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Abstract: The trend prediction of the stock is a main challenge. Accidental factors often lead to
short-term sharp fluctuations in stock markets, deviating from the original normal trend. The short-
term fluctuation of stock price has high noise, which is not conducive to the prediction of stock
trends. Therefore, we used discrete wavelet transform (DWT)-based denoising to denoise stock
data. Denoising the stock data assisted us to eliminate the influences of short-term random events
on the continuous trend of the stock. The denoised data showed more stable trend characteris-
tics and smoothness. Extreme learning machine (ELM) is one of the effective training algorithms
for fully connected single-hidden-layer feedforward neural networks (SLFNs), which possesses
the advantages of fast convergence, unique results, and it does not converge to a local minimum.
Therefore, this paper proposed a combination of ELM- and DWT-based denoising to predict the trend
of stocks. The proposed method was used to predict the trend of 400 stocks in China. The predic-
tion results of the proposed method are a good proof of the efficacy of DWT-based denoising for
stock trends, and showed an excellent performance compared to 12 machine learning algorithms
(e.g., recurrent neural network (RNN) and long short-term memory (LSTM)).

Keywords: stock prediction; extreme learning machine; wavelet transform; deep learning

1. Introduction

In the era of big data, deep learning for predicting stock prices [1] and trends has
become more popular [2,3]. The fully-connected feedforward neural network (FNN)
possesses excellent performance, and is superior to traditional time-series forecasting
techniques (e.g., autoregressive integrated moving average (ARIMA)) [4,5]. The FNN is
mainly trained using the well-known backpropagation (BP) algorithm [6]. The traditional
BP algorithm essentially optimizes parameters based on the gradient descent method,
accompanied by the problems of slow convergence and local minima. Extreme learning ma-
chine (ELM) is one of the effective training algorithms for single-hidden-layer feedforward
neural networks (SLFNs). In ELM, hidden nodes are initialized randomly, and network
parameters at the input end are fixed without iterative tuning. The only parameter that
needs to be learned is the connection (or weight) matrix between the hidden layer and the
output layer [7]. Theoretically, if hidden nodes are randomly generated, ELM maintains
the general approximation capability of SLFNs [8]. Compared with the traditional FNN
algorithm, the advantages of ELM in terms of efficiency and generalization performance
have been proven on a wide range of issues in different fields [9]. The ELM possesses a
faster learning and better generalization performance [10–12] than traditional gradient-
based learning algorithms [13]. Due to efficient learning ability of ELM, it is widely used in
classification, regression problems, etc. [14,15]. In addition to being used for traditional
classification and regression tasks, ELM has recently been extended for clustering, fea-
ture selection, and representation learning [16]. For more research on ELM, please refer to
related literatures [17–25].
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In recent years, the research of hybrid models for time series prediction has become
more popular [26]. Regarding the advantages of ELM, in recent years, the use of ELM for
time-series datasets has gradually increased. A number of scholars have applied ELM to
carry out feature engineering on time-series data [27], and ELM was extensively utilized
to study various hybrid models for predicting time-series data. In order to discover the
features of the original data, Yang et al. proposed an ELM-based recognition framework
to deal with the recognition problem [28]. Li et al. proposed the design and architecture
of a trading signal mining platform that uses ELM to simultaneously predict stock prices
based on market news and stock price datasets [29]. Wang et al. introduced a new mu-
tual information-based sentiment analysis method and employed ELM to improve the
prediction accuracy and accelerate the prediction performance of the proposed model [30].
Jiang et al. combined empirical mode decomposition, ELM, and improved harmony search
algorithm to establish a two-stage ensemble model for stock price prediction [31]. Tang et al.
optimized the ELM by the differential evolution algorithm to construct a new hybrid pre-
dictive model [32]. Weng et al. presented an improved genetic algorithm regularized
online ELM to predict gold price [33]. Jiang et al. proposed a hybrid approach consisting
of pigeon-inspired optimization (PIO) and ELM based on wavelet packet analysis (WPA)
for predicting bulk commodity prices. That hybrid model possessed a better performance
on horizontal precision, directional precision and robustness [34]. Khuwaja et al. presented
a framework to predict the stock price movement using phase space reconstruction (PSR)
and ELM, and results achieved from the proposed framework were compared with the con-
ventional machine learning pipeline, as well as the baseline methods [35]. Jeyakarthic and
Punitha introduced a new method based on multi-core ELM for forecasting stock market
returns [36]. Xu et al. presented a new carbon price prediction model using time series
complex network analysis and ELM [37]. In addition to the use of ELM for feature process-
ing and developing hybrid models, a number of studies have modified ELM to make it
highly appropriate for a variety of practical scenarios. Wang et al. introduced a non-convex
loss function, developed a robust regularized ELM, and emphasized on solving the key
problem of low efficiency [38]. Guo et al. presented a robust adaptive online sequential
ELM-based algorithm for online modeling and prediction of non-stationary data streams
with outliers [39].

The research of stock prediction is inseparable from the hypothesis of market effi-
ciency [40]. There are a lot of studies on market efficiency [41]. The general conclusion is
that the market in which the stock trend can be predicted should be the ineffective market,
otherwise it is impossible to predict the trend of stock. Relevant studies have pointed
out that China’s stock market is a relatively emerging market [42,43], which is relatively
ineffective. Therefore, it is feasible to use various machine learning models to predict the
trend of the stock through transaction data analysis. In order to predict the stock trend
in an ineffective market, we need to consider the influence of noise on trend prediction.
Due to the influence of various accidental factors on the financial market, the impact of
noise on financial time-series data draws scholars’ attention. To our knowledge, noise often
distorts investors’ judgments on stock trends and seriously affects further analysis and
processing. However, financial time-series data possess non-stationary and non-linear
characteristics, and the traditional denoising processing methods are often accompanied
with several defects. The traditional methods of denoising the financial time-series data
mainly include the moving average (MA) [44], Kalman filter [45], Wiener filter [46], and fast
Fourier transform (FFT) [47]. As a simple data smoothing technique, the MA approximately
processes the time-series data. In the denoising process, it may also lead to a loss of useful
information. The FFT generally treats high-frequency signals as noise, sets all Fourier
coefficients above a certain threshold frequency to zero, and then converts the datasets to
the time-domain through inverse Fourier transform to achieve denoising [47]. With respect
to the low signal-to-noise ratio in financial data, it is difficult to achieve effective denoising
due to more high-frequency effective signals. Kalman filter is a recursive estimator to
estimate the state of a system based on the criterion of minimum mean-square error of the
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residual [48]. As financial time-series data are non-stationary and nonlinear, it is difficult to
describe their state and behavior with a definite equation. In signal processing, the Wiener
filter is a filter used to produce an estimate of a desired or target random process by linear
time-invariant (LTI) filtering of an observed noisy process, assuming known stationary
signal and noise spectra, and additive noise. The Wiener filter minimizes the mean square
error between the estimated random process and the desired process. Wavelet analysis
is a mathematical technique that can decompose a signal into multiple lower resolution
levels by controlling the scaling and shifting factors of a single wavelet function. FFT has
no locality, while wavelet transform not only has locality, but also scaled parameters that
can change the spectrum structure and the shape of the window, so that wavelet analysis
can achieve the effect of multi-resolution analysis [49]. The wavelet methods can be used
to decompose a noisy signal into different scales and remove the noise while preserving
the signal, regardless of the frequency content. The wavelet transforms are developed
according to the requirements of time-frequency localization. They possess adaptive
properties and are particularly appropriate for processing of stationary and non-linear
signals [50]. A recent study employed wavelet transform to reduce the amount of noisy
data [51]. Xu et al. proposed a novel method based on the wavelet-denoising algorithm
and multiple echo state networks to improve the prediction accuracy of noisy multivariate
time-series [52]. Bao et al. developed a deep learning framework, combining wavelet
transform, stacked autoencoders, and long short-term memory (LSTM) for stock price pre-
diction [53]. Yang et al. presented an image processing method based on wavelet transform
for big data analysis of historical data of individual stocks to obtain images of individual
stocks volatility data [54]. Lahmiri introduced a new method based on the combination
of stationary wavelet transform and Tsallis entropy for empirical analysis of the return
series [55]. Li and Tang proposed a WT-FCD-MLGRU model, which is the combination
of wavelet transform, filter cycle decomposition and multi-lag neural networks, and that
model possessed minimum forecasting error in stock index prediction [56]. Wen et al. used
wavelet transform to extract the features of the Shanghai Composite Index and S&P Index
to study the relationship between China’s stock market and international commodities [57].
Mohammed et al. employed continuous wavelet transform and wavelet coherence method
to study the relationship between stock indices in different markets [58]. Yang applied the
differential method to highlight the trend of the stock price change. To further suppress the
influence of stock noise data, they employed wavelet transform to decompose the stock
data into principal component and detailed component [59]. Xu et al. presented design
and implementation of a stacked system to predict the stock price. Their model used the
wavelet transform technique to reduce the noise of market data, and stacked auto-encoder
to filter unimportant features from preprocessed data [60]. He et al. proposed a new shrink-
age (threshold) function to improve the performance of wavelet shrinkage denoising [61].
Yu et al. used wavelet coherence and wavelet phase difference based on continuous wavelet
transform to quantitatively analyze the correlation effect of stock signal returns in the time-
frequency domain [62]. Faraz and Khaloozadeh applied wavelet transform to reduce the
noise in the stock index and to make the data smooth [63,64]. Chen utilized a recursive
adaptive separation algorithm based on discrete wavelet transform (DWT) to denoise
data [65]. Li et al. proposed a hybrid model based on wavelet transform denoising, ELM,
and k-nearest neighbor regression optimization for stock prediction [66]. There are several
other similar studies as well [67–75]. Basically, related research has improved the effect of
related time-series prediction through wavelet transform.

