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Abstract: Network anomaly detection systems (NADSs) play a significant role in every network
defense system as they detect and prevent malicious activities. Therefore, this paper offers an
exhaustive overview of different aspects of anomaly-based network intrusion detection systems
(NIDSs). Additionally, contemporary malicious activities in network systems and the important
properties of intrusion detection systems are discussed as well. The present survey explains important
phases of NADSs, such as pre-processing, feature extraction and malicious behavior detection and
recognition. In addition, with regard to the detection and recognition phase, recent machine learning
approaches including supervised, unsupervised, new deep and ensemble learning techniques have
been comprehensively discussed; moreover, some details about currently available benchmark
datasets for training and evaluating machine learning techniques are provided by the researchers.
In the end, potential challenges together with some future directions for machine learning-based
NADSs are specified.

Keywords: machine learning; classifier systems; malicious behavior detection systems; dataset; data
pre-processing

1. Introduction

Cyberattacks and network security threats have dramatically increased in emerging
technologies such as Cloud, Fog, Edge computing and Internet of Things (IoT). These
attacks are able to penetrate network-related environments, Cloud-based servers, and dam-
age economic source information [1]. Network anomaly detection systems (NADSs) play
an essential role in every network defense system as they monitor network packets to
prevent potential threats and users’ behavioral abnormalities.

Throughout the last decade, the number of malicious incidents have dramatically
increased, and such an issue leads into significant consequences for individual users,
organizations, and companies. As an example, a denial-of-service (DoS) attack disorganizes
the regular traffic in the network by flooding with a massive volume of traffic. Likewise,
distributed denial-of-service (DDoS) targets normal network traffic by injecting a flood
of network traffic attacks [2]. Zero-day attack detection is also very challenging since the
template or signature specification for these types of attacks is not available [3].

Figure 1 shows a conventional architecture of a machine learning-based network
anomaly detection system, which is constructed by four main modules. The modules are
itemized as follows:

• Packet decoder: this module receives raw network traffic packets and transfers suitable
information to the pre-processing module.
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• Pre-processing: this module receives a portion of network traffic features and prepares
corresponding normalized feature vectors, which is necessary for learning-based
systems in the detection module.

• Classifier system: the responsibility of this module is to build a model on top of the
prepared data which discriminates malicious instances against normal ones.

• Detection and recognition: two phases are defined in this module—(i) detects the
malicious instances as a binary decision problem (e.g., 0 for normal and 1 for malicious)
and transmits an alert to a system administrator for making a reaction; and (ii) after any
malicious behavior detection, the system can recognize various types of abnormality
(attack classification).
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Figure 1. Main modules in machine learning classifier systems.

In this study, the authors focused on the main parts and properties of network anomaly
detection systems, in particular, the detection phase. Numerous machine learning methods
for network malicious behavior detection have been discussed towards designing an
intelligent NADS which is capable of detecting known and zero-day attacks in high-speed
network traffic.

