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Abstract: Complex modeling has received significant attention in recent years and is increasingly used
to explain statistical phenomena with increasing and decreasing fluctuations, such as the similarity
or difference of spike protein charge patterns of coronaviruses. Different from the existing covariance
or correlation coefficient methods in traditional integer dimension construction, this study proposes
a simplified novel fractional dimension derivation with the exact Excel tool algorithm. It involves the
fractional center moment extension to covariance, which results in a complex covariance coefficient
that is better than the Pearson correlation coefficient, in the sense that the nonlinearity relationship can
be further depicted. The spike protein sequences of coronaviruses were obtained from the GenBank
and GISAID databases, including the coronaviruses from pangolin, bat, canine, swine (three variants),
feline, tiger, SARS-CoV-1, MERS, and SARS-CoV-2 (including the strains from Wuhan, Beijing, New
York, German, and the UK variant B.1.1.7) which were used as the representative examples in this
study. By examining the values above and below the average/mean based on the positive and
negative charge patterns of the amino acid residues of the spike proteins from coronaviruses, the
proposed algorithm provides deep insights into the nonlinear evolving trends of spike proteins for
understanding the viral evolution and identifying the protein characteristics associated with viral
fatality. The calculation results demonstrate that the complex covariance coefficient analyzed by this
algorithm is capable of distinguishing the subtle nonlinear differences in the spike protein charge
patterns with reference to Wuhan strain SARS-CoV-2, which the Pearson correlation coefficient may
overlook. Our analysis reveals the unique convergent (positive correlative) to divergent (negative
correlative) domain center positions of each virus. The convergent or conserved region may be critical
to the viral stability or viability; while the divergent region is highly variable between coronaviruses,
suggesting high frequency of mutations in this region. The analyses show that the conserved center
region of SARS-CoV-1 spike protein is located at amino acid residues 900, but shifted to the amino
acid residues 700 in MERS spike protein, and then to amino acid residues 600 in SARS-COV-2 spike
protein, indicating the evolution of the coronaviruses. Interestingly, the conserved center region of
the spike protein in SARS-COV-2 variant B.1.1.7 shifted back to amino acid residues 700, suggesting
this variant is more virulent than the original SARS-COV-2 strain. Another important characteristic
our study reveals is that the distance between the divergent mean and the maximal divergent point
in each of the viruses (MERS > SARS-CoV-1 > SARS-CoV-2) is proportional to viral fatality rate. This
algorithm may help to understand and analyze the evolving trends and critical characteristics of
SARS-COV-2 variants, other coronaviral proteins and viruses.

Keywords: fractional complex moment; SARS-CoV-2; coronaviruses; spike protein sequence; pearson
correlation coefficient; semicovariance coefficient; positive-correlative and negative-correlative domains
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1. Introduction

Complex algorithms are used to analyze real-world implementations, i.e., it comes as
the trusted analytic solution, but typically tends to have challenges in software implemen-
tation complexity requiring simpler software solution by using complex theory. Complex
algorithms have received significant attention in recent years and are increasingly used to
solve real-world problems, among which are the combination of two or more algorithms in-
volving numerical algorithms, analytic calculation [1], and other computational techniques
such as artificial intelligence [2–4], gene analysis systems [3] or gene simulation [4].

The Fractal DNA hypothesis (FDH) was first introduced by at least three groups
independently in 1992 [5]. The arithmetic data from the DNA sequences by counting the
number of intervening bases from a specific base (A) to the next one, etc. (inter-event data),
are characterized by a dynamical process whereby long-range (fractal) correlations are
observed. Being different from the traditional DNA hypothesis, RNA and protein analysis
is based on fragment length between the domains with electrical charges. Especially,
it emphasizes the influences on the behaviors of charges caused by the difference of
information reception and lengths of expression or neighbor status observing the existence
of fractal structure in stable DNA [6]. Some work around FDH on RNA has been reported
recently [7] where the genetic sequences were converted to binary numbers, purines
converted to −1 and pyrimidines converted +1. The dimension order was found to be
SARS-CoV-1 > SARS-CoV-2 > MERS, which differs from the time evolution order. Thus,
we wish to further examine the similar electrical charge specific (+1 for positive amino
acid, −1 for negative counterpart, 0 for neutral one, Inter-event data) relationship among
the coronaviruses. The SARS-CoV-2 virus is among the longest positive single-stranded
RNA virus, and its protein folding/tertiary structure and functions are closely related to
the charges of the amino acid residues. It is therefore important to examine the charging
structure/patterns or nonlinear correlation patterns of the spike protein of SARS-CoV-2
as compared to the spike proteins from other coronaviruses to understand viral evolution
and the characteristics of the spike proteins associated with viral virulence and fatality.