Due to the applicability of wavelet transform in financial data, as well as the need
for data smoothing of the labeling method based on the continuous trend of stock data,
and with respect to the advantages of ELM, we proposed a hybrid method for stock trend
prediction based on ELM and wavelet transform.

The main arrangements of this paper are as follows:
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In the second section, the theories related to ELM and wavelet transform are intro-
duced, and then, the hybrid method DELM (the combined model of wavelet transform
denoising and ELM) is described.

In the third section, an overview of the continuous trend labeling method based on
time-series data is presented, and the stock datasets used in this paper are introduced.
The statistical metrics used for evaluation of experimental results are described, and the
reasons for choosing those metrics are discussed.

In the fourth section, the differences between the denoised data and the raw data are
compared. Besides, the stationarity testing of the denoised data after feature preprocessing
is carried out. The difference in the labeling effect after the combination of the labeling
method and DWT-based denoising is analyzed. The prediction results of ELM and DELM
are compared. The prediction results of the DELM and other commonly used algorithms
are compared.

The descriptions of the related abbreviations are listed in Appendix A Table A1.

2. Methods

In this section, we briefly introduce ELM and wavelet transform theoretically, and de-
scribe the DELM method proposed.

2.1. ELM

ELM is a new algorithm developed for SLFNs [76]. In an ELM algorithm, the input
layer weights are randomly assigned, and the output layer weights are obtained by using
the generalized inverse of the hidden layer output matrix. Compared with traditional
feed-forward neural network training algorithms, which are slow, easy to fall into local
minimum solutions, and are sensitive to the selection of learning rates, the ELM algorithm
randomly generates the connection weights of the input layer and the threshold of the
hidden layer neurons, and it is unnecessary to adjust the weights in the training process. It is
only by setting the number of neurons in the hidden layer, that a unique optimal solution
can be obtained. Compared with the previous traditional training algorithms, the ELM
algorithm is advantaged by fast learning and good generalization performance. It is not
only appropriate for regression and fitting problems, but also for classification [77,78] and
pattern recognition. The structure of a typical SLFN is shown in Figure 1. It consists of an
input layer, a hidden layer, and an output layer, which are fully connected.
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Figure 1. Schematical presentation of a single-hidden-layer feedforward neural network (SLFN).

There are n neurons in the input layer, corresponding to the number of n input
variables, and l neurons in the hidden layer; there are m neurons in the output layer,
corresponding to the number of m output variables. W denotes the weight matrix linking
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the input layer and the hidden layer, where wij is the weight of the i-th neuron in the hidden
layer and the j-th neuron in the input layer. The weight matrix linking the hidden layer
and the output layer is β, βjk represents the weight matrix connecting the j-th neuron in
the hidden layer and the k-th neuron in the output layer, and b represents the threshold of
neurons in the hidden layer. W, β, and b are shown in Equation (1).

W =


w11 w12 . . . w1n
w21 w22 . . . w2n
. . . . . . . . . . . .
wl1 wl2 . . . wln


l×n

, β =


β11 β12 . . . β1m
β21 β22 . . . β2m
. . . . . . . . . . . .
βl1 βl2 . . . βlm


l×m

, b =


b1
b2
...
bl


l×1

(1)

For the training set of N samples, the input matrix is X, the output matrix is Y, and T
is the expected output matrix (see Equation (2)).

X =


x11 x12 . . . x1N
x21 x22 . . . x2N

. . . . . . . . . . . .
xn1 xn2 . . . xlN


n×N

,Y =


y11 y12 . . . y1N
y21 y22 . . . y2N

. . . . . . . . . . . .
ym1 ym2 . . . ymN


m×N

T =


t11 t12 . . . t1N
t21 t22 . . . t2N

. . . . . . . . . . . .
tm1 tm2 . . . tmN


m×N

(2)

The goal of ELM for learning SLFN is to minimize the output error, which is expressed
in Equation (3).

N

∑
j=1
‖yj − tj‖ = 0, tj =

[
t1j, t2j, . . . , tmj

]′, yj =
[
y1j, y2j, . . . , ymj

]′ (3)

That is, the existence of wi, βi and bi results to hold Equation (4). It can therefore be
expressed as Equation (5).

l

∑
i=1

βig
(
wi · xj + bi

)
= tj, j = 1, . . . , N (4)

Hβ = T (5)

With expanding Equations (4) and (5) to Equations (6) and (7), we can achieve the
specific network output form, as well as the specific form of H.

tj =


t1j
t2j
...

tmj

 =



l
∑

i=1
βi1g

(
wixj + bi

)
l

∑
i=1

βi2g
(
wixj + bi

)
...

l
∑

i=1
βimg

(
wixj + bi

)


(j = 1, 2, . . . N),

wi = [wi1, wi2, . . . , win], xj =
[
x1j, x2j, . . . , xnj

]′
(6)
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H(w1, w2, . . . , wl , b1, b2, . . . , bl , x1, x2, . . . , xN) =
g(w1 · x1 + b1) g(w2 · x1 + b2) · · · g(wl · x1 + bl)
g(w1 · x2 + b1) g(w2 · x2 + b2) · · · g(wl · x2 + bl)

· · · · · · · · · · · ·
g(w1 · xN + b1) g(w2 · xN + b2) · · · g(wl · xN + bl)


N×l

(7)

In order to train a SLFN, we attempted to obtain ŵi, b̂i and β̂i, resulting in holding
Equation (8). This minimized the loss function in Equation (9).

‖H
(

ŵi, b̂i

)
β̂i − T‖ = min

w,b,β
‖H(wi, bi)βi − T‖, i = 1, . . . , l (8)

E =
N

∑
j=1

(
l

∑
i=1

βig
(
wi · xj + bi

)
− tj

)2

(9)

Some traditional algorithms based on gradient descent can be used to solve such
problems, while it is necessary to adjust all parameters in an iterative process for gradient-
based learning algorithms. For the ELM algorithm, once the input weights and the bias
of the hidden layer are randomly determined, the output matrix of the hidden layer is
uniquely constructed. The output weights can be determined by the system (i.e., the ELM
algorithm randomly assigns input weights and hidden layer bias rather than completely
adjusting all parameters (e.g., backpropagation neural network (BPNN)). For SLFNs,
the ELM algorithm can analytically determine output weights. Through the proof of the
previously presented theorems Theorems 2.1 and 2.2 in [76], the minimum norm of the
weights is given, which is simple to implement and fast in prediction. Therefore, W and b
are randomly selected and determined, and remain unchanged during the training process.
β can be obtained by solving the least squares of the Equations (10) and (11).

min
β
‖Hβ− T‖ (10)

β̂ = H+T (11)

where, H+ is the Moore–Penrose generalized inverse of the hidden layer output matrix H.

2.2. Wavelet Analysis

Wavelet transform is a mathematical approach that gives the time-frequency repre-
sentation of a signal with the possibility to adjust the time-frequency resolution. It can
simultaneously display functions and manifest their local characteristics in time-frequency
domain. The use of these characteristics facilitates training of neural networks with accu-
racy to extremely nonlinear signals. It is a time-frequency localized analysis method that
the size of window is fixed, while its shape may change [79]. In other words, it has a lower
time resolution and higher frequency resolution in low frequency band [80], and higher
time resolution and lower frequency resolution in high frequency band, making it highly
appropriate for analyzing non-stationary signals, as well as extracting the local character-
istics of signals. Wavelet transform includes continuous wavelet transform (CWT) and
DWT [81]. The aim of wavelet transform is to translate a function called basic wavelet
with parameter τ, then, scale the function with the scaling parameter a, and do inner
product with signal x(t), as formulated in Equation (12), where a > 0 is the scaling factor
used to scale the ϕ(t) function, and the τ parameter is used to translate the function ϕ(t).
Both a and τ are continuous variables, thus, Equation (12) is called CWT [82]. DWT is
a transform that decomposes a given signal into a number of sets, where each set is a
time-series of coefficients describing the time evolution of the signal in the corresponding
frequency band [83]. DWT discretizes a signal according to the power series based on
the scaling parameter, and is often used for signal decomposition and reconstruction [84].
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DWT constructs a scaling function vector group and a wavelet function vector group at
different scales and time periods, i.e., the scaling function vector space and the wavelet
function vector space [85]. At a certain level, the signal convolved in the scaling space is
the approximated, low-frequency information of the raw signal (e.g., “cA” component in
Figure 2), and the signal convolved in the wavelet space is the detailed, high-frequency
information of the raw signal (e.g., “cD” component in Figure 2). DWT has two important
functions, one is the scaling function, as shown in Equation (13), and the other is the
wavelet function, as presented in Equation (14) [79].

WTx(a, τ) =
1√
a

∫ +∞

−∞
x(t)ϕ

(
t− τ

a

)
dt (12)

φjk(t) = 2−
j
2 φ
(

2−jt− k
)

, j, k ∈ Z (13)

ψjk(t) = 2−
j
2 ψ
(

2−jt− k
)

, j, k ∈ Z (14)
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The signal passes through a decomposed high-pass filter and a decomposed low-pass
filter. The high-frequency component of the corresponding signal is output by the high-pass
filter, which is called the detail component. The output of the low-pass filter corresponds
to the relatively low-frequency component of the signal, which is called the approximate
component [86]. In general, the short-term volatility of stock is often affected by various
information and possesses the characteristics of short-term noise. The labeling method used
in the third part of the present research is based on the continuous trend characteristics of
stocks to label the data and generate training datasets. Therefore, noisy data may have an
obvious impact on the labeling process. It is hoped that the continuous trend characteristics
of the stock are relatively stable, and the short-term noise can be filtered in the process
of data labeling, especially for data with Gaussian white noise in the majority of cases;
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thus, we denoised the raw data by wavelet transform, and labeled the data based on
the denoised data to generate training dataset. The use of DWT to denoise stock data
generally requires the selection of wavelet basis, the number of decomposition layers,
and the selection of threshold [79]. The DWT-based denoising process is illustrated in
Figure 2. In the selection process of wavelet function, we used dozens of stocks to test the
whole experimental process with different wavelet functions. The final trend prediction
results are better with the wavelet function of db8. Then, we set the wavelet function as
db8 with the threshold parameter of 0.04.