1.1. Related Surveys

Over the last decade, there have been various survey articles in the literature which
aimed at reviewing different types of IDSs and NADSs with varied objectives. Conse-
quently, the present article is oriented towards the main findings of some recently published
surveys in the field of IDSs and particularly anomaly detection systems; in other words,
it deals with the aforementioned previous findings’ merits and drawbacks. In addition,
Table 1 comparatively shows the novelty and superiority of a proposed survey against
recently published survey articles in the area of anomaly detection systems. Hindy et al. [4]
proposed a survey about different IDS techniques and also network threats. The survey
mainly focused on different types of IDSs, datasets and threats, but the authors did not
cover different types of detection techniques, particularly machine learning approaches.
In another study, Lu et al. [5] conducted a survey about deep learning techniques for
malware intrusion detection and prediction. Although the authors provided deep learning
techniques in IDSs and briefly mentioned other malware classification methods, the authors
did not discuss a pre-processing step—which is an important phase in IDSs and can nega-
tively affect the overall time complexity of a detection system. Moreover, the survey lacks
a detailed classification about the variety of recently used shallow learning approaches
in IDSs.
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Igino et al. [6] provided a survey on adversarial attacks against IDSs on safety-critical
environments. The authors provided a general taxonomy of attack tactics against IDSs
and divided the detection strategy into three different phases: measurement, classifica-
tion, and responses. The main challenging issue found in the detection engine in IDS
techniques is implementing non-learning-based techniques to deal with the complexity
of contemporary intrusions and malicious instances. Hodo et al. [7] discussed shallow
and deep networks for IDSs, and the authors provided an overview of the general clas-
sification of IDSs and taxonomy with recent and past works. By comparing different
learning-based techniques, they justified that the convolutional neural network (CNN) has
not been exploited in the field of intrusion detection, however, they have proved that it is a
good classifier. In addition, signature-based techniques are used commercially, however,
the main drawback of these techniques is that they fail to detect all types of malicious
instances due to not having their signature list in database. Aburomman et al. [8] conducted
a survey on IDSs using ensemble and hybrid learning systems. The authors highlighted
two main categories of multiple-classifier systems, homogeneous ensembles (single clas-
sification approach) and heterogeneous ensembles (two or more different classification
approaches). They proved that heterogeneous approaches based on weighted majority
voting are rarely implemented for IDSs and meta-heuristic optimization techniques de-
serve more attention based on extracted patterns in NSL-KDD dataset. Ahmed et al. [9]
provided a survey of anomaly detection techniques in the financial domain, the survey
mainly focused on clustering as an unsupervised learning technique to detect fraud and
anomalous data against normal ones. Different types of financial fraudulent activities such
as break-in fraud, billing fraud, illegal redistribution fraud, failed logins, and the issue of
the scarcity of real data have been discussed throughout their article. Buczak et al. [10]
proposed a survey of data mining and machine learning techniques for cybersecurity IDSs.
Both misuse and anomaly detection techniques have been discussed based on important
criteria such as accuracy, complexity, time for classifying an unknown instance with a
trained model, and the understandability of the final solution. The biggest gap that the
authors observed was the availability of labeled data, which is a very important issue when
the anomaly detection and recognition phase is based on supervised learning techniques.
Ahmed et al. [11] provided a survey about network anomaly detection techniques, which
focused on the few categories of detection techniques including few classification methods,
statistical techniques with non-learning based techniques and few clustering approaches;
moreover, the few dataset used for network anomaly detection was discussed as well, and
the gap in this survey article was that it did not provide details about the pre-processing
and feature extraction phases, which are very important in NADSs.

Although the available surveys in the literature have discussed the different properties
of IDSs, most of the existing surveys have not covered ensemble learning approaches
and neglected the pre-processing phase, which is an important task in network anomaly
detection systems. The present survey provides a comprehensive discussion together with
the fact that it conveys a better understanding of how anomaly detection and recognition
systems are designed based on different types of machine learning techniques. A brief
comparison of our survey with the existing survey articles is demonstrated in Table 1.
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Table 1. A comparison of the proposed survey against existing survey articles based on the main phases proposed in
Figure 1.

NADS Aspects [4] [5] [6] [12] [7] [8] [13] [9] [10] [11] Proposed Survey

Network Data Pre-Processing × X X × X X X X X × X

Supervised Learning Approaches X X X X X × X × X X X

Unsupervised Learning Approaches X X × X X X X X X X X

Deep Learning Approaches × X × × X × X × × × X

Ensemble Learning Approaches × × X × × X × × X × X

Datasets Discussion and Comparison × × × × × × × × × X X

Evaluation Criteria X × X × X × × × × X X

The main contributions of this survey are highlighted as follows:

• A systematic architecture for network anomaly detection and recognition systems is
proposed from a user’s behavior point of view followed by the properties of intrusion
detection systems and applications.

• The recent network data pre-processing tools for feature extraction comprising of
feature creation, reduction, conversion and normalization are discussed.

• A comprehensive discussion on various shallow and deep learning techniques, such as
supervised, unsupervised, new ensemble, and deep learning approaches are discussed
followed by the challenges of designing an efficacious NADS.

• A detailed discussion of evaluation criteria, including evaluation metrics and several
contemporary datasets applicable for NADSs, is provided.

1.2. Review Methodology

In order to perform this survey, journal articles and conference proceedings related
to the IDSs, particularly machine learning-based anomaly detection systems as well as
those which match the scope of this survey, were compiled. In the present survey, we
followed a review direction according to the proposed conventional architecture of a
machine learning-based network anomaly detection system which is depicted in Figure 1.
A structured review methodology was applied in order to scrutinize the research studies
on the main phases of machine learning-based anomaly detection systems as follows.