The FDH does not distinguish the values above or below the mean (average) of the
DNA fragment length between the gene signatures. Our algorithm used in this study
focuses on distinguishing the values above and below the mean (average) to calculate the
semicovariance coefficient of the spike protein sequences from coronaviruses, including
SARS-CoV2. The higher value above the mean indicates higher similarity and increased
evolutionary conservation, while the lower value below the mean indicates more dissimi-
larity and increased variations/mutations. Analysis with our algorithm can be carried out
rapidly by running the Microsoft Excel sheet tool. In our study, the traditional Pearson
correlation coefficient for the spike protein sequences of coronaviruses [8] is also calculated
for comparison [9]. By imaging the charge similarity covariance as a weight (gravity or
Coulomb force) on the rod of the axis, the weight center of semicovariance coefficient is
calculated to examine the evolving weight center (both convergent (positive correlative)
center/region and divergent (negative correlative) center/region) shifting pattern of the
spike protein sequences of coronaviruses [10] and identify spike proteins’ characteristics
associated with viral virulence and fatality.

2. Materials and Methods
2.1. Coronaviruses and Spike Protein Sequences

The coronavirus spike protein sequences used in this study were obtained from the
NCBI GenBank and the GISAID databases, including SARS-CoV-2 (the sequences of the
virus strains isolated in Wuhan, Beijing Xinfadi wholesale market, Germany, New York, UK
(Wales), and New York Zoo tiger), SARS-CoV-1, Middle East respiratory syndrome (MERS),
bat coronavirus (RaTG13), pangolin coronavirus, feline coronavirus, canine coronavirus,
and swine coronaviruses (Swine Transmissible gastroenteritis virus (Swine-stomach), swine
enteric coronavirus (Swine-Ent), and porcine respiratory coronavirus (Swine-Res)). The
sequence IDs from the GenBank and GISAID databases are listed in Table 1.
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Table 1. Pearson and Semicovariance Coefficient Analysis of Spike Proteins between Wuhan strain SARS-CoV-2 * and other Coronaviruses.

Pearson Coefficient Analysis

Pearson Rank 2 4 3 7 6 10 9 5 1 8 1 1 1 1

Source of coronaviruses Pangolin SARS-
CoV1 Bat RaTG13 Canine Swine-

Stomach
Swine-

Res MERS Swine-Ent CoV2-UK
(B117) Feline NY-Tiger CoV2-

Beijing CoV2-NY CoV2-
German

Genbank ID/GISAID ID PCoV_GX-
P4L NC_004718 QHR63300.2 AEQ61968.1 AQT01349 KR270796.1 NC_019843.3 KR061459.1 EPI_ISL_744131 ASB16887.1 MT365033.1 EPI_ISL_46924 QKT21302.1 QJC19431.1

Year of viral isolation 2020 2003 2020 2012 2016 2015 2012 2015 2021 2017 2020 2020 2020 2020

Maximum Pearson Value 0.4911 0.4533 0.4727 0.0810 0.0929 0.0655 0.0684 0.1026 0.9043 0.0748 0.9978 0.9978 0.9978 0.9978

Offset for the above Max # −6 −18 −4 179 154 −35 74 86 −4 161 0 9 0 0

Semicovariance coefficient analysis

Convergent-
Covariance Rank 2 4 3 8 7 10 5 6 1 9 1 1 1 1

Convergent Correlation 0.5728 0.5421 0.5693 0.2048 0.2190 0.1813 0.2240 0.2228 0.9192 0.2037 0.9981 0.9981 0.9981 0.9981

Divergent-
Covariance Rank 2 3 4 8 5 7 9 6 1 5 1 1 1 1

Divergent Correlation 0.0809 0.0887 0.0967 0.1396 0.1411 0.1271 0.1652 0.1256 0.0145 0.1222 0.0003 0.0003 0.0003 0.0003

Series (conserved region) 900 800 700 600

Center Convergence
(conserved center) 906 905 904 801 784 751 737 727 702 683 658 658 658 658

Center Divergence 318 338 314 691 657 650 698 654 432 635 614 614 614 614

Maximal convergent
position 1262 1262 1262 983 983 1262 983 983 1262 278 1262 1262 1262 1262

Maximal divergent
position 191 309 558 1107 1107 775 214 49 97 843 614 614 614 614

Convergent-rank 4 10 2 8 9 5 3 7 1 6 1 1 1 1

Number convergent
irrelevant positions 76 103 67 81 101 78 75 77 57 79 31 31 31 31

Divergent-rank 3 9 2 8 10 5 4 6 1 7 1 1 1 1

Number divergent
irrelevant positions 103 73 106 83 68 98 97 94 109 87 123 123 123 123

Over all rank 2.6 6.0 2.8 7.8 7.4 7.4 6.0 6.0 1.0 7.0 1.0 1.0 1.0 1.0

* GenBank ID for spike protein of Wuhan-Hu-1 SARS-CoV-2: NC_045512.2. The spike protein of Wuhan-Hu-1 virus is used as a reference for the analysis and comparison with other listed coronaviruses in the
Table; # Offset for the above Max means how much the compared sequence was shifted up or down to obtain the maximum Pearson correlation. For example, the first 6 amino acids of SARS-CoV-2 were cut out
from Wuhan strain to line up with pangolin strain sequence to obtain the maximum Pearson so that it is −6. On the other hand, the first 74 amino acids of MERS were cut out to line up with Wuhan SARS-CoV-2
sequence so that it is +74.
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2.2. Hypo, Hyper or Gauss Variances and Covariance

The complex parameter is a measure of fluctuation-term memory time series. It relates
to the autocorrelation time series, and the derivatives of Laplace transformation (frequency
spectrum) time series or the momentum generation function at the origin [11]. Studies
involving the complex parameter were originally developed by Jerome Cardan (1501–1576)
for solving algebra equations.

