performance of the algorithms degenerates, with the
original TS algorithm achieving the worst performance (from around 96% for d = 0.001 to
less than 74% for d = 0.02).

Figure 7. Results of the MAB algorithms in environments with abrupt changes. Line plots represent
the performance of each algorithm in terms of RCR, when the probability of drift d varies.

In Figure 8 we show the results for MAB algorithms in the random-incremental scenarios
under different values of drift probability d. Again, the best performances are obtained
by mean-dsw TS that achieves the maximum for lower values of d (RCR of 97% when
d = 0.001), while it stays constantly above 94% for all the considered values of d. In this
setup, min-dsw TS scores very closely to the best performing one in all the considered
scenarios. Again, Thompson Sampling shows a drastic drop when d is increasing, going
from a 96%, with d = 0.001, to below 91%, with d = 0.02. Nevertheless, it is the sliding
window baseline which achieves the worst performance, being constantly below 90% of
relative cumulative reward. This finding proves how the sliding window method alone is
not optimal in situation where incremental concept drift occurs. Finally, max-dsw TS and
the other baseline discounted TS perform very similarly, being outperformed by standard
TS for similar values of d, but achieving better results for greater values of d (i.e., showing
more robustness when the changes are more frequent).

Entropy 2021, 23, 380 18 of 26

Figure 8. Results of the MAB algorithms in random environments with incremental changes. Line
plots represent the performance of each algorithm in terms of RCR, when the drift probability d varies.

5.2. Custom Environments

We provide the results, achieved by the tested algorithms, in the three custom envi-
ronments described in Section 4. In this case we provide two metrics, namely the regret
(as defined in Section 3) and the cumulative reward, achieved by each algorithm along
the 1000 rounds of iteration. Please notice that the presented results are averaged over
100 replications.

Figure 9 illustrates the results for the custom-decreasing environment. The regret
evolution of the algorithms (Figure 9a) highlights how non-stationary algorithms are faster
to adapt to the first sudden drift. In particular, mean-dsw TS and max-dsw TS achieve the
smallest regret at the end of the first phase. After the second drift, in the last 450 rounds
Thompson Sampling completely fails to adapt to the change, showing a linearly decreasing
regret, while min-dsw TS, mean-dsw TS, and max-dsw TS get faster to the smallest regret in
the pool. Interesting to notice the peculiar behavior of min-dsw TS in the three phases of
the environment. Before the second drift, the algorithm is the worst performing, showing
a regret curve that linearly decreases without converging to the optimal results of the
competitors. This testifies the fact that, in the initial stationary situation, the algorithm
keeps exploring sub-optimal arms, failing to exploit the optimal arm choice. After the
second drift, instead, min-dsw TS achieves the lowest regret, outperforming all other
algorithms. An explanation on this behavior could be found in the different magnitude
of the expected rewards of optimal and sub-optimal arms in the three phases of custom-
decreasing environment (as depicted in Figure 2a). These comments reflect also in the
measured cumulative reward for the competing MAB algorithms (Figure 9b). Mean-dsw TS
shows the best overall cumulative reward after the last change, with the two non-stationary
baselines (Discounted TS and Sliding Window TS) being close to max-dsw TS. The standard
version of Thompson Sampling suffers a significant decrease of its performances after the
last change, while min-dsw TS shows a linear increase of its cumulative reward, being
unaffected by the changes in the environment.

Entropy 2021, 23, 380 19 of 26

(a) Regret for the custom-decreasing environment.

(b) Cumulative reward for the custom-decreasing environment.

Figure 9. Results of the MAB algorithms in the custom-decreasing environment. Line plots represent
the regret (a) and the cumulative reward (b) through 1000 steps for each algorithms.

In the custom-increasing scenario the results, which are shown in Figure 10, witness
how these are the most difficult drift types for the f -dsw TS algorithms. Figure 10b shows
that Discounted TS achieves the best cumulative reward with max-dsw TS and Sliding
Window being close to it. Min-dsw TS achieves a cumulative regret slightly greater than the
standard version of Thompson Sampling, while mean-dsw TS performs better than these last
two approaches, but worse than the best performing ones. The regret in Figure 10a proves
that the min-dsw TS algorithm is able to adapt to the changes just slightly better than the
standard version of Thompson Sampling, justifying the cumulative reward observed. The
other algorithms adapt in a similar way, except for the mean-dsw TS in the second drift,
which it does not detect at all the change in the rewards distributions. Similar observations
to the custom-decreasing situation can be drawn for the min-dsw TS, but in reversed order.
The algorithm starts to exploit the optimal arm in the first phase, while it explores sub-
optimal arms after the second drift (i.e., after the increment of the expected reward of two
arms). Please notice that, in both custom environments, max-dsw TS is always able to adapt
to the drifts, regardless of their entity. As expected, in the custom-increasing situation it
achieves the overall lowest regret, after the two drifts.