2.3. The Proposed Hybrid Method

In the current research, the main purpose is to propose a hybrid method for stock
prediction, including ELM model and wavelet transform denoising. Hence, first, we im-
ported the raw stock data, then used the labeling method to label the data, performed
feature preprocessing on the raw data based on the Equations (17) and (18), and then
allocated the data into training datasets, validation datasets, and test datasets. Afterwards,
the training datasets were used for the training of the proposed denoised ELM (DELM).
Besides, we trained the ELM model and the 12 common algorithms using the training
datasets based on the raw data, and the results on the corresponding test sets were em-
ployed to compare with the results of the DELM to examine the positive influence of DWT
on the ELM classification results (i.e., C1 in Figure 3). The ELM-associated parameters are
shown in Table 1. Finally, the results of the 12 common algorithms were compared with
those of the DELM method (i.e., C2 in Figure 3).

Entropy 2021, 23, x FOR PEER REVIEW 9 of 32 
 

 

 
Figure 3. Flowchart of the DELM method. 

We used the features that were extracted by DWT-based denoising to train the 
DELM, and the parameters used were consistent with those applied in training of the ELM 
model with the raw data. Table 1 summarizes parameters required for training of the ELM 
model. 

Table 1. Parameters required for training of the extreme learning machine (ELM) model. 

Name Input Neu-
rons 

Hidden Neu-
rons 

Activation 
Function 

Hidden Lay-
ers 

Output Neu-
rons 

First hidden 
layer 

11 50 Sigmoid 1 50 

Second hid-
den layer 

50 50 RBF 1 1 

3. Feature Engineering for Stock Trend Prediction 
In this section, we mainly introduce the labeling method that is used to forecast the 

stock trend. Through this labeling method, we can clearly define the rising and falling 
trend of the stock. We introduce the data set used in this paper, the statistical metrics of 
the experimental results and some considerations of selecting these statistical metrics. 

3.1. Labeling Method 
In the previous research, we proposed a labeling method based on the continuous 

trend characteristics of the time-series data [87]. In the current study, this labeling method 
was used to label the stock data, and then, training datasets and test datasets were gener-
ated for prediction of trends of the corresponding stocks. 

In this paper, training datasets and test datasets were generated based on the closing 
price of transaction data. Firstly, we expanded the dimension of the closing price in order 
to make the current training vector of the historical stock data with the parameter length 
of λ. The process is formulated in Equation (15), where x represents the original closing 

Figure 3. Flowchart of the DELM method.

Table 1. Parameters required for training of the extreme learning machine (ELM) model.

Name Input
Neurons

Hidden
Neurons

Activation
Function

Hidden
Layers

Output
Neurons

First hidden layer 11 50 Sigmoid 1 50
Second hidden layer 50 50 RBF 1 1
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We used the features that were extracted by DWT-based denoising to train the DELM,
and the parameters used were consistent with those applied in training of the ELM model
with the raw data. Table 1 summarizes parameters required for training of the ELM model.

3. Feature Engineering for Stock Trend Prediction

In this section, we mainly introduce the labeling method that is used to forecast the
stock trend. Through this labeling method, we can clearly define the rising and falling
trend of the stock. We introduce the data set used in this paper, the statistical metrics of the
experimental results and some considerations of selecting these statistical metrics.

3.1. Labeling Method

In the previous research, we proposed a labeling method based on the continuous
trend characteristics of the time-series data [87]. In the current study, this labeling method
was used to label the stock data, and then, training datasets and test datasets were generated
for prediction of trends of the corresponding stocks.

In this paper, training datasets and test datasets were generated based on the closing
price of transaction data. Firstly, we expanded the dimension of the closing price in order
to make the current training vector of the historical stock data with the parameter length
of λ. The process is formulated in Equation (15), where x represents the original closing
price sequence, X denotes the matrix after dimension expansion, and each row of the X
data represents a vector. Equation (16) indicates the labeling of these vectors, which are
calculated by Equation (22).

x =



x1
x2
.
.

xN − 1
xN

→X =



xλ xλ−1 xλ−2 . . . x1
xλ+1 xλ xλ−1 . . . x2

. . . . . . .

. . . . . . .
xN − 1 xN − 2 xN − 3 . . . xN−λ

xN xN − 1 xN − 2 . . . xN−λ+1

 (15)

y =



labelλ

labelλ+1
.
.

labelN−1
labelN

 (16)

After expanding the dimension of the raw closing price data based on the parameter
λ, we carry out the basic feature processing for the expanded data, so that the processed
data features are stable, consistent with the standardization process, as summarized in
Equations (17) and (18), where xij represents a certain closing price of matrix X, and Mλ

s
denotes the mean value of the sliding parameter λ. In this way, the data feature processing
uses historical data only, and there is no look-ahead bias [88]. In the section of experi-
ments, we attempted to examine the stationarity of the processed data. λ was set as 11,
consistent with the study [87].

fij = (xij −Mλ
i)/Mλ

i, xij ∈ X (17)

Mλ
s =

s+λ−1
∑

i=s
xi

λ
, xi ∈ x, s = 1, 2 . . . N − λ + 1 (18)

Then, the relative maximum and minimum values of the time-series data are defined in
Equation (19) with respect to the fluctuation parameterω (the labeling parameter), and the
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continuous trend characteristics of the corresponding stocks are calculated according to
Equations (20) and (21). Finally, the labels of the data can be obtained by Equation (22).

h =



h1
h2
.
.

ht−1
ht

l =



l1
l2
.
.

lm−1
lm

 (19)

TD(hili − 1) = abs(
hi − li − 1

li − 1
), i > 1 (20)

TD(lihi − 1) = abs(
li − hi − 1

hi − 1
), i > 1 (21)

xlabel =


1, i f x ∈

{
x|li − 1 ≤ x0 ≤ hi, TD(hili − 1) ≥ ω,

i = 2, 3, 4 . . . t; x0 ∈
{

xj
∣∣j = 0

}
, j = 0, 1, 2 . . . λ

}
0, i f x ∈

{
x|hi − 1 ≤ x0 ≤ li, TD(lihi − 1) ≥ ω,

i = 2, 3, 4 . . . m; x0 ∈
{

xj
∣∣j = 0

}
, j = 0, 1, 2 . . . λ

} (22)

3.2. Datasets

The stock data used in the current research are from a pool of hundreds of stocks in the
Shanghai and Shenzhen stock markets in China, covering various industries. The date of
trading these stocks backs to 1 January 2001 to 3 December 2020, lasting for approximately
20 years. The transaction data of each trading day are taken as the raw data, including stock
code, opening price, the highest price, the lowest price, closing price, trading volume, etc.
Some suspended stocks or newly listed stocks are deleted, and 400 stocks with more than
4000 rows of data are screened out as our dataset. The data are from https://tushare.pro/
(accessed on 2 January 2021), which can be downloaded in the sub-category of “Backward
Answer Authority Quotes” under the category of “Quotes Data”. The data can also be
downloaded for free through https://github.com/justbeat99/400_stocks_data_zips.git
(accessed on 2 January 2021). After downloading the raw data, we performed feature
preprocessing on the data according to Equations (17) and (18), and then labeled the data
according to Equations (20)–(22) to generate labeled datasets, and segmented each stock
data with the first 70% of the date for the training dataset, 15% in the middle part for the
validation dataset, and the last 15% for the test dataset. As a result, the training, validation,
and test datasets of 400 stocks with labeled data could be obtained. We checked the balance
of the positive and negative samples on the training, validation, and test datasets of these
400 stocks, and it was found that all the datasets were relatively balanced. The balance table
is submitted in the Supplementary Materials. Appendix A Table A2 provides the balanced
datasets for some stocks. It can be seen from Appendix A Table A2 that for the listed data,
the training datasets are half of the positive and negative samples, i.e., they are all relatively
balanced. Regarding the validation datasets, the proportion of positive samples for 000005
is 39%, the proportion of positive samples for 000025 is 34%, and the proportion of positive
samples for 000520 is 31% that are imbalanced. Regarding the test datasets, the proportion
of positive samples for 000055 is 35%, the proportion of positive samples for 000068 is 37%,
and the proportion of positive samples for 000523 is 39%. The balance of these situations is
slightly worse. However, they all happen in the validation dataset or test dataset of a small
number of stocks, and their impact is not great. We further checked the data of all stocks,
and it was found that the training dataset was basically balanced. The sample balance sheet
for positive and negative cases for 400 stocks is submitted as Supplementary Materials.

https://tushare.pro/
https://github.com/justbeat99/400_stocks_data_zips.git
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3.3. Statistical Metrics

Since our datasets are relatively balanced, five common statistical metrics were employed
to evaluate the classification effect, including Accuracy (Acc), Recall (R), Precision (P), F1 score
(F1), and area under the curve (AUC) [89], as shown in Table 2.

Table 2. Metrics used for evaluation of classification effects.

Metrics Formula Evaluation Focus

Accuracy (Acc) TP+TN
TP+FN+FP+FN The ratio of correctly classified samples to total samples.

Recall (R) TP
TP+FN Proportion of correctly classified results among the true positive samples.

Precision (P) TP
TP+FP

Proportion of correctly classified results among the results predicted to be
positive samples.

F1_score (F1) 2× Precision×Recall
Precision+Recall

The harmonic average of precision and recall, and its value is closer to the
smaller value of Precision and Recall.

AUC ∑N+
i=1 ∑N−

j=11 f (x+i )≥ f (x−j )

M

The area under the Roc curve is between 0.1 and 1. Area under the curve
(AUC) as a value can intuitively evaluate the quality of the classifier.

The larger the value, the better the results will be.