In order to calculate the fractional version of the center momentum, we need to
first generalize the binomial formula from integer domain to real domain, as described
previously [12]. Here, we only show the formula:

µk = E(ξ − E)k = E

(
∞

∑
i=0

(
k
i

)
(−1)iξk−i(Eξ)i

)
(1)

=
∞

∑
i=0

(
k
i

)
(−1)iE

(
ξ i−k

)
Eiξ (1 < k < 3) (2)

when k = 2, it is Gauss variance; k < 2 is hypo version; k > 2 is hyper version. Factorial
of fractional k is calculated by Gamma function. From which we can also have the covari-
ance counterpart:

ν2k = E(ξ − Eξ)k(η − Eη)k (3)

= E(
∞

∑
i=1

(
k
i

)
(−1)iξk−i(Eξ)i

∞

∑
i=1

(
k
i

)
(−1)iηk−i(Eη)i) (4)

ρ =
ν(real) + i × ν(img)

µξ × µη
(5)

where ν(real) is the positive covariance, ν(img) is the negative covariance. Define the basic
rectified linear unit as ReLU(X) = max(0,X), we can have the simplified semicovariance
related back to the traditional Pearson correlation as below:

Pearson(x, y) = E((X−EX)(Y−EY))
µξ×µη

= E(ReLU((X−EX)(Y−EY)))
µξ×µη

− E(ReLU(−(X−EX)(Y−EY)))
µξ×µη

= ν(real)/(µξ × µη)− ν(img)/
(
µξ × µη

) (6)

In sum, the Pearson coefficient is the difference between the positive part (the first and
the third quadrants) and the negative part (the second and the fourth quadrants) which
are the proposed semicovariance coefficients. The product of two differences (the two
values above the mean and the two values below the mean) on the same side of the mean
value will be the real part, or the convergent part so that we can call it positive correlation
covariance coefficient. The product that is on the opposite side of the mean will be the
imaginary part, or the divergent part so that we can call it negative correlation covariance
coefficient [13].

3. Results
3.1. Excel Calculations of Semicovariance for Spike Proteins from SARS-CoV-2 and
Other Coronaviruses

To compare and prove the usefulness of the simplified complex variances, we compare
the correlation of SARS-CoV-2 viral spike protein sequence with other coronavirus spike
protein sequences [14]. Since Excel is not capable of handling the imaginary number, we
simplify the calculation with integer power, but separate the positive and negative covari-
ance signs [15]. As coronaviral spike proteins have different electrical charge levels [16],
we normalize the covariance by the variance, respectively just as the Pearson calculation
does [17]. We calculated the sequences of the spike proteins [18] and plotted the curve
starting from the N-terminus to the C-terminus. By using the moving window (a typical
peptide) of 16 neighborhood amino acid residues [19], we calculated the covariance and
average/mean over the same period of sequences to make the curve visually smooth for
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easier comparisons [20]. We selected the window size 16 to maximize the information we
can extract from the charge even data, as it was the boundary between oligopeptide and
polypeptide for the number of the amino acids.

Here are the steps for Excel sheet calculations:

(1) Collect data from GenBank and GISAID, align up the spike position, and note the
similarity and difference.

(2) Convert the aligned sequence into charge data, i.e., positive is +1; negative is −1; and
the rest is 0.

(3) Calculate the Pearson coefficient between each trace and the baseline trace (Wuhan strain).
(4) Find the maximum Pearson value and the corresponding amount of shifting.
(5) Line up the trace by removing the extra shift points or padding with the zeros.
(6) Calculate the mean charge value with moving window size of 16.
(7) Calculate the difference to the mean value for each point in each trace.
(8) Calculate the semicovariance by separating the positive and negative product values.
(9) The positive part is real value corresponding to convergent data for classifying the series.
(10) The negative part is imaginary value corresponding to divergent data for fatality reasoning.
(11) Smooth out the curve by moving average with window size 16 for better visual display.
(12) Summarize the second page (semi) and the third page (Pearson) in the first page of

the sheet.

We defined the conserved (and diverged) centers or regions of the spike proteins for
different coronaviruses. For example, the conserved centers of SARS-CoV-1, pangolin and
bat coronaviruses are located at the amino acid residues 905, 906 and 904, respectively.
These viral spike proteins are set as the 900 series (Table 1). The conserved center is defined
as the weight center of the spike protein sequence at which the charge pattern before and
after those points is the same. The conserved center for SARS-CoV-2 is at the amino acid
residue 658, and the conserved center for feline coronavirus is at the amino acid residue
683 (Table 1). Thus, the SARS-CoV-2 and feline coronaviral spike proteins are defined
as the 600 series. The conserved centers for MERS and three swine coronaviruses range
from amino acid residues 727 to 784, hence they are defined as the 700 series. Therefore,
as the latest SARS-CoV-2 variant, B.1.1.7 from the UK, has its conserved center at 702,
this suggests that the charge pattern of the variant B.1.1.7 spike protein has evolved to
700 series from 600 series and that the variant B.1.1.7 may be more virulent or deadly than
the original SARS-COV-2 strain.