Finally, Figure 11 shows the results for the custom-stationary environments, that is,
when the reward distributions do not change over the time, for example between two
changes. The agents that achieve the best cumulative reward (Figure 11b), are min-dsw
TS and, as expected, the original version of Thompson Sampling, due to the fact that this
stationary algorithm does not spend time to explore the environment when it has already
tried all arms enough times. The analysis of the regret in Figure 11a shows that min-dsw TS
is the fastest to find the best arm and then it achieves a lower regret during time compared
to all other non-stationary algorithms. Contrary to custom-increasing environment, max-dsw
TS and Discounted TS perform worse than other algorithms, while Sliding Window is the

Entropy 2021, 23, 380 20 of 26

worst in this scenario. The mean-dsw TS achieves, as expected, average results compared to
the other competing algorithms.

(a) Regret for the custom-increasing environment.

(b) Cumulative reward for the custom-increasing environment.

Figure 10. Results of the MAB algorithms in the custom-increasing environment. Line plots represent
the regret (a) and the cumulative reward (b) through 1000 steps for each algorithms.

5.3. Real-World Environments

In Table 4 we summarize the results on the different real-world datasets for each
algorithm. In this case, given that a real-world task does not come together with true
reward distributions for each action, we change the reference metric to the classification
accuracy registered at the end of the last round—that is, the number of correctly guessed
instances (or the cumulative reward), divided by the number of rounds T. The only
exception is the Air Microbes dataset, for which accuracy computation is unfeasible, given
that we do not have access to instance classes. In this case, we estimate a hourly reward
distribution for each arm (based on hourly class frequency) in order to compute the relative
cumulative reward at the T-th round, as for synthetic data. The results derive from the
average over 10 replicates. In Appendix A we report the box plots of the collected results
for each real-world task.

From Table 4, it emerges that the min-dsw TS version of f -dsw TS outperforms other
algorithms on every real-world task.

Specifically, in the Baltimore Crime dataset min-dsw TS achieves an accuracy of 14.61%
which is close to the 14.55% achieved by the standard TS baseline, and the 14.48% achieved
by the mean-dsw TS. In this task the evolution of the concepts differs from the canonical
definition of concept drift (i.e., the variability in the data streaming is similar to random
noise), which makes it closer to a pseudo-stationary scenario. The algorithms with a more
aggressive behavior towards drifts are negatively affected by this data structure and thus
they achieve significantly worse performance values than those achieved by min-dsw TS
(i.e., below 14.2% for max-dsw TS, sliding window, and discounted baselines).

Entropy 2021, 23, 380 21 of 26

(a) Regret for the custom-stationary environment.

(b) Cumulative reward for the custom-stationary environment.

Figure 11. Results of the MAB algorithms in the custom-stationary environment. Line plots represent
the regret (a) and the cumulative reward (b) through 1000 steps for each algorithms.

Table 4. Comparison of performances (%) of MAB algorithms for real-world datasets. * All tasks are evaluated in terms of
classification accuracy, except for Air Microbes which is evaluated in terms of cumulative reward relative to the oracle (RCR).
The best performance for each dataset is indicated in bold.

Dataset Max-dsw Min-dsw Mean-dsw D-TS SW-TS TS Rand

Baltimore Crime 14.18 14.61 14.48 14.11 14.18 14.55 10.85
Insects abrupt 39.30 40.24 40.21 39.22 39.94 28.8 16.65

Insects incremental 38.94 40.47 39.94 38.82 39.72 35.35 16.63
Insects incr-abrupt-reoc 38.54 40.10 39.44 38.45 38.77 33.05 16.69
Insects incremental-reoc 38.58 40.30 39.53 38.49 38.63 33.48 16.68

Local News 50.94 53.70 53.17 51.46 50.79 51.49 23.69
Air Microbes * 81.13 86.06 82.57 80.93 81.42 81.94 26.95