In Table 2, TP represents the correctly predicted proportion of positive samples;
FN denotes the incorrectly predicted proportion of positive samples; FP represents the
proportion of negative samples that are predicted incorrectly; and TN demonstrates the
proportion of negative samples that are predicted correctly [90]. In terms of AUC, x+i and x–

i
represent data points with positive and negative labels, respectively. Besides, f is a general
classification model, 1 is an indicator function that is equal to 1 when f (x+i ) ≥ f (x–

j );
otherwise that is equal to 0; N+ (resp., N–) is the number of data points with positive (resp.,
negative) labels, and M = N+N– denotes the number of matching points with opposite
labels (x+, x–), with a value ranging from 0 to 1 [91].

Acc is the most basic evaluation metric, which mainly reflects the correctness of the
forecasting as a whole [92]. It simply calculates the ratio, while it does not differentiate
categories. Because type of error costs may be different, it is not advised to use only Acc to
measure the case of unbalanced samples, because the generalizability of the model and the
random prediction problem caused by sample skew are not considered. Generally speaking,
the higher the Acc, the better the classifier. Our datasets are relatively balanced datasets,
therefore, Acc is a promising evaluation metric. Precision is a measure of accuracy that
represents the proportion of examples that are classified as positive examples but actually
positive examples. Recall is a measure of coverage, which is used to measure the proportion
of positive cases that are correctly classified as positive cases. F1 takes into account the
Acc and Recall of the classification model [93], and can be regarded as the harmonic
average of the accuracy and recall of the model. The physical meaning of AUC is the
probability of taking any positive/negative case, and the positive case ranks before the
negative case. The AUC reflects the sorting ability of classifiers. It is noteworthy that the
AUC is not sensitive to whether the sample categories are balanced or not, justifying why
performance of a classifier is typically evaluated by the AUC for unbalanced samples [94].
For a specific classifier, it is impossible for us to simultaneously improve all the above-
mentioned metrics. However, if a classifier can correctly classify all instances, all metrics
are optimal. Therefore, we mainly considered the actual effects (i.e., the results of Acc,
the sensitivity of balanced samples, and the values of the AUC).

4. Experiments

In the section, we visualized and analyzed the results of the DWT. The stationarity of
the feature data is tested. The labeling process of the labeling method is described in detail
through the visualization. The results of ELM and DELM are compared and analyzed.
Finally, the results of DELM are compared with these of some common classification algorithms.
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4.1. The Visualization of the DWT-Based Denoising

After completing the DWT-based denoising process, we could obtain the denoised
data. The raw data and the denoised data are checked. As shown in Figure 4, the line charts
of raw data and denoised data of four stocks can be observed. Since the number of the raw
data and the denoised data exceeds 4000, the visualization of all the data in one graph is not
very intuitive. We partially enlarged the graph of the last 300 data for each stock. As dis-
played in Figure 4, the trend of the time-series data after denoising is smoother, and the
result of the continuous trend characteristics is more stable. An abnormal fluctuation in
the raw time-series data is often caused by random accidents. Abnormal fluctuations in
stock market caused by accidents often reflect short-term surges and plunges, causing stock
price to deviate from the normal trend. However, when accidents pass, the stock price
often returns to the original normal trend. Therefore, it is hoped that the denoised data
can filter such abnormal noise and maintain better trend continuity. It can be seen from
the Figure 4 that the denoised data are basically less sensitive to such abnormal points,
improving the continuity of the trend after denoising the data. This result is in line with
our needs and expectations. It was also noticed that after denoising the data, the relatively
high-price point was basically lower compared to the raw data in a local area, and the
relatively low-price point was higher compared to the raw data in a local area. This is
also in line with our needs for denoising. It is hoped that the DWT-based denoising can
enhance the trend characteristics of stocks, and then better train machine learning models
for predicting changes in the trend of stocks.

4.2. Testing of Stationarity

In general, it is highly essential to standardize or normalize the data before the data are
used to train the model, so that the data can be mapped to a relatively stable fluctuation
interval with a relatively stable volatility, which is convenient for a model to learn such a
norm according to the eigenvector. The traditional standardization or normalization meth-
ods are used to process all the data [95], which are not appropriate for the time-series data
and have the problem of look-ahead bias [96]. The raw data processed by Equations (17) and (18)
were stable. It is necessary to conduct a stationarity test on the data processed by
Equations (17) and (18) after DWT-based denoising to indicate whether there is a stable
sequence, which is convenient for machine learning models to learn. Stationary data could
improve the prediction ability of machine learning models. Figure 5 shows the results of fea-
ture processing based on Equations (17) and (18) for the DWT-based denoised data of stock
code 000005. Figure 5a illustrates the sequence diagram of the denoised data. Figure 5a
shows that the denoised data are not stable and do not have a stable fluctuation form.
Figure 5b displays the featured data after the denoised data are processed by the
Equations (17) and (18). It can be seen from Figure 5b that after feature processing, the data
are mapped to a relatively stable fluctuation interval, and the mean is around zero. Figure 5c
is the autocorrelation graph, and Figure 5d is the partial autocorrelation graph. It can be seen
that once the lag parameter exceeds 15, the corresponding autocorrelation value and partial
autocorrelation value fluctuate around zero. It can be concluded that, basically, the features
obtained by the Equations (17) and (18) from denoised data are stable (Figure 5). In order
to obtain the exact results from the statistical level, we conducted an enhanced ADF test
on the 400 stocks [97,98]. Appendix A Table A3 shows the results of ADF test for some
stocks. Others are submitted as Supplementary Materials. From Appendix A Table A3,
we can see that the statistic based on ADF test of 000005 is −10.77, which is less than the
critical values of 1% (−3.43), 5% (−2.86), and 10% (−2.57). Simultaneously, the p value is
2.37 × 10−19, which is close to zero. From the results of the ADF test, it can be observed
that the features processed by Equations (17) and (18) from DWT-based denoised data are
stationary. All the 400 stocks were checked, and these stationarity data for all stocks are
consistent, i.e., these are all stable sequences.
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Figure 5. Stock data feature diagram of code 000005. Where, (a) is the sequence diagram of the
denoised data, and the Y axis represents the closing price after denoising; (b) displays the feature
diagram of time-series data after the denoised data could be processed by Equations (17) and (18),
and the Y axis represents the value of the feature; (c) shows the autocorrelation graph, and the Y axis
represents the autocorrelation value; (d) illustrates the partial autocorrelation graph, and the Y axis
represents the partial autocorrelation value. The X axis in (a,b) represents the date, and in (c,d)
represents the lag parameter.

4.3. Labeling Process

The labeling method used in this paper is based on the continuous trend features of
the corresponding stock. In the process of labeling the stock data, the volatility parameter
ω needs to be given, based on ω, the relatively high- and low- price points are calculated
according to the Equations (19)–(21), and the continuous trend indicator TD is calculated
based on these high- and low-price points. The labeling method does not remarkably
care about the short-term normal fluctuations of stock price, while it is more concerned
with long-term, continuous trends. Because it uses the relatively high- and low- price
points in a period to calculate the TD, the correct calculation of these price points for the
corresponding period determines the labelling of all the data in such points. Then, if the
stock price fluctuation caused by some short-term random events exceeds the threshold
ω, i.e., the short-term rises and falls suddenly and sharply, which is caused by accidental
events, the labeling method may regard this fluctuation as a trend of rise or fall, and then
label the data and use the labeled data for training the model. The worst result is that the
labelled data in this period may be biased (especially if the price returns to normal after
the abnormal event), which may cause biased training results of the model.

Therefore, we used the DWT-based denoising algorithm to denoise the raw stock
data in order to obtain the denoised data with better continuous trend characteristics,
i.e., the denoised data can smooth such abnormal fluctuations, and then, change the
relative high- and low-price points compared to the raw data for the corresponding period.
Figure 6 shows the visualization process of the labeling of stock code 000005 with ω equal
to 0.05. The red line indicates a downward trend and green line shows an upward trend.
Figure 6a displays the labeling process of the DWT-based denoising data, and Figure 6b
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illustrates the labeling process of the raw data. Due to the denser data, it is roughly
found that the continuity of the labeling process of denoised data is superior. The labeling
process of the last 300 data from the two datasets was partially enlarged (Figure 6c,d).
It can be clearly seen that the data that underwent DWT denoising are labeled with the
labeling method based on the proposed continuous trend feature, reflecting better trend
continuity. In particular, in the section circled by the orange box in the lower right corner,
it can be seen that in the c plot, the labeling method is applicable to all the corresponding
stock trends as a downtrend, while the two small rebounds in plot d are labeled as green,
indicating that they are uptrend. The difference in the results originates from the difference
in the sensitivity of the calculation of the high- and low-price points during this period.
Similarly, the same situation exists for the orange box in the upper left corner. In the
plot c, the labeling method labels the trends of this period as (fall, rise, fall), and in plot
d, trends are indeed labeled as (fall, rise, fall, rise, fall). It can be clearly seen that the
smoothness of the data after denoising is better, and the labeling process is more realistic
and better reflects the characteristics of the continuous trend. In plots c and d, the serial
numbers from 100 to 200 achieve the same conclusion mentioned above. The difference
in labeling caused by noise may appear in training of an oversensitive model, and the
accuracy of prediction and other metrics may also be sensitive to the validation set and
test set. Therefore, it can be seen from the graphical results that the data after DWT-based
denoising possess good smoothness and continuous trend characteristics, which can better
improve the labeling effect of our labeling method. The trend continuity of the labeled data
is better, reflecting the continuous trend characteristics of the corresponding stocks. This is
more in line with actual investment behavior.
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Figure 6. The labeling process. The Y-axis represents the closing price of the corresponding stock, and the X-axis indicates
the date. The green line indicates that the labeling method is significant in labeling this segment of data as an upward
trend, and the red line indicates that the labeling method can be used to label this segment of data as a downward trend.
(a) displays the labeling process of the DWT-based denoising data, and (b) illustrates the labeling process of the raw data.
The labeling process of the last 300 data from the two datasets was partially enlarged (c,d).