Figures 1–6 are the calculation results from our algorithm of semicovariance coefficient
for spike protein of the Wuhan SARS-CoV-2 strain in comparison with spike proteins of
other coronaviruses listed in Table 1. Figures 7–10 are the corresponding scatter graphs.
Figure 11 illustrates the center and maximum positions listed in Table 2.

The spike protein sequences were analyzed with index order from animal coron-
aviruses (pangolin, bat, canine, swine, feline, and tiger) and human coronaviruses (SARS-
CoV-1, MERS, and SARS-CoV-2) [21]. Figure 1 presents the calculation results of the spike
proteins for human coronaviruses including 600 (SARS-CoV-2)//700 (MERS)//900 (SARS-
CoV-1) series of spike proteins semicovariance selected based on Table 1. Figure 2 presents
the analysis for coronaviruses whose conserved center is located from the spike protein
amino acid residues 900 to 999 (900 series) as described above. Figure 3 is for 800 and
700 series. Figure 4 is for 700 and 600 series. Figure 5 is for 600 series. Figure 6 is for 600
and 700 series.
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Figure 1. Semicovariance coefficient among the spike proteins from human coronaviruses SARS-CoV-2, SARS-CoV-1 and
MERS. The spike protein sequence of Wuhan SARS-CoV-2 strain is used as a reference for comparison with the spike
proteins of SARS-CoV-2 viral strain isolated from Beijing Xinfadi wholesale market (carrying D614G mutation), SARS-CoV-1,
and MERS. Mathematically speaking, the diagram/curve above the X-axis is the positive correlation (convergent or conv in
the figure). The higher the value, the greater the similarity of charge patterns between the compared viral spike proteins.
SARS-CoV2 strain isolated in Beijing Xinfadi wholesale market is the same as the SARS-CoV-2 strain isolated in Wuhan
throughout the entire sequence except D614G mutation. SARS-CoV-1 shows a similar pattern with SARS-CoV-2 after amino
acid residue 700; while MERS shows a similar pattern with SARS-CoV-2 only around the amino acid sequence 1000. The
second similar region of the MERS spike protein sequence with SARS-CoV-2 lies around amino acid residue 200. The
diagram/curve below the X-axis is the negative correlation (divergent or dive in the figure). The lower the value, the more
oppositely charged, thus the greater the disdissimilarity between the compared viruses. MERS has more opposite charges
around amino acid position 200, 800 and 1200 as compared to SARS-CoV-2; while SARS-CoV-1 has a few opposite charges
around amino acid position 200 and 450 as compared to SARS-CoV-2, indicating more similarity between the spike proteins
from SARS-CoV-1 and SARS-CoV-2 but not between SARS-CoV-2 and MERS.

Figure 2. Semicovariance coefficient of SARS-CoV-2 spike protein with the spike proteins from SARS-CoV-1, pangolin and
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bat coronaviruses (900 series). The diagram/curve above the X-axis is positive correlation (convergent or conv in the figure).
The higher the value, the greater the similarity of the charge patterns between the compared viruses. The spike protein of
SARS-CoV-1 is similar to the spike protein of Wuhan SARS-CoV-2 from amino acid residues 700 onwards, as well as the spike
proteins from pangolin and bat coronavirus. The spike proteins of SARS-CoV-1, bat and pangolin coronaviruses overlap
each other more after amino acid residues 700. The diagram/curve below the X-axis is negative correlation (divergent or
dive in the figure). The lower the value, the more oppositely charged, thus the more dissimilarity between the compared
viruses. The spike proteins of the pangolin and the bat peak around position 200, suggesting that the charge pattern is not
similar at this region or the variations/mutations occurred more at this region between SARS-CoV-2 and the pangolin/bat
coronaviruses. Similarly, SARS-CoV-1 peaks around 200 and 450 amino acid residue positions, suggesting that the charge
patterns are different between SARS-CoV-1 and SARS-CoV-2 at this region or the mutations have made this region different
between the two viruses.