For the collection of Insects datasets, similar conclusions can be drawn, with min-dsw
and mean-dsw always outperforming the non-stationary baselines D-TS and SW-TS in
terms of accuracy. Max-dsw TS is generally in line with the performances of the non-
stationary competitors. In more details, the insects-abrupt dataset registers the smallest
accuracy value for the standard TS algorithm, being greatly affected by the sudden drifts.
At the same time, mean-dsw TS shines by achieving a good accuracy value (40.21%), very
close to the dataset-best of 40.24%, achieved by min-dsw TS. Also SW-TS gets the best
result of 39.94% among the baselines performances on the insects collection. As a general
remark, all the non-stationary algorithms seem to perform better in scenarios with abrupt
rather than incremental changes. The only exception is again the best performing method
min-dsw which achieves slightly better accuracy on the insects-incremental (40.47%) and
insects-incremental-reoccurring (40.3%).

Entropy 2021, 23, 380 22 of 26

The local news dataset appears to be the least difficult challenge, as testified by the
highest accuracy achieved by the random baseline (23.69%). Furthermore, Thompson
Sampling, with an accuracy of around 51.5% significantly outperforms Sliding Window TS,
as well as max-dsw TS, and being close to the performance of Discounted TS. The reasons
for this are similar to the ones mentioned for the Baltimore Crime dataset on the pseudo-
stationary nature of data. Nevertheless, min-dsw is once more the best performing method
with an accuracy of 53.7% (+2.2% w.r.t. TS), followed by mean-dsw (53.17%).

Finally, the findings are once more confirmed for the Air Microbes task. In fact, min-dsw
significantly outperforms the other MAB algorithms, achieving a RCR above 86%, whereas
the scores of the TS baselines and other f -dsw versions lie between 81% and 83% of RCR.
Mean-dsw is confirmed to be the second best MAB algorithm in the pool, as the only other
algorithm to perform with an RCR greater than 82%.

6. Conclusions

In this paper, we introduced and analyzed a new Multi-Armed Bandit (MAB) algo-
rithm, called f -Discounted-Sliding-Window Thompson Sampling (f -dsw TS), for non-stationary
environments, that is, when the data streaming is affected by concept drift. The f -dsw TS
algorithm is based on Thompson Sampling (TS) and exploits a discount factor on the re-
ward history and an arm-related sliding window to contrast concept drift in non-stationary
environments. We investigated how to combine these two sources of information, namely
the discount factor and the sliding window, by the mean of an aggregation function f (.).
In particular, we proposed a pessimistic (f = min), an optimistic (f = max), as well
as an averaged (f = mean) version of the f -dsw TS algorithm. A rich set of numerical
experiments was performed to compare the performance of the f -dsw TS algorithm to
both stationary and non-stationary state-of-the-art TS algorithms. We exploited synthetic
environments (both randomly-generated and custom) to analyze and compare the perfor-
mance of the f -dsw TS algorithm to state-of-the art baselines under different types of drift,
i.e, sudden/abrupt, incremental, gradual, increasing/decreasing drift. Furthermore, we
adapted four active learning tasks to our framework: a prediction task on crimes in the city
of Baltimore (Baltimore Crime), a classification task on insects species (Insects datasets collec-
tion), a recommendation task on local web-news (Local News), and a time-series analysis on
microbial organisms in the tropical air ecosystem (Air Microbes). The f -dsw TS approach
emerged as the best performing MAB algorithm. At least one of the versions of f -dsw TS
performed better than the baselines in synthetic environments, proving the robustness of
f -dsw TS under different concept drift types. Moreover, the pessimistic version (f = min)
resulted as the most effective in all real-world tasks.

Future directions of the presented work are manifold. We aim at extending the
approach introduced for f -dsw TS to other MAB policies, namely ε-greedy and Upper
Confidence Bound (UCB). Furthermore, we are going to analyze the theoretic bounds over
the expected regret/reward of the f -dsw TS algorithm. Finally, we consider important to
investigate the adoption of different reward distributions (i.e., Gaussian). This will allow
to include contextual information (i.e., features/attributes) in our framework and hence to
improve its effectiveness in real-world prediction and classification tasks.

Author Contributions: Conceptualization, E.C. and G.S.; Methodology, E.C. and G.S.; Resources,
M.Z.; Software, E.C.; Supervision, F.S.; Validation, E.C.; Writing—original draft, E.C. and G.S.;
Writing—review and editing, G.S., F.S. and M.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Entropy 2021, 23, 380 23 of 26

Acknowledgments: The authors are grateful to the anonymous referees whose insightful comments
enabled us to make significant improvements to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Here we provide the boxplots of the results for the experiments on real-world datasets,
shown in Table 4.