4.4. Resluts of ELM and DELM

After analyzing the smoothness of the data denoised by DWT and the stationarity of
the data after feature processing by Equations (17) and (18), the obtained features were
used to train the DELM. In order to better evaluate the effects of DWT on the final results,
we established two models: the ELM model based on feature training of raw data, and the
DELM based on feature training of denoised data. In the ELM training phase, we used
the “High-Performance Extreme Learning Machines” toolbox [99]. Tables 3–7 present
the results of Acc, P, R, F1, AUC of the two models with some stocks. The results in the
validation dataset were mainly used to verify the selection of relevant parameters, and to
prevent problems, such as overfitting a model trained on the training dataset. We analyzed
the results in the test dataset with concentration of the results in the validation dataset.
As shown in Table 3, in terms of the Acc, the results of the DELM in the test dataset
significantly exceed those of the ELM model. For each stock, the Acc value of the DELM
was higher than that of the ELM model for all stocks. The Acc of stock code 000007
increased from 0.5770 to 0.6483, with an increase of seven percentage points; the Acc of
000025 also increased from 0.6057 to 0.6894, with an increase of eight percentage points;
the results of the improvement for codes 000048 and 000402 were not significantly different.
With the Acc of 000520, the DELM significantly increased the result of the ELM model
from 0.6225 to 0.7565, with an increase of 13%. In addition, the Acc for code 000530 was
elevated by 10%. Other stocks’ Acc improvement was basically five to six percentage
points. The above-mentioned results were then averaged. The mean values showed that
the DELM increased the ELM’s Acc from 0.6445 to 0.6909, with an average increase of more
than five percentage points. This is also in line with the average improvement result in
the validation dataset, and the average improvement in the validation dataset is about
three points.
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Table 3. The Acc metric of corresponding validation datasets and test datasets of ELM and DELM for
some stocks.

Code
ELM DELM

Validation Acc Test Acc Validation Acc Test Acc

000001 0.5794 0.6638 0.7096 0.6953
000005 0.6311 0.6499 0.7241 0.6941
000007 0.6062 0.5770 0.6726 0.6483
000012 0.6275 0.6506 0.6728 0.6973
000014 0.6452 0.6486 0.6166 0.7000
000025 0.5156 0.6057 0.6662 0.6894
000026 0.6370 0.6276 0.6582 0.6996
000031 0.6568 0.6716 0.7128 0.7231
000032 0.6098 0.6400 0.6261 0.7037
000048 0.6224 0.6822 0.6254 0.6837
000050 0.5912 0.6197 0.6309 0.6814
000055 0.6433 0.6124 0.6713 0.6699
000056 0.6141 0.6318 0.6686 0.7025
000061 0.6088 0.6441 0.6618 0.6897
000065 0.6494 0.6320 0.6349 0.6912
000068 0.6502 0.6095 0.6836 0.6587
000090 0.5733 0.6619 0.6117 0.6903
000150 0.6433 0.6692 0.6799 0.7317
000151 0.6336 0.6508 0.6545 0.6732
000155 0.6512 0.6352 0.6608 0.6976
000158 0.6357 0.6519 0.6143 0.6790
000402 0.6306 0.6826 0.6306 0.6896
000404 0.6432 0.6700 0.6953 0.6953
000411 0.6040 0.6346 0.6437 0.7034
000420 0.6516 0.6238 0.6275 0.6436
000422 0.6700 0.6743 0.7226 0.6885
000430 0.6235 0.6882 0.6088 0.6941
000507 0.6172 0.6398 0.6554 0.6822
000509 0.6401 0.6369 0.6260 0.6870
000519 0.6417 0.6584 0.6681 0.6935
000520 0.6716 0.6225 0.7369 0.7565
000523 0.6508 0.6494 0.7215 0.7071
000524 0.6148 0.6555 0.6294 0.6846
000526 0.6288 0.6319 0.6209 0.6367
000530 0.6445 0.6436 0.6969 0.7440
000531 0.6614 0.6489 0.6369 0.6964
000532 0.6295 0.6524 0.6552 0.6609
Mean 0.6283 0.6445 0.6603 0.6909

Table 4. The precision metric for the corresponding validation datasets and test datasets of ELM and
DELM for some stocks.

Code
ELM DELM

Validation P Test P Validation P Test P

000001 0.7547 0.7074 0.6987 0.7425
000005 0.5371 0.6524 0.4686 0.5909
000007 0.5558 0.5108 0.5955 0.6316
000012 0.7035 0.6523 0.7000 0.7380
000014 0.6743 0.6462 0.6481 0.6708
000025 0.3599 0.5072 0.4686 0.5693
000026 0.6879 0.5975 0.6781 0.6205
000031 0.6119 0.6678 0.6381 0.7120
000032 0.5926 0.6503 0.6355 0.7486
000048 0.6172 0.6629 0.6139 0.7273
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Table 4. Cont.

Code
ELM DELM

Validation P Test P Validation P Test P

000050 0.6437 0.6828 0.6638 0.7437
000055 0.6090 0.4638 0.6400 0.5248
000056 0.6250 0.5776 0.6317 0.6947
000061 0.6337 0.6273 0.5817 0.6061
000065 0.6796 0.5711 0.6402 0.7300
000068 0.5878 0.4749 0.6398 0.4868
000090 0.6076 0.6906 0.6349 0.7356
000150 0.5994 0.5052 0.6457 0.5000
000151 0.5895 0.6573 0.6250 0.5749
000155 0.6793 0.5710 0.6641 0.6045
000158 0.6384 0.6260 0.6239 0.7045
000402 0.6732 0.6952 0.6690 0.6580
000404 0.7310 0.6655 0.7546 0.5248
000411 0.5662 0.6111 0.6266 0.6332
000420 0.6569 0.5195 0.5862 0.4848
000422 0.6749 0.7236 0.7683 0.8235
000430 0.6319 0.6690 0.5429 0.6289
000507 0.6650 0.6411 0.7046 0.6062
000509 0.6160 0.5385 0.6098 0.5020
000519 0.6128 0.6825 0.6498 0.7782
000520 0.4700 0.6360 0.4350 0.7057
000523 0.6192 0.5319 0.7094 0.5525
000524 0.5849 0.6364 0.6166 0.7429
000526 0.6530 0.6608 0.6779 0.7254
000530 0.6493 0.6129 0.7642 0.7021
000531 0.6218 0.6456 0.5867 0.6810
000532 0.6056 0.6580 0.6376 0.6676
Mean 0.6222 0.6170 0.6345 0.6506

Table 5. The values of the Recall metric for the corresponding validation datasets and test datasets of
the ELM and DELM for some stocks.

Code
ELM DELM

Validation R Test R Validation R Test R

000001 0.3980 0.5504 0.5604 0.6201
000005 0.4749 0.5050 0.4824 0.3467
000007 0.7924 0.7852 0.7050 0.6755
000012 0.6005 0.5138 0.6485 0.5831
000014 0.5791 0.5217 0.5029 0.5514
000025 0.5481 0.7394 0.5091 0.4656
000026 0.7313 0.7055 0.7132 0.6573
000031 0.6656 0.6118 0.7128 0.6897
000032 0.7101 0.7500 0.6018 0.7048
000048 0.5667 0.5757 0.5706 0.5994
000050 0.5926 0.5425 0.6403 0.5852
000055 0.7126 0.6948 0.6747 0.5944
000056 0.5621 0.5461 0.6461 0.5414
000061 0.5103 0.5466 0.6357 0.6569
000065 0.7161 0.7235 0.6420 0.5356
000068 0.6097 0.5279 0.6140 0.5311
000090 0.5217 0.5581 0.5437 0.5630
000150 0.6633 0.6682 0.6544 0.6364
000151 0.7329 0.6890 0.7205 0.7932
000155 0.7472 0.7348 0.7581 0.8137
000158 0.6995 0.7067 0.5812 0.5959
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Table 5. Cont.

Code
ELM DELM

Validation R Test R Validation R Test R

000402 0.6782 0.6722 0.7066 0.7825
000404 0.6359 0.5762 0.6993 0.6883
000411 0.8156 0.8112 0.7485 0.7979
000420 0.7929 0.7986 0.7930 0.8703
000422 0.7326 0.7076 0.6931 0.5255
000430 0.7378 0.8073 0.7550 0.8286
000507 0.6667 0.6023 0.7046 0.6701
000509 0.6913 0.6314 0.6431 0.6318
000519 0.6321 0.6731 0.5825 0.6129
000520 0.4974 0.4949 0.6444 0.8430
000523 0.7703 0.7491 0.6942 0.6174
000524 0.7359 0.7304 0.6073 0.5417
000526 0.5521 0.5772 0.5403 0.5895
000530 0.7035 0.6353 0.7057 0.6856
000531 0.6894 0.6305 0.6506 0.7033
000532 0.6959 0.6959 0.6986 0.6657
Mean 0.6530 0.6484 0.6482 0.6431

Table 6. The F1 score metric for the corresponding validation datasets and test datasets of the ELM
and DELM for some stocks.