Figure 3. Semicovariance coefficient of SARS-CoV-2 spike protein with the spike proteins from MERS, canine and swine
coronaviruses (700/800 series). The diagram/curve above the X-axis is the positive correlation (convergent or conv in
the figure) between the compared viral spike proteins. The higher the value, the greater the similarity of charge patterns
among the compared viruses. Canine and swine transmissible gastroenteritis virus (Swine-Stomach) are similar to Wuhan
SARS-CoV-2 strain from the amino acid residue 1000 onwards, as well as porcine respiratory coronavirus (Swine-Res), but
with less similarity. The diagram/curve below the X-axis is the negative correlation (divergent or dive in the figure). The
lower the value, the more oppositely charged and the greater the dissimilarity between the compared viruses are. The
spike proteins from canine, swine transmissible gastroenteritis virus (Swine-Stomach) and Swine-Res coronaviruses have
opposite charge patterns at different positions. The spike proteins from canine and Swine-Res coronaviruses peak around
800, and the one from Swine-Stomach coronavirus peaks around amino acid residue positions 450 and 1150.
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Figure 4. Semicovariance coefficient of SARS-CoV-2 spike protein with the spike proteins from MERS, swine and feline
coronaviruses (700/600 series). The diagram/curve above the X-axis is the positive correlation (convergent or conv in
the figure). The higher the value, the greater the similarity of charge patterns between the compared viruses. The spike
proteins from MERS and Swine-Ent coronaviruses are similar to Wuhan SARS-CoV-2 around amino acid residues 1000;
while the spike protein from feline coronavirus is not similar to Wuhan SARS-CoV-2. The diagram/curve below the X-axis
is the negative correlation (divergent or dive in the figure). The lower the value, the more oppositely charged, the greater
the dissimilarity between the compared viruses. The spike proteins from MERS, Swine-Ent and feline coronaviruses have
opposite charge patterns at different positions. The spike proteins of feline and Swine-Ent coronaviruses peak around 400
and the spike protein of MERS peaks around amino acid residue positions 750 and 1250.

Figure 5. Semicovariance coefficient of Wuhan SARS-CoV-2 spike protein with the spike proteins of SARS-CoV-2 isolated in
Beijing, New York, Germany, and New York Zoo tiger (600 series). The diagram/curve above the X-axis is the positive
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correlation (convergent or conv in the figure). The higher the value, the greater the similarity of charge patterns between
the compared viruses. SARS-CoV-2 isolated in Beijing Xinfadi wholesale market, New York, Germany and the New
York zoo tiger overlap and are almost identical to Wuhan SARS-CoV-2. The diagram/curve below the X-axis is the
negative correlation (divergent or dive in the figure). The lower the value, the more oppositely charged and the greater the
dissimilarity between the compared viruses are. SARS-CoV-2 spike proteins from Beijing, New York, Germany and the
New York zoo tiger carry D614G mutation and have the only opposite charge at amino acid residue 614 position (D614G
mutation as reported in the literature).

Figure 6. Semicovariance coefficient of Wuhan SARS-CoV-2 spike protein with the spike proteins of SARS-CoV-2 isolated in
UK (variant B.1.1.7) (700 series) and Germany (600 series). The diagram/curve above the X-axis is the positive correlation
(convergent or conv in the figure). The higher the value, the greater the similarity of charge patterns between the compared
viruses. SARS-CoV-2 variants isolated in the UK (Wales) (B.1.1.7) and Germany are almost identical to Wuhan SARS-
CoV-2, except the beginning part of B.1.1.7 is mutated back to SARS-COV-1. The diagram/curve below the X-axis is the
negative correlation (divergent or dive in the figure). The lower the value, the more oppositely charged and the greater the
dissimilarity between the compared viruses are. The UK variant B.1.1.7 has not only the opposite charge around 600 amino
acid residue position (D614G mutation as reported in the literature) but also at the old one around 100 (SARS-CoV-1) and at
a new position (1000). The mutation sites occur towards both sides of the 600 series. It flips back more like bat coronavirus
as well. The gaps between the mutation sites are as follows: 69 = 3 × 23; 73; 355 = 3 × 71; 69 = 3 × 23; 44 = 2 × 2 × 11; 67;
35 = 5 × 7; 266 = 2 × 7 × 19; 136 = 2 × 2 × 2 × 17; 155 = 5 × 31. There are three groups of prime numbers involved. The
first group is 2,3,5, which belongs to cusps modular (Langlands) prime number. It might be related to the fractal shell-like
growing structure. The second group is 7, 11, 19, 23, which belongs to 4k + 3 prime number, also called the Gaussian prime
number. The latter is a closed field number on a complex plane, meaning that the numbers form a total ordered chain. It
might be attribute to the 3D chain structure of the spike protein. The third group is 31, 67, 71, 73, which belongs to the prime
numbers of binary digits. It might be attributed to the long folding structure of the protein.
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Figure 7. Charge scatter patterns for spike proteins of pangolin, bat and tiger coronaviruses relative to that of Wuhan strain