Firstly, this survey starts with a background of intrusion detection systems including
the methods, properties, and multiple applications of anomaly detection systems in order
to take a closer look at the fundamental concepts of this subject matter. In addition, contem-
porary malicious behaviors are described to simplify the meaning of abnormal behaviors
in a massive amount of normal behaviors. Secondly, research articles are investigated from
a pre-processing point of view to discuss how the features and network data were collected
and extracted; this step helps to assess the quality of the pre-processing phase. Afterwards,
as a critical module in anomaly detection systems, every research article was discussed from
a machine learning perspective to categorize the research studies into four main groups
of machine learning techniques which were supervised learning, unsupervised learning,
deep learning, and ensemble learning techniques. Regarding the learning approach of
every discussed article, we tried to discover their anomaly detection and/or classification
methodologies to determine a summarized version of their learning logic. Moreover, we
mentioned the gap and limitations together, accordingly proposing a future direction to
address it. Meanwhile, the challenges for each category of machine learning techniques
were highlighted at the end of the related sections. Furthermore, we reflected all the aspects
and properties of anomaly detection techniques in the corresponding comparative tables,
separately and in overall.

Fourthly, the evaluation criteria for network anomaly detection systems were dis-
cussed in detail to accurately evaluate the performance of anomaly detection systems.



Entropy 2021, 23, 529 5 of 41

In this section, we discuss popular datasets which were applied in the area of anomaly
detection fallowing by various evaluation metrics. Finally, some of the important issues
with respect to different phases of NADSs were sorted into the main challenges and fu-
ture directions of the proposed survey. We believe that this survey enabled numerous
techniques of shallow and deep learning techniques to be synthesized, and enabled the
strengths, weaknesses, challenges, and limitations of the previous studies to be identified.

The rest of the present article is designed in a way that, Section 2 puts into words the
background of intrusion detection systems and properties. The data pre-processing and
feature extraction are discussed in Section 3. Section 4 is dedicated to machine learning
techniques for network malicious behavior detection and recognition. Section 5 argues
various evaluation metrics and datasets used in NADS, and the challenges and future
directions for the possible extension of NADSs and their applications are explained in
Section 6. Finally, concluding remarks are proposed in Section 7.

2. The Background of Intrusion Detection Systems and Properties

An intrusion detection system (IDS) is typically a software application or device used
to monitor network traffic for the detection of malicious activities or policy violations
in network environments. These malicious activities are either reported to the security
administrator of system or gathered centrally by the security information event manage-
ment (SIEM) system. The monitoring environments fall into two categories: host and
network-based environments [14]. A host-based IDS (HIDS) monitors the activities of a
host via gathering information about various processes that occur in a computer system.
Therefore, a sensor is deployed in the system to check the hosts and log the operating sys-
tem activities, whereas a network-based IDS (NIDS) monitors network traffics to remotely
identify anomalies spreading over a network connection [14,15].

2.1. Intrusion Detection Methods

Generally, intrusion detection techniques fall into four main categories: misuse-based
detection system (MDS); anomaly-based detection system (ADS); stateful protocol analysis
(SPA); and hybrid detection system (HDS) [16]. An MDS processes network traffics to
compare the perceived input observations with attack signatures, any deviation from which
can be considered as suspicious behavior. MDSs achieve a higher true positive rate (TPR)
while facing known attacks, but fail to identify new or even the transfiguration of existing
attacks. Increasing false alarm rates in detecting new attacks is an important issue from
a security point of view, and is required to protect against these attacks. To address this
drawback in MDS techniques, automatic signature generation (ASG) techniques have been
proposed [17].

ADSs (also called behavior-based detection system) first establish a normal profile and
create a performance baseline under normal operating conditions. The detection system
continuously monitors all input traffic and simultaneously compares against the predefined
baseline, and any observation outside the baseline considered as an abnormal (malicious)
behavior will send an alert to the security administration system [14]. Unlike MDSs and
ADSs, which rely on host or network-specific characteristics, stateful protocol analysis (SPA)
depend on vendor-developed universal profiles that determine how specific protocols
are utilized. HDS is a collaborative detection system that employs multiple network
characteristics and observations, such as user behavioral profiles, attack signatures, and
stateful protocols [18,19].