In Figure A1 we show the accuracy results for the Baltimore Crime dataset.

Figure A1. Accuracy results over 10 replications for the Baltimore Crime dataset.

In Figure A2 we present the accuracy of the tested algorithms for every drift in the
Insect dataset: abrupt Figure A2a, incrementalFigure A2b, incremental-abrupt Figure A2c
and incremental-reoccurring Figure A2d.

(a) Abrupt changes

(b) Incremental changes

Figure A2. Cont.

Entropy 2021, 23, 380 24 of 26

(c) Incremental-abrupt changes

(d) Incremental-reoccurring changes

Figure A2. Accuracy results over 10 replications for the Insects datasets collection.

In Figure A3 we report the boxplot of the accuracy for the Local News dataset.

Figure A3. Accuracy results over 10 replications for the Local News dataset.

Finally, in Figure A4, we show the results in terms of relative cumulative reward (RCR)
for the Air Microbes dataset.

Entropy 2021, 23, 380 25 of 26

Figure A4. Relative cumulative reward (RCR) results over 10 replications for the Bacteria dataset.

References
1. Robbins, H. Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 1952, 58, 527–535. [CrossRef]
2. Berry, D.A.; Fristedt, B. Bandit Problems: Sequential Allocation of Experiments (Monographs on Statistics and Applied Probability);

Chapman Hall: London, UK, 1985; Volume 5, p. 7.
3. Kuleshov, V.; Precup, D. Algorithms for multi-armed bandit problems. arXiv 2014, arXiv:1402.6028.
4. Villar, S.S.; Bowden, J.; Wason, J. Multi-armed bandit models for the optimal design of clinical trials: Benefits and challenges. Stat.

Sci. A Rev. J. Inst. Math. Stat. 2015, 30, 199. [CrossRef]
5. Ding, W.; Qin, T.; Zhang, X.D.; Liu, T.Y. Multi-Armed Bandit with Budget Constraint and Variable Costs. In Proceedings of the

AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013; Volume 13, pp. 232–238.
6. Schwartz, E.M.; Bradlow, E.T.; Fader, P.S. Customer acquisition via display advertising using multi-armed bandit experiments.

Mark. Sci. 2017, 36, 500–522. [CrossRef]
7. Le Ny, J.; Dahleh, M.; Feron, E. Multi-UAV dynamic routing with partial observations using restless bandit allocation indices. In

Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 4220–4225.
8. Scott, S.L. A Modern Bayesian Look at the Multi-Armed Bandit. Appl. Stoch. Model. Bus. Ind. 2010, 26, 639–658. [CrossRef]
9. Chapelle, O.; Li, L. An Empirical Evaluation of Thompson Sampling. In Proceedings of the 24th International Conference on

Neural Information Processing Systems (NIPS’11), Granada, Spain, 12–14 December 2011; Curran Associates Inc.: Red Hook, NY,
USA, 2011; pp. 2249–2257.

10. Li, L.; Chu, W.; Langford, J.; Schapire, R.E. A Contextual-Bandit Approach to Personalized News Article Recommendation.
In Proceedings of the 19th International Conference on World Wide Web (WWW’10), Raleigh, NC, USA, 26–30 April 2010;
Association for Computing Machinery: New York, NY, USA, 2010; pp. 661–670. [CrossRef]

11. Benedetto, G.D.; Bellini, V.; Zappella, G. A Linear Bandit for Seasonal Environments. arXiv 2020, arXiv:2004.13576.
12. Besbes, O.; Gur, Y.; Zeevi, A. Stochastic multi-armed-bandit problem with non-stationary rewards. In Proceedings of the

Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 199–207.
13. Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv. CSUR

2014, 46, 1–37. [CrossRef]
14. Zliobaite, I. Learning under Concept Drift: An Overview. arXiv 2010, arXiv:1010.4784.
15. Trovo, F.; Paladino, S.; Restelli, M.; Gatti, N. Sliding-Window Thompson Sampling for Non-Stationary Settings. J. Artif. Intell. Res.