Entropy 2021, 23, 512 11 of 20

SARS-CoV-2: (A) Charge scatter plot of Cartesian coordinates with four quadrants is used to display values for two variables
for a set of data. The data are displayed as a collection of points, each having the value of one variable (amino acid charge
value from Wuhan strain sequence) to determine the position on the horizontal axis (for Wuhan strain) and the value of
the other variable (amino acid charge value from spike protein of pangolin coronavirus) determining the position on the
vertical axis (for other). A scatter plot can suggest various kinds of correlations between variables with a certain linear or
nonlinear pattern. Correlations may be positive (rising), negative (falling), or neither (uncorrelated). If the pattern of dots
slopes from lower left to upper right, it indicates a positive correlation between the variables being studied. If the pattern of
dots slopes from upper left to lower right, it indicates a negative correlation. If the dots are continuously connected one after
another, it is a simple linear relationship. If the dots form a few islands, it is the nonlinear pattern. The island on the map
means there is a domain of related charge event data that is highly correlated within the domain only, but independent from
other domains. If both the patterns are there, it is the mixed domain of linear and nonlinear patterns. If within the islands, it
is linear, it can be called local linear, globally nonlinear, or piece wised linear. It means only a particular charged piece of the
entire sequence is linear correlated within that piece. If the island is viewed as a super dot, and super dots forming a linear
relationship, it is called as global linear and local nonlinear. It means the specially charged pieces of the entire sequence are
linearly correlated among the pieces. Each piece has its unique electro-biological functions. The first and third quadrants are
the pieces where Wuhan strain sequence has the same charge as the pangolin’s. The second and fourth quadrants are the
pieces where the Wuhan sequence has the opposite charge to the pangolin viral spike protein. (B) Charge scatter pattern of
spike protein from bat coronavirus relative to that of Wuhan strain SARS-CoV-2. (C) Charge scatter pattern of spike protein
from the coronavirus isolated from the New York Zoo tiger relative to that of Wuhan strain SARS-CoV-2. The charge pattern
is identical to Figure 8A–C, indicating the tiger virus was transmitted from human SARS-CoV-2 strain.

Figure 8. Cont.
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Figure 8. Charge scatter patterns for spike proteins of SARS-CoV-2 strains isolated from various locations relative to that of
Wuhan strain SARS-CoV-2. The first and third quadrants of the graphs are the pieces where Wuhan strain sequence has the
same charge as the compared sequence. The second and fourth quadrants are the pieces where Wuhan strain sequence has
the opposite charge to the compared spike protein sequence. (A) Charge scatter pattern of spike protein from SARS-CoV-2
strain isolated in German strain relative to that of Wuhan strain SARS-CoV-2. (B) Charge scatter pattern of spike protein
from SARS-CoV-2 strain isolated in New York relative to that of Wuhan strain SARS-CoV-2. (C) Charge scatter pattern of
spike protein from SARS-CoV-2 strain isolated in Beijing wholesale market relative to that of Wuhan strain SARS-CoV-2.
(D) Charge scatter pattern of spike protein from UK variant B.1.1.7 relative to that of Wuhan strain SARS-CoV-2. There is
significant dissimilarity between Wuhan strain SARS-CoV-2 and UK variant B.1.1.7 as compared to panels (A–C).
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Figure 9. Charge scatter patterns for spike proteins of SARS-CoV-1 and MERS relative to that of Wuhan SARS-CoV-2
strain. The first and third quadrants of the graphs are the pieces where Wuhan strain sequence has the same charge as the
compared sequence. The second and fourth quadrants are the pieces where Wuhan strain sequence has the opposite charge
to the compared spike protein sequence. (A) Charge scatter pattern of spike protein from SARS-CoV-1 relative to that of
Wuhan SARS-CoV-2 strain. The pattern shows both linear and nonlinear relationship. (B) Charge scatter pattern of spike
protein from MERS relative to that of Wuhan SARS-CoV-2 strain. The pattern shows a nonlinear relationship, indicating a
strong dissimilarity between MERS and Wuhan strain SARS-CoV-2.
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Figure 10. Cont.
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Figure 10. Charge scatter patterns of spike proteins from animal coronaviruses relative to that of Wuhan strain SARS-CoV-2.
The first and third quadrants of the graphs are the pieces where Wuhan strain sequence has the same charge as the compared
sequence. The second and fourth quadrants are the pieces where Wuhan strain sequence has the opposite charge to the
compared spike protein sequence. (A) Charge scatter pattern for the coronavirus of swine stomach disease relative to that of
Wuhan strain SARS-CoV-2. (B) Charge scatter pattern for coronavirus of swine respiratory disease relative to that of Wuhan
strain SARS-CoV-2. (C) Charge scatter pattern for coronavirus of swine enteritis relative to that of Wuhan strain SARS-CoV-2.
(D) Charge scatter pattern for feline coronavirus relative to that of Wuhan strain SARS-CoV-2. (E) Charge scatter pattern for
canine coronavirus relative to that of Wuhan strain SARS-CoV-2. The above patterns show a nonlinear relationship between
these viral spike proteins and Wuhan strain spike protein, indicating strong dissimilarity between them.
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Figure 11. Charge distance illustration for SARS-CoV-1 relative to SARS-CoV-2. The maximal divergent point is defined as
the position where the negative semicovariance before been smoothed (we smoothed Figures 1–6 for easier comparison) that
obtains the peak value. The divergent center is defined as the position where the center of the charge (related to Coulomb
force) of the entire sequence landed on (as if all the charges are originated from that one point). The distance (338−309 = 29)
between these two positions (after beingbeen normalized) is proportional to the shift distance (18) between SARS-CoV-1 and
the SARS-CoV-2 (Wuhan baseline). It is also proportional to the fatality (9.56%) of the virus (SARS-CoV-1) as seen in Table 2.