Code
ELM DELM

Validation F1 Test F1 Validation F1 Test F1

000001 0.5212 0.6191 0.6220 0.6758
000005 0.5041 0.5693 0.4754 0.4370
000007 0.6534 0.6190 0.6456 0.6528
000012 0.6479 0.5749 0.6733 0.6515
000014 0.6231 0.5773 0.5663 0.6053
000025 0.4345 0.6017 0.4880 0.5122
000026 0.7089 0.6471 0.6952 0.6384
000031 0.6376 0.6386 0.6734 0.7006
000032 0.6460 0.6966 0.6182 0.7260
000048 0.5908 0.6162 0.5914 0.6572
000050 0.6171 0.6046 0.6519 0.6550
000055 0.6568 0.5563 0.6569 0.5574
000056 0.5919 0.5614 0.6388 0.6085
000061 0.5654 0.5842 0.6075 0.6305
000065 0.6974 0.6383 0.6411 0.6179
000068 0.5985 0.5000 0.6266 0.5080
000090 0.5614 0.6174 0.5857 0.6379
000150 0.6297 0.5753 0.6500 0.5600
000151 0.6534 0.6728 0.6693 0.6667
000155 0.7116 0.6426 0.7080 0.6937
000158 0.6675 0.6639 0.6018 0.6457
000402 0.6757 0.6835 0.6873 0.7148
000404 0.6802 0.6176 0.7259 0.5955
000411 0.6684 0.6971 0.6821 0.7061
000420 0.7185 0.6295 0.6741 0.6228
000422 0.7026 0.7155 0.7288 0.6416
000430 0.6808 0.7316 0.6316 0.7151
000507 0.6658 0.6211 0.7046 0.6365
000509 0.6515 0.5812 0.6260 0.5595
000519 0.6223 0.6777 0.6143 0.6857
000520 0.4833 0.5566 0.5194 0.7683
000523 0.6865 0.6221 0.7017 0.5832
000524 0.6518 0.6802 0.6119 0.6265
000526 0.5983 0.6161 0.6013 0.6505
000530 0.6753 0.6239 0.7338 0.6937
000531 0.6539 0.6380 0.6170 0.6920
000532 0.6476 0.6764 0.6667 0.6667
Mean 0.6319 0.6255 0.6382 0.6377
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Table 7. The AUC values in the corresponding validation datasets and test datasets of ELM and
DELM for some stocks.

Code
ELM DELM

Validation AUC Test AUC Validation AUC Test AUC

000001 0.6115 0.6630 0.6904 0.6972
000005 0.6040 0.6387 0.6455 0.6108
000007 0.6172 0.6001 0.6769 0.6489
000012 0.6319 0.6404 0.6738 0.6940
000014 0.6461 0.6392 0.6161 0.6789
000025 0.5235 0.6274 0.6233 0.6378
000026 0.6121 0.6301 0.6525 0.6927
000031 0.6576 0.6686 0.7128 0.7212
000032 0.6095 0.6275 0.6263 0.7036
000048 0.6204 0.6713 0.6228 0.6847
000050 0.5910 0.6257 0.6301 0.6847
000055 0.6461 0.6314 0.6716 0.6525
000056 0.6139 0.6215 0.6667 0.6820
000061 0.6085 0.6365 0.6579 0.6844
000065 0.6395 0.6405 0.6348 0.6813
000068 0.6451 0.5927 0.6753 0.6266
000090 0.5758 0.6596 0.6123 0.6865
000150 0.6449 0.6690 0.6777 0.7015
000151 0.6390 0.6492 0.6564 0.6911
000155 0.6340 0.6448 0.6518 0.7135
000158 0.6327 0.6534 0.6144 0.6775
000402 0.6232 0.6828 0.6173 0.6901
000404 0.6449 0.6634 0.6946 0.6935
000411 0.6084 0.6278 0.6414 0.7125
000420 0.6319 0.6528 0.6320 0.6990
000422 0.6657 0.6680 0.7250 0.6991
000430 0.6125 0.6816 0.6235 0.7033
000507 0.6089 0.6391 0.6455 0.6804
000509 0.6414 0.6360 0.6264 0.6721
000519 0.6411 0.6573 0.6609 0.7016
000520 0.6234 0.6173 0.7038 0.7601
000523 0.6517 0.6680 0.7200 0.6845
000524 0.6172 0.6553 0.6286 0.6813
000526 0.6289 0.6332 0.6259 0.6448
000530 0.6413 0.6430 0.6949 0.7362
000531 0.6633 0.6486 0.6381 0.6966
000532 0.6309 0.6503 0.6558 0.6609
Mean 0.6254 0.6447 0.6547 0.6856

From Table 4, it can be seen that in terms of the value of the Precision metric, the values
are not as improved as the Acc metric. The results of the Precision metric for the ELM model
are partly good, and some represent the results of the DELM, e.g., the stock codes of 000005,
000150, 000151, 000402, 000404, 000420, 000430, 000507, and 000509. However, in general,
it can be seen from the average results that the values of the Precision metric for the DELM
increased from 0.6170 to 0.6506, indicating improvement to a certain degree.

Regarding the values of the Recall metric, it can be seen from Table 5 that it is not
significantly improved, and even in a variety of cases, the values of the Recall metric for
the ELM model are higher. From the mean values of Recall metric, it can be seen that the
mean values of Recall metric for the ELM model dropped by about 0.53% compared to
the DELM.

Regarding the values of F1 metric presented in Table 6, we can also achieve the same
conclusion as Recall metric. For each stock, the two models possess their own results.
For the mean value, it was elevated by about 1.2 percentage points.
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The values of the AUC metric are presented in Table 7. As far as the AUC values of
the ELM and DELM were concerned, the AUC value was not improved in only one sample
for the DELM, i.e., the AUC value of 0.6387 for the ELM model for code 000005 was higher
than the AUC value for the DELM for code 0.6108. From the mean value of the AUC, it can
be seen that the AUC value for the ELM model compared with the DELM was elevated
from 0.6447 to 0.6856, with an increase of four percentage points, which is very significant.

At the same time, we calculated the mean values of the statistical metrics for all
400 stocks presented in Table 8 (the values for other stocks are submitted as Supplementary
Materials). From Table 8, it can be seen that the conclusion is basically the same. The values
of Acc and AUC for the DELM have been significantly improved compared to the ELM
model. The improvement of F1 for the DELM is not statistically significant (0.6343 versus
0.6369). It was also noticed that the P value of the ELM model improved (within 3.7%)
compared with that of the DELM. The value of R metric decreased by an average of
2.4 percentage points. The average value of AUC rose from 0.6517 to 0.6892, with an
increase of 3.75 percentage points. In the section of statistical metrics, we compared the
differences between the different metrics, and concentrated on the values of Acc and
AUC. The results of the 400 stocks were also checked, as presented in the Supplementary
Materials, and it was found that in terms of the values of Acc and AUC metrics, for the
DELM, the values for each stock were elevated, indicating that DWT-based denoising
could remarkably improve the ELM model prediction results based on the labeling method.
It was demonstrated that the interpretation regarding the combination of continuous
trend-based labeling method and DWT-based denoising was correct. The results showed
that the denoised data were highly appropriate for the continuous trend-based labeling
method. The results also highlighted the rationality and superiority of the architecture of
the proposed hybrid method.

Table 8. The mean values of statistical metrics in validation datasets and test datasets for the ELM
and DELM for the 400 stocks.

Metric
ELM DELM

Validation Test Validation Test

Acc 0.6386 0.6523 0.6634 0.7013
p 0.6539 0.6312 0.6811 0.6681
R 0.6648 0.6497 0.6436 0.6257
F1 0.6548 0.6343 0.6567 0.6369

AUC 0.6357 0.6517 0.6602 0.6892

4.5. The DELM Method and Other Classification Algorithms

In order to further verify the prediction ability of the proposed hybrid method (DELM),
we also tested prediction ability of other common models in datasets of the 400 stocks.
Among them, the training of deep learning models (e.g., recurrent neural network (RNN)
and LSTM), with good dealing with time-series data problems, was carried out through
Pytorch (ver. 1.5.1) [100], and the other models were trained using the Sklearn toolkit
(ver. 0.23.2) [101]. All the models and associated parameters are summarized in Table 9.
The parameters’ names and specific functions are not detailed here (please refer to the
related literatures).

Due to space limitations, we presented the results of only six stocks, and the results of
other stocks are submitted as Supplementary Materials. As shown in Table 10, among the
results of all six stocks, the Acc values of the DELM were most promising, which signifi-
cantly surpassed the Acc values of other common models, basically reaching an accuracy
rate of 0.7. Additionally, the Acc values of the DELM surpassed the results of other common
models, and again verified the efficacy of DWT-based denoising. In addition, the results of
LSTM, RNN, RF, GBT, ABT, and SVC were relatively better than those of other common
models (basically between 0.67 and 0.68). The values of the AUC metric were concerned,
those of stock codes 000005, 000007, and 000025 for the DELM were not the best in all
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algorithms, and the most reliable were found in other stock codes. As far as the Acc values
were concerned, these values in the proposed DELM were the best on all the stock codes,
and the AUC values of the proposed DELM were the best among all the other algorithms.
In addition to the six stocks, we checked the results of all 400 stocks, and the conclusions
were basically consistent with those of the six stocks, i.e., the proposed DELM could signifi-
cantly improve the values of Acc and AUC in prediction process. Regarding the values
of P, R, and F1, as explained in the section of statistical metrics, in general, each model
possesses its unique advantages. This paper mainly concentrated on the values of Acc
and AUC. Therefore, it is concluded that the proposed hybrid method DELM can better
predict changes in the continuous trend of stocks and has a higher prediction accuracy and
AUC value.

Table 9. Related parameters for training of the 12 common models.

Models Related Parameters

LSTM

Input size = 11; hidden size = 11; output size = 2; layer num = 1; Activation
function = Relu; Optimization function = Adam with learning rate = 0.009,

betas = (0.9, 0.999), eps = 1 × 10−8; loss function = Cross Entropy Loss;
stop training epoch = 200

RNN

Input size = 11; hidden size = 11; output size = 2; layer num = 1; Activation
function = Relu; Optimization function = Adam with learning rate = 0.009,

betas = (0.9, 0.999), eps = 1 × 10−8; loss function = Cross Entropy Loss;
stop training epoch = 200

KNN n of neighbors = 5

LR penalty = ‘l2’

RF n of estimators = 50

DT max of depth = 3

GBT Learning rate = 0.1, n_estimators = 100

ABT n of estimators = 50

NB priors = None; var smoothing = 1 × 10−8

LDA solver = ‘svd’; store covariance = False; tol = 1 × 10−4

QDA store covariance = False; tol = 1 × 10−4

SVC kernel = ‘rbf’; C = 2

Table 10. Classification results of the DELM and other classification algorithms on several test datasets and valida-
tion datasets.