2020, 68, 311–364. [CrossRef]
16. Slivkins, A. Introduction to Multi-Armed Bandits. arXiv 2019, arXiv:1904.07272.
17. Agrawal, R. Sample mean based index policies with O (log n) regret for the multi-armed bandit problem. Adv. Appl. Probab. 1995,

27, 1054–1078. [CrossRef]
18. Auer, P. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 2002, 3, 397–422.
19. Thompson, W.R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.

Biometrika 1933, 25, 285–294. [CrossRef]
20. Thompson, W.R. On the theory of apportionment. Am. J. Math. 1935, 57, 450–456. [CrossRef]
21. Russo, D.; Roy, B.V.; Kazerouni, A.; Osband, I.; Wen, Z. A Tutorial on Thompson Sampling. arXiv 2017, arXiv:1707.02038.
22. Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 2002, 47, 235–256.

[CrossRef]
23. Kaufmann, E.; Korda, N.; Munos, R. Thompson sampling: An asymptotically optimal finite-time analysis. In Proceedings of the

International Conference on Algorithmic Learning Theory, Lyon, France, 29–31 October 2012; Springer: Berlin/Heidelberger,
Germany, 2012; pp. 199–213.

24. Agrawal, S.; Goyal, N. Analysis of thompson sampling for the multi-armed bandit problem. In Proceedings of the Conference on
Learning Theory, Edinburgh, UK, 25–27 June 2012.

http://doi.org/10.1090/S0002-9904-1952-09620-8
http://dx.doi.org/10.1214/14-STS504
http://dx.doi.org/10.1287/mksc.2016.1023
http://dx.doi.org/10.1002/asmb.874
http://dx.doi.org/10.1145/1772690.1772758
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1613/jair.1.11407
http://dx.doi.org/10.2307/1427934
http://dx.doi.org/10.1093/biomet/25.3-4.285
http://dx.doi.org/10.2307/2371219
http://dx.doi.org/10.1023/A:1013689704352

Entropy 2021, 23, 380 26 of 26

25. Russo, D.; Van Roy, B. An Information-Theoretic Analysis of Thompson Sampling. J. Mach. Learn. Res. 2016, 17, 2442–2471.
26. Russo, D.; Van Roy, B. Learning to Optimize via Information-Directed Sampling. Oper. Res. 2018, 66, 230–252. [CrossRef]
27. Chow, S.C.; Chang, M. Adaptive Design Methods in Clinical Trials, 2nd ed.; CRC Press: New York, NY, USA, 2006; Volume 3.

[CrossRef]
28. Srinivas, N.; Krause, A.; Kakade, S.; Seeger, M. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental

Design; Omnipress: Madison, WI, USA, 2010; pp. 1015–1022.
29. Brochu, E.; Brochu, T.; de Freitas, N. A Bayesian Interactive Optimization Approach to Procedural Animation Design. In

Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’10), Madrid, Spain, 2–4 July
2010; Eurographics Association: Germany, DEU, 2010; pp. 103–112.

30. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under concept drift: A review. IEEE Trans. Knowl. Data Eng. 2018,
31, 2346–2363. [CrossRef]

31. Žliobaitė, I.; Pechenizkiy, M.; Gama, J. An overview of concept drift applications. In Big Data Analysis: New Algorithms for a New
Society; Springer: Berlin, Germany, 2016; pp. 91–114.

32. Dries, A.; Rückert, U. Adaptive Concept Drift Detection. Stat. Anal. Data Min. 2009, 2, 311–327. [CrossRef]
33. Klinkenberg, R.; Joachims, T. Detecting Concept Drift with Support Vector Machines. In Proceedings of the Seventeenth

International Conference on Machine Learning (ICML’00), Standord, CA, USA, 29 June–2 July 2000; Morgan Kaufmann Publishers
Inc.: San Francisco, CA, USA, 2000; pp. 487–494.

34. Nishida, K.; Yamauchi, K. Detecting Concept Drift Using Statistical Testing. In Discovery Science; Corruble, V., Takeda, M., Suzuki,
E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 264–269.

35. Elwell, R.; Polikar, R. Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Trans. Neural Netw. 2011,
22, 1517–1531. [CrossRef] [PubMed]

36. Raj, V.; Kalyani, S. Taming non-stationary bandits: A Bayesian approach. arXiv 2017, arXiv:1707.09727.
37. Garivier, A.; Moulines, E. On upper-confidence bound policies for non-stationary bandit problems. arXiv 2008, arXiv:0805.3415.
38. Fouché, E.; Komiyama, J.; Böhm, K. Scaling multi-armed bandit algorithms. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1449–1459.
39. Bifet, A.; Gavalda, R. Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM International

Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007; pp. 443–448.
40. Hartland, C.; Gelly, S.; Baskiotis, N.; Teytaud, O.; Sebag, M. Multi-armed bandit, dynamic environments and meta-bandits.