Table 2. Fatality Rate Related to Sequence Structures’ Pearson Correlation Coefficients.

Coronaviruses SARS-CoV-1 MERS SARS-CoV-2

Fatality Rate 9.56% * 34.4% * 2.21% *

Offset Value for the Max Pearson 18 74 9

Correlation to Offset 0.9981

Coulomb Center to Max Force Ratio 338/309 = 1.094 698/214 = 3.262 614/614 = 1.000

Correlation to Divergence 0.9958
* Fatality rate obtained from the World Health Organization (WHO) website.

3.2. Pearson and Semicovariance Coefficient Analysis of Spike Proteins from Coronaviruses

Table 1 compares the Pearson correlation coefficient analysis with semicovariance
coefficient analysis for coronaviral spike proteins. From Table 1, it shows that the Pearson
correlation coefficient only reflects the variation after the cancellation of up and down cor-
relation [22]; however, our semicovariance coefficient reflects the direction of the variations
before the cancellation of correlation [23].

To visually examine the nonlinear correlation relationship between Wuhan strain
SARS-CoV-2 and the rest of the coronaviruses, we further plotted scatter graphs where
the X-axis is the charge variation over the 16 neighborhood amino average of the Wuhan
strain of SARS-CoV-2, and the Y-axis is the charge variation over the 16 neighborhood
amino average of the respective virus (Figures 7–10). It can be seen that some of them have
nonlinear relationships. The Pearson correlation may not be good enough to depict all of
them. The second quadrant and fourth quadrant represent the strong mutation part where
the charge is reversed, the first quadrant and the third quadrant are the weak mutation
part where the charge is not reversed (Figures 7–10).

It can be seen that there are a combination of linear and nonlinear relationships in
Figure 7A,B; while Figure 7C shows a linear relationship. Figure 8A–C show a linear
relationship for the scatter patterns of the spike proteins from the viral strains isolated
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in German, New York and Beijing relative to that of the Wuhan strain, indicating a high
similarity. Figure 7C is identical to those of Figure 8A–C, suggesting that the same strain
of the SARS-CoV-2 was transmitted from human to the New York Zoo tiger. All of these
viral strains carry the D614G mutation in the spike protein. However, Figure 8D shows the
UK variant B.1.1.7 vs. the Wuhan strain and there is a combination of linear and nonlinear
relationships between them, indicating that the mutations in B.1.1.7 result in amino acid
changes with opposite charges as compared to the Wuhan strain. Figure 9A shows a
combination of linear and nonlinear relationships between SARS-CoV-1 and Wuhan strain
SARS-CoV-2 spike proteins; while Figure 9B shows a nonlinear relationship between MERS
and Wuhan strain SARS-CoV-2 spike proteins, indicating a strong dissimilarity between
them. Figure 10 shows nonlinear relationships between those animal viral spike proteins
and the Wuhan strain SARS-CoV-2 spike protein, indicating a strong dissimilarity between
them. However, the local piecewise similarity island pattern is still clearly seen. That
means they are still related somehow.

Table 2 uses the spike protein sequence from Wuhan SARS-CoV-2 strain as a reference
to compare with SARS-CoV-2 strain isolated in Beijing (carrying D614G mutation), SARS-
CoV-1, and MERS. It incorporates fatality rates to identify critical amino acid regions
associated with mortality. As compared to SARS-CoV-2, there are 74 amino acid residues
in MERS spike protein sequence that are critical to MERS-associated fatality, and there
are 18 amino acid residues that are associated with SARS-CoV-1 fatality. There are only
nine amino acid residues in the Beijing strain viral spike protein that are different from
Wuhan strain SARS-CoV-2 spike protein. The correlation coefficient of the analysis for
these critical amino acids in the spike proteins associated with fatality is R = 0.9981 among
the three coronaviruses infecting humans. The similar calculation for the ratio of Mutation
Coulomb force center to maximum Coulomb force point leads to R = 0.9958. Divergent
Coulomb intensity dictates the fatality. The diverged center (imaginary part) is illustrated
in Figure 11; the same definition applies to the conserved (real) part. The definition of the
maximum and the center of the divergence is illustrated in the same figure.