Code Model Validation
Acc

Test
Acc

Validation
P

Test
P

Validation
R

Test
R

Validation
F1

Test
F1

Validation
AUC

Test
AUC

000001

ELM 0.5794 0.6638 0.7547 0.7074 0.3980 0.5504 0.5212 0.6191 0.6115 0.6630
DELM 0.7096 0.6953 0.6987 0.7425 0.5604 0.6201 0.6220 0.6758 0.6904 0.6972
LSTM 0.5711 0.6522 0.6875 0.6512 0.4662 0.6450 0.5555 0.6480 0.5897 0.6522
RNN 0.5732 0.6694 0.7200 0.6870 0.4348 0.6222 0.5272 0.6501 0.5977 0.6690
KNN 0.5594 0.6409 0.7217 0.6548 0.3806 0.5850 0.4984 0.6180 0.5910 0.6405

LR 0.4893 0.6209 0.7320 0.7412 0.1766 0.3631 0.2846 0.4874 0.5445 0.6191
RF 0.6052 0.6481 0.7716 0.6624 0.4453 0.5937 0.5647 0.6261 0.6334 0.6477
DT 0.6223 0.6552 0.7674 0.6779 0.4925 0.5821 0.6000 0.6264 0.6453 0.6547

GBT 0.6223 0.6810 0.7828 0.7000 0.4751 0.6254 0.5913 0.6606 0.6483 0.6806
ABT 0.6180 0.6853 0.7668 0.7042 0.4826 0.6311 0.5924 0.6657 0.6420 0.6849
NB 0.4864 0.6109 0.6693 0.6697 0.2114 0.4265 0.3214 0.5211 0.5350 0.6096

LDA 0.5508 0.6423 0.7785 0.7137 0.3060 0.4669 0.4393 0.5645 0.5941 0.6411
QDA 0.5894 0.6052 0.6471 0.5894 0.6294 0.6744 0.6381 0.6290 0.5824 0.6056
SVC 0.6338 0.6838 0.8202 0.7218 0.4652 0.5908 0.5937 0.6498 0.6636 0.6832
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Table 10. Cont.

Code Model Validation
Acc

Test
Acc

Validation
P

Test
P

Validation
R

Test
R

Validation
F1

Test
F1

Validation
AUC

Test
AUC

000005

ELM 0.6311 0.6499 0.5371 0.6524 0.4749 0.5050 0.5041 0.5693 0.6040 0.6387
DELM 0.7241 0.6941 0.4686 0.5909 0.4824 0.3467 0.4754 0.4370 0.6455 0.6108
LSTM 0.5726 0.5976 0.4549 0.5684 0.4000 0.5136 0.4249 0.5385 0.5426 0.5911
RNN 0.6405 0.6507 0.5643 0.6468 0.3965 0.5246 0.4643 0.5775 0.5981 0.6409
KNN 0.6250 0.6134 0.5267 0.5848 0.4942 0.5382 0.5100 0.5606 0.6023 0.6076

LR 0.6311 0.6362 0.5497 0.6535 0.3629 0.4385 0.4372 0.5249 0.5845 0.6210
RF 0.6570 0.6499 0.5659 0.6371 0.5637 0.5482 0.5648 0.5893 0.6408 0.6421
DT 0.5945 0.6149 0.4880 0.5839 0.5483 0.5548 0.5164 0.5690 0.5865 0.6103

GBT 0.6204 0.6575 0.5205 0.6450 0.4903 0.5615 0.5050 0.6004 0.5978 0.6501
ABT 0.6143 0.6423 0.5103 0.6162 0.5753 0.5814 0.5408 0.5983 0.6075 0.6376
NB 0.5793 0.5616 0.4388 0.5631 0.2355 0.1927 0.3065 0.2871 0.5195 0.5331

LDA 0.6311 0.6606 0.5365 0.6653 0.4826 0.5216 0.5081 0.5847 0.6053 0.6498
QDA 0.5930 0.5951 0.4778 0.5989 0.3320 0.3522 0.3918 0.4435 0.5476 0.5764
SVC 0.6463 0.6530 0.5534 0.6420 0.5405 0.5482 0.5469 0.5914 0.6280 0.6449

000007

ELM 0.6062 0.5770 0.5558 0.5108 0.7924 0.7852 0.6534 0.6190 0.6172 0.6001
DELM 0.6726 0.6483 0.5955 0.6316 0.7050 0.6755 0.6456 0.6528 0.6769 0.6489
LSTM 0.6062 0.5874 0.5540 0.5185 0.8201 0.8033 0.6611 0.6301 0.6189 0.6113
RNN 0.5951 0.6049 0.5488 0.5332 0.7827 0.8041 0.6444 0.6404 0.6063 0.6270
KNN 0.6045 0.5754 0.5587 0.5102 0.7405 0.7407 0.6369 0.6042 0.6126 0.5937

LR 0.5397 0.5348 0.5049 0.4833 0.8927 0.9111 0.6450 0.6316 0.5607 0.5766
RF 0.6256 0.6207 0.5797 0.5526 0.7301 0.7000 0.6462 0.6176 0.6318 0.6295
DT 0.6402 0.6677 0.5965 0.6012 0.7163 0.7148 0.6509 0.6531 0.6447 0.6730

GBT 0.6159 0.6548 0.5703 0.5785 0.7301 0.7778 0.6404 0.6635 0.6227 0.6684
ABT 0.6207 0.6532 0.5749 0.5765 0.7301 0.7815 0.6433 0.6635 0.6272 0.6674
NB 0.5429 0.5381 0.5073 0.4841 0.8374 0.8444 0.6319 0.6154 0.5605 0.5721

LDA 0.5802 0.5900 0.5349 0.5197 0.7958 0.8296 0.6398 0.6391 0.5930 0.6165
QDA 0.5997 0.5624 0.5714 0.5000 0.5813 0.5481 0.5763 0.5230 0.5986 0.5608

000012

ELM 0.6275 0.6506 0.7035 0.6523 0.6005 0.5138 0.6479 0.5749 0.6319 0.6404
DELM 0.6728 0.6973 0.7000 0.7380 0.6485 0.5831 0.6733 0.6515 0.6738 0.6940
LSTM 0.5271 0.6758 0.5820 0.6313 0.6077 0.7102 0.5941 0.6680 0.5137 0.6784
RNN 0.5666 0.6898 0.6473 0.6833 0.5290 0.6065 0.5822 0.6424 0.5728 0.6836
KNN 0.5921 0.6492 0.6780 0.6351 0.5434 0.5569 0.6033 0.5934 0.6001 0.6423

LR 0.6686 0.6818 0.7354 0.6534 0.6551 0.6554 0.6929 0.6544 0.6708 0.6798
RF 0.6161 0.6846 0.6844 0.6735 0.6079 0.6092 0.6439 0.6397 0.6175 0.6790
DT 0.5935 0.6733 0.6747 0.6643 0.5558 0.5846 0.6095 0.6219 0.5997 0.6667

GBT 0.6289 0.6931 0.7080 0.6915 0.5955 0.6000 0.6469 0.6425 0.6344 0.6861
ABT 0.6048 0.6846 0.6987 0.6875 0.5409 0.5754 0.6098 0.6265 0.6154 0.6764
NB 0.4986 0.6181 0.6070 0.6821 0.3449 0.3169 0.4399 0.4328 0.5239 0.5956

LDA 0.6586 0.6535 0.7213 0.6227 0.6551 0.6246 0.6866 0.6237 0.6592 0.6513
QDA 0.6091 0.5601 0.6584 0.5202 0.6551 0.5538 0.6567 0.5365 0.6015 0.5596
SVC 0.6275 0.6945 0.6966 0.7011 0.6154 0.5846 0.6535 0.6376 0.6295 0.6863

000014

ELM 0.6452 0.6486 0.6743 0.6462 0.5791 0.5217 0.6231 0.5773 0.6461 0.6392
DELM 0.6166 0.7000 0.6481 0.6708 0.5029 0.5514 0.5663 0.6053 0.6161 0.6789
LSTM 0.6278 0.6541 0.6646 0.6530 0.5404 0.5416 0.5947 0.5883 0.6289 0.6458
RNN 0.6020 0.5893 0.6294 0.5614 0.5203 0.5053 0.5690 0.5310 0.6031 0.5831
KNN 0.5851 0.5729 0.6119 0.5367 0.4944 0.5217 0.5469 0.5291 0.5863 0.5691

LR 0.6295 0.6471 0.6610 0.6364 0.5508 0.5435 0.6009 0.5863 0.6305 0.6395
RF 0.6237 0.6229 0.6619 0.5980 0.5254 0.5497 0.5858 0.5728 0.6250 0.6174
DT 0.6295 0.6357 0.7039 0.6314 0.4633 0.5000 0.5588 0.5581 0.6316 0.6257

GBT 0.6295 0.6629 0.6480 0.6387 0.5876 0.6149 0.6163 0.6266 0.6300 0.6593
ABT 0.6409 0.6329 0.6604 0.6080 0.5989 0.5683 0.6281 0.5875 0.6415 0.6281
NB 0.5451 0.6000 0.5732 0.5946 0.3983 0.4099 0.4700 0.4853 0.5470 0.5859

LDA 0.6223 0.6600 0.6424 0.6448 0.5734 0.5807 0.6060 0.6111 0.6230 0.6541
QDA 0.5594 0.5729 0.5991 0.5466 0.3927 0.4193 0.4744 0.4745 0.5615 0.5615
SVC 0.6423 0.6600 0.6733 0.6533 0.5706 0.5559 0.6177 0.6007 0.6433 0.6523
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Table 10. Cont.