In Proceedings of the NIPS-2006 Workshop, Online Trading between Exploration and Exploitation, Whistler, BC, Canada,
8 December 2006.

41. Kaufmann, E.; Cappé, O.; Garivier, A. On Bayesian upper confidence bounds for bandit problems. In Proceedings of the Artificial
Intelligence and Statistics, Canary Islands, Spain, 21–23 April 2012; pp. 592–600.

42. May, B.C.; Korda, N.; Lee, A.; Leslie, D.S. Optimistic Bayesian sampling in contextual-bandit problems. J. Mach. Learn. Res. 2012,
13, 2069–2106.

43. Mellor, J.; Shapiro, J. Thompson sampling in switching environments with Bayesian online change detection. In Proceedings of
the Artificial Intelligence and Statistics, Scottsdale, AZ, USA, 29 April–1 May 2013; pp. 442–450.

44. Liu, F.; Lee, J.; Shroff, N. A change-detection based framework for piecewise-stationary multi-armed bandit problem. arXiv 2017,
arXiv:1711.03539.

45. Besson, L.; Kaufmann, E. The generalized likelihood ratio test meets klucb: An improved algorithm for piece-wise non-stationary
bandits. arXiv 2019, arXiv:1902.01575.

46. KhudaBukhsh, A.R.; Carbonell, J.G. Expertise drift in referral networks. Auton. Agents Multi-Agent Syst. 2019, 33, 645–671.
[CrossRef]

47. St-Pierre, D.L.; Liu, J. Differential evolution algorithm applied to non-stationary bandit problem. In Proceedings of the 2014 IEEE
Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 2397–2403.

48. Allesiardo, R.; Féraud, R.; Maillard, O.A. The non-stationary stochastic multi-armed bandit problem. Int. J. Data Sci. Anal. 2017,
3, 267–283. [CrossRef]

49. Souza, V.; Reis, D.M.d.; Maletzke, A.G.; Batista, G.E. Challenges in Benchmarking Stream Learning Algorithms with Real-world
Data. arXiv 2020, arXiv:2005.00113.

50. Sottocornola, G.; Symeonidis, P.; Zanker, M. Session-Based News Recommendations. In Proceedings of the Companion
Proceedings of the The Web Conference 2018 (WWW’18), Lyon, France, 23–27 April 2018; International World Wide Web
Conferences Steering Committee: Geneva, Switzerland, 2018; pp. 1395–1399. [CrossRef]

51. Blei, D.M. Probabilistic Topic Models. Commun. ACM 2012, 55, 77–84. [CrossRef]
52. Gusareva, E.S.; Acerbi, E.; Lau, K.J.; Luhung, I.; Premkrishnan, B.N.; Kolundžija, S.; Purbojati, R.W.; Wong, A.; Houghton, J.N.;

Miller, D.; et al. Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proc. Natl. Acad. Sci. USA 2019,
116, 23299–23308. [CrossRef] [PubMed]

http://dx.doi.org/10.1287/opre.2017.1663
http://dx.doi.org/10.1201/9781584887775
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1002/sam.10054
http://dx.doi.org/10.1109/TNN.2011.2160459
http://www.ncbi.nlm.nih.gov/pubmed/21824845
http://dx.doi.org/10.1007/s10458-019-09419-9
http://dx.doi.org/10.1007/s41060-017-0050-5
http://dx.doi.org/10.1145/3184558.3191582
http://dx.doi.org/10.1145/2133806.2133826
http://dx.doi.org/10.1073/pnas.1908493116
http://www.ncbi.nlm.nih.gov/pubmed/31659049

	Introduction
	Background
	Multi-Armed Bandit
	Concept Drift
	Non-Stationary Multi-Armed Bandit

	Methodology
	Problem Definition
	f-Discounted-Sliding-Window Thompson Sampling

	Experiments
	Experimental Setup
	Synthetic Datasets
	Random Environments
	Custom Environments

	Real Datasets
	Baltimore Crime
	Insects
	Local News
	Air Microbes

	Parameters Tuning

	Results
	Random Environments
	Custom Environments
	Real-World Environments

	Conclusions
	
	References