4. Discussion

This study presents the construction of a complex covariance for the fractional analysis
of coronavirus spike proteins by using a fractional moment based simple algorithm coded
in an Excel Sheet. The analysis with our novel complex model reveals an additional perfor-
mance index over the traditional real model, such as the Pearson correlation coefficient. Our
model compares the traditional Pearson calculation of the integer dimension against the
fractional dimension. The complex calculation shows the differences among viral spike pro-
teins, which the traditional covariance definition and calculation may overlook. Our study
reveals the unique convergent (positive correlative) to divergent (negative correlative) cen-
ters of each virus and the distance/length between the positive- and negative-correlative
centers/regions (Table 1). Interestingly, we found that the distance between divergent
center (mean) and the maximal divergent point is associated with viral fatality. As com-
pared to the SARS-CoV-2 strain isolated in Wuhan, the distance between the divergent
center (mean) and the maximal divergent point is located at the amino acid residue 614 in
the SARS-CoV-2 viral strains isolated in Beijing, Germany, New York and New York Zoo
tiger. This suggests those viruses are essentially the same except at amino acid 614 (D614G
mutation, aspartate (D) to glycine (G)) also reported in the literature [24,25]. While the
distance between the divergent center (mean) and the maximal divergent point in the spike
protein of SARS-CoV-1 is from the amino acid residues 309 to 338 (Table 1), the distance
between the divergent center (mean) and the maximal divergent point in the spike protein
of MERS is from the amino acid residue 214 to 698 as compared to the spike protein of
Wuhan strain SARS-CoV-2 (Table 1). It is evident that the fatality rate caused by the virus
is highly related to the distance between the divergent center (mean Coulomb force) and
the maximal divergent Coulomb (force) point (Table 2). The longer the distance, the more
mutations (Coulomb force) and the more deadly and virulent the virus is. This region of
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the MERS spike protein occurs with a high frequency of variations as compared with the
spike proteins from other coronaviruses and may be responsible for its high fatality.

From Table 1, it is shown that our complex coefficient reveals more dependency and
trends of each protein sequence’s evolution [26]. In the past, the viral spike protein’s
conserved center evolved from the amino acid residue 900 in SARS-CoV-1 down to 600
in SARS-CoV-2. The conserved region or convergent center may be critical to the viral
stability or viability. This conserved center/region of the viral spike protein has been
shifted from SARS-CoV-1 at the amino acid residue 900 to amino acid residue 700 in MERS
spike protein, and then shifted to amino acid residue 600 in SARS-CoV-2. The charge
pattern of the SARS-CoV-1 spike protein sequence around 900 is similar to that of the MERS
spike protein around 700, and similar to that of the SARS-CoV-2 around amino acid residue
600. Interestingly, the convergent center of the UK variant B.1.1.7 is shifted from 600 in
SARS-CoV-2 strains (Wuhan, German, New York, and Beijing strains) to 700 (Table 1). The
convergent center of the UK variant B.1.1.7 spike protein in 700 is similar to those of MERS
and swine coronaviral spike proteins (Table 1), which may indicate greater lethality as
compared with the SARS-CoV2 strains isolated in Wuhan, German, New York, and Beijing.
Our analysis suggests that the conserved center/region may be essential for the biology,
viability, and evolution of the coronaviruses. This conserved center/region may shift to a
new location in new SARS-COV-2 variants or other novel coronaviruses.

5. Conclusions

In this study, we have analyzed spike protein charge patterns of coronaviruses by
using our algorithm of semicovariance (nonlinear) coefficient as compared to the Pearson
(linear) correlation coefficient, (based on the original semivariance principle [27] for risk
analysis initiated by 1990 Nobel Prize winner Harry M. Markowitz). The analysis reveals
an additional performance index over the Pearson analysis, such as both positive- and
negative-correlative centers/regions in the spike proteins. The study reveals that the
distance between the divergent center (mean) and the maximal divergent point is associated
with viral fatality. The longer the distance is, the more variations/mutations are, and the
more deadly the virus is. The correlation coefficient analysis also identifies the critical amino
acids in the spike proteins associated with fatality among the three coronaviruses infecting
humans. Our study suggests that the conserved center/region of spike proteins identified
by the analysis is essential for the biology and viability of the viruses and that the shifting
of this region involves the evolution of the viruses. The conserved center/region of the UK
variant B.1.1.7 has shifted to the MERS category of viruses, indicating more virulence of
this variant. In addition, the analysis provides an in-depth understanding for the nonlinear
viral evolution pattern and identifies the protein Coulomb force characteristics which may
be associated with viral fatality.

It is envisioned that this complex number model is a good alternative for the co-
variance analysis of coronaviral spike proteins. This type of analysis may go beyond
asymmetrical fluctuations to help in developing high dimensional Fractal theory. However,
the simplified calculation is easier for practical analysis and applications. The simplified
Excel sheet calculation is very easy to use, accurate and forward compatible with tra-
ditional Pearson model and calculations. The example code is available from the Excel
file on the GitHub server (https://github.com/steedhuang/COVID-19-gene-convertor)
accessed on 21 April 2021. Our future work will look into other viral proteins with the same
methodology for viral evolution and the Coulomb characteristics that are associated with
viral fatality. More attention will be paid to the relationship between positive charges and
infectivity. Additionally, we will use an unsupervised machine learning algorithm such
as k-means classification to find the optimum moving window size (for peptide) and to
predict the next mutation spot (region), and use a supervised machine learning algorithm
such as Recurrent Neural Network (RNN) to find the potential upcoming virus variant(s)
emerging time [28]. These analyses may allow the vaccine and antibody therapies to be
prepared ahead of time before the new variants appear.

https://github.com/steedhuang/COVID-19-gene-convertor
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