Code Model Validation
Acc

Test
Acc

Validation
P

Test
P

Validation
R

Test
R

Validation
F1

Test
F1

Validation
AUC

Test
AUC

000025

ELM 0.5156 0.6057 0.3599 0.5072 0.5481 0.7394 0.4345 0.6017 0.5235 0.6274
DELM 0.6662 0.6894 0.4686 0.5693 0.5091 0.4656 0.4880 0.5122 0.6233 0.6378
LSTM 0.5709 0.6353 0.4006 0.5470 0.5285 0.5528 0.4553 0.5491 0.5606 0.6219
RNN 0.6075 0.5891 0.4414 0.4880 0.5121 0.5475 0.4693 0.5093 0.5843 0.5823
KNN 0.5881 0.5943 0.4141 0.4966 0.5146 0.5106 0.4590 0.5035 0.5702 0.5807

LR 0.4602 0.5560 0.3593 0.4725 0.7531 0.8768 0.4865 0.6141 0.5314 0.6082
RF 0.6023 0.6539 0.4183 0.5654 0.4393 0.6092 0.4286 0.5864 0.5627 0.6466
DT 0.6051 0.6567 0.4325 0.5724 0.5230 0.5845 0.4735 0.5784 0.5852 0.6450

GBT 0.6051 0.6667 0.4330 0.5714 0.5272 0.6901 0.4755 0.6252 0.5862 0.6705
ABT 0.5881 0.6582 0.4118 0.5683 0.4979 0.6303 0.4508 0.5977 0.5662 0.6536
NB 0.3935 0.4879 0.2793 0.4291 0.4979 0.8204 0.3579 0.5635 0.4188 0.5420

LDA 0.5270 0.5759 0.3917 0.4830 0.7113 0.7500 0.5052 0.5876 0.5718 0.6042
QDA 0.6435 0.5787 0.4737 0.4586 0.4519 0.2535 0.4625 0.3265 0.5969 0.5258
SVC 0.5710 0.6667 0.4060 0.5671 0.5690 0.7289 0.4739 0.6379 0.5705 0.6768

5. Conclusions

This research proposed a hybrid method for the trend prediction of stocks based
on ELM and wavelet transform denoising. The raw data were first denoised based on
DWT, feature preprocessing was performed after denoising data, and then, the DELM
was trained based on the denoised data with the obtained features. Finally, the training
DELM was compared with the initial ELM model on a dataset of 400 stocks. The prediction
results greatly improved the values of the Acc and AUC metrics. The results fully proved
the superiority of the DELM, and also showed that wavelet transform could improve the
prediction ability of the ELM model. At the same time, the logical relationship between
DWT-based denoising and the labeling method was analyzed based on the continuous
trend, and logical explanations were provided for good results. Additionally, in order to
better assess the efficacy of the proposed DELM, the predictive results of the DELM for the
stocks were also compared with those of the 12 common algorithms, which the proposed
DELM method outperformed. The results confirmed the superiority of the proposed DELM
method as well. However, this paper does not investigate the influence of different wavelet
function denoising results on improving the accuracy of stock trend prediction in-depth,
which remains to be investigated by future research work.
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Appendix A

Table A1. The descriptions of related abbreviations.

Abbreviation Full Name Description

ELM Extreme Learning Machine Extreme learning machine model.
CWT Continuous wavelet transform Wavelet transform.
DWT Discrete wavelet transform Wavelet transform.

DELM Denoised ELM ELM model trained based on the denoised data.
LSTM Long Short-Term Memory Classifier of comparative experiment
RNN Recurrent Neural Network Classifier of comparative experiment
KNN k-Nearest Neighbors Classifier of comparative experiment

LR Logistic Regression Classifier of comparative experiment
RF Random Forest Classifier of comparative experiment
DT Decision Tree Classifier of comparative experiment

GBT Gradient Boosting Classifier of comparative experiment
ABT AdaBoost Classifier of comparative experiment
NB Naive Bayes Classifier of comparative experiment

LDA Linear Discriminant Analysis Classifier of comparative experiment
QDA Quadratic discriminant analysis Classifier of comparative experiment
SVC Support Vector Machine classifier Classifier of comparative experiment
RBF Radial Basis Function Activation function
Acc Accuracy Statistical Metric
R Recall Statistical Metric
P Precision Statistical Metric
F1 F1 score Statistical Metric

AUC Area under the Curve Statistical Metric

Table A2. Part of the stocks of balance information of positive and negative samples on the corresponding training dataset,
validation dataset, and test dataset. PN denotes the number of positive samples, NN denotes the number of negative
samples, and PN% is the ratio of positive samples to the total number of samples in the corresponding dataset.

Code Training PN Training NN PN% Validation PN Validation NN PN% Test PN Test NN PN%

000001 1460 1802 0.45 402 297 0.58 347 352 0.50
000005 1479 1584 0.48 259 397 0.39 301 356 0.46
000007 1586 1292 0.55 289 328 0.47 270 347 0.44
000012 1652 1643 0.50 403 303 0.57 325 382 0.46
000014 1604 1659 0.49 354 345 0.51 322 378 0.46
000025 1743 1542 0.53 239 465 0.34 284 421 0.40
000026 1788 1517 0.54 428 280 0.60 343 366 0.48
000031 1624 1544 0.51 308 371 0.45 322 357 0.47
000032 1729 1418 0.55 338 336 0.50 372 303 0.55
000048 1607 1593 0.50 330 356 0.48 304 382 0.44
000050 1603 1572 0.50 378 302 0.56 365 316 0.54
000055 1754 1566 0.53 341 371 0.48 249 463 0.35
000056 1579 1587 0.50 338 341 0.50 293 386 0.43
000061 1533 1639 0.48 339 341 0.50 311 369 0.46
000065 1702 1530 0.53 391 302 0.56 311 382 0.45
000068 1531 1406 0.52 269 360 0.43 233 397 0.37
000090 1580 1701 0.48 368 335 0.52 344 360 0.49
000150 1578 1482 0.52 300 356 0.46 220 436 0.34
000151 1788 1551 0.54 337 378 0.47 373 343 0.52
000155 1583 1333 0.54 360 265 0.58 279 346 0.45
000158 1708 1561 0.52 366 334 0.52 341 360 0.49
000402 1690 1630 0.51 404 308 0.57 363 349 0.51
000404 1682 1624 0.51 423 286 0.60 328 381 0.46
000411 1720 1332 0.56 320 334 0.49 339 315 0.52
000420 1816 1481 0.55 396 310 0.56 283 424 0.40
000422 1762 1516 0.54 374 329 0.53 407 296 0.58
000430 1686 1486 0.53 370 310 0.54 358 322 0.53
000507 1677 1625 0.51 405 303 0.57 347 361 0.49
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Table A2. Cont.

Code Training PN Training NN PN% Validation PN Validation NN PN% Test PN Test NN PN%

000509 1557 1425 0.52 311 328 0.49 255 384 0.40
000519 1591 1588 0.50 318 363 0.47 364 318 0.53
000520 1411 1445 0.49 189 423 0.31 293 319 0.48
000523 1777 1457 0.55 344 349 0.50 267 426 0.39
000524 1739 1469 0.54 337 351 0.49 345 343 0.50
000526 1450 1504 0.49 317 316 0.50 324 309 0.51
000530 1728 1567 0.52 371 335 0.53 329 378 0.47
000531 1682 1557 0.52 322 372 0.46 341 354 0.49
000532 1730 1532 0.53 342 357 0.49 365 334 0.52

Table A3. The results of ADF test with critical values of 1% (−3.43), 5% (−2.86), and 10% (−2.57),
respectively. “Used lag” denotes the number of lags used. “N of observations” represents the number
of observations used for the ADF regression and calculation of the critical values.

Stock Code Test Statistic p Value Used Lag N of Observations

000001 −11.40 7.74 × 10−21 17 4642
000005 −10.77 2.37 × 10−19 25 4350
000007 −14.24 1.52 × 10−26 11 4100
000012 −15.30 4.32 × 10−28 11 4696
000014 −13.10 1.71 × 10−24 22 4639
000025 −9.56 2.48 × 10−16 31 4662
000026 −12.87 4.93 × 10−24 14 4707
000031 −10.32 3.00 × 10−18 31 4494
000032 −10.68 3.98 × 10−19 32 4463
000048 −7.85 5.75 × 10−12 32 4539
000050 −10.04 1.55 × 10−17 32 4503
000055 −10.91 1.11 × 10−19 32 4711
000056 −14.87 1.64 × 10−27 11 4512
000061 −14.81 2.02 × 10−27 13 4518
000065 −9.71 1.03 × 10−16 32 4585
000068 −14.96 1.26 × 10−27 12 4183
000090 −9.55 2.55 × 10−16 28 4659
000150 −9.68 1.23 × 10−16 26 4345
000151 −9.70 1.06 × 10−16 32 4737
000155 −13.01 2.59 × 10−24 15 4150
000158 −14.13 2.33 × 10−26 17 4652
000402 −10.29 3.67 × 10−18 32 4711
000404 −9.90 3.30 × 10−17 32 4691
000411 −10.43 1.65 × 10−18 31 4328
000420 −9.56 2.48 × 10−16 31 4678
000422 −9.04 5.06 × 10−15 31 4652
000430 −10.57 7.22 × 10−19 29 4502
000507 −14.42 7.95 × 10−27 13 4704
000509 −7.83 6.45 × 10−12 31 4228
000519 −14.87 1.64 × 10−27 10 4531
000520 −16.16 4.50 × 10−29 12 4067
000523 −10.40 1.93 × 10−18 31 4588
000524 −12.33 6.40 × 10−23 16 4567
000526 −9.02 5.79 × 10−15 31 4188
000530 −15.52 2.26 × 10−28 18 4689
000531 −8.81 2.04 × 10−14 32 4595
000532 −10.59 6.70 × 10−19 30 4629
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