2.2. Applications and Deployments

Generally, the deployment architecture of an IDS has two categories: centralized and
distributed. Centralized IDSs are usually deployed at only one edge of a system with a non-
compound architecture. This type of installation tool relies on the size of the system and
the sensitivity of the network data. A distributed architecture is a composted system which
contains multiple subsystems of IDSs. This type of deployment assists in the detection of
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malicious instances, and can recognize relevant attacks from several locations [13]. IDSs
are installed in various applications and systems such as Cloud computing (installed
over nodes of centralized networks), Internet of Things (IoT) (installed to protect various
applications and objects connected to the Internet), Mobile edge/Fog computing (installed
close to networks edges to defend private data that transmit over mobile), and data center-
based IDSs (installed on key servers over data centers and contains a set of storage and
networked computers).

A Cloud-based IDS is required to firm migrated Cloud services to public Cloud
environments. For example, Microsoft Azure and Amazon Web Services protect the
infrastructures, software, and platforms [20]. Existing NIDSs fail to identify and respond to
internal malicious behaviors; nor they are capable of protecting Cloud-based infrastructures.
Therefore, a scalable and collaborative IDS is required to be installed in the Cloud to monitor
normal and malicious instances [21]. In the case of IoT-based IDS, the existing NIDSs used
in IoT are not sufficiently capable of handling a huge number of alerts with high FARs,
because of the overlap between normal and malicious observations [21–23]. Autonomic
NIDSs containing a self-paradigm are essential in IoT applications and the new generation
of NIDSs should be systematically improved with low human interventions.

In Mobile edge/Fog computing, one of the main issues is monitoring the traffic
connection between Cloud and Edge environments, as these technologies demand scalable
NIDS techniques that can effectively identify malicious observation in real time. Installing
IDSs over the edges of networks can help to overcome Cloud challenges to process large-
scale networks with high mobility and low latency. The main challenge of Edge computing
compared to the Cloud is its distributed architecture. Edge computing has a distributed
norm, whereas the Cloud paradigm has a centralized norm. The issue of the distributed
norm in Edge computing is the integration of various service infrastructures [13]. The task
of data center-based IDS is the investigation of all network data that are transmitted
between clients and servers and vice versa. Data center-based IDSs should provide a
solidified security system and monitor malicious observation over the devices and servers.

As a result of all these factors, machine learning based-IDSs deployed over the men-
tioned applications should be capable to detect all types of contemporary malicious in-
stances discussed in Section 2.3, including traditional known attacks and new zero-day
attacks. Such IDSs are expected to effectively and efficiently handle high-speed network
traffic data and transmit network data at 10 Gbps or higher. In addition, these services
should be self-adaptive and scalable to process various networks through large areas in
real time [13].

2.3. Contemporary Malicious Behaviors (Network Attacks)

The quantity and variety of network attacks are dramatically growing, causing finan-
cial losses, interrupting businesses, and stealing users’ confidential information. Referring
to the Australian Cyber Security Center (ACSC) [24] and McAfee threat reports [25],
contemporary attacks still expose network and computer systems and require further
improvement using NADSs. The different types of malicious behaviors are explained
as follows:

• Trojan is a malware often disguised as normal software but carrying out abnormal
activities in the backend. Trojan malware are usually utilized by cybercriminals to
penetrate victims’ systems and the users are mostly cheated by hackers to execute the
Trojan malware on target computers [26].

• Scareware is a new sort of malware created to deceive users to buy and download
useless and potentially dangerous software—for instance, fake protection programs
that cause many financial and security-related perils to the users [3].

• Rootkits are malware created to hack particular processes and enable continued
privileged access to victims’ machines. Rootkit malware can be executed at various
levels such as application programming interface (API) calls, at the user level or
interfere with OS at the device level [27].
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• Analysis contains different types of port scanner attacks such as spam and .html file
penetrations [14].

• Ransomware attack is a malicious software from cryptovirology that threatens to
reveal the victim’s sensitive information unless a ransom is paid [3].

• Zero-day attack is a computer-software vulnerability that exploits a significant secu-
rity infirmity without the creator’s awareness. Until the vulnerability is identified
by the system, hackers can exploit it to negatively affect the computer programs and
data [13].

• A Botnet occurs when the number of hijacked systems remotely controlled via mal-
ware operators perform malicious activities. Cybercriminals infiltrate targeted devices
by using typical Trojan viruses to penetrate the computers’ security systems. Some
example of these malicious activities are DDoS attacks, credential-stuffing attacks and
Web application attacks [13].

• Brute force happens when an attacker submits massive pairs of username and pass-
words or passphrases with the hope of finally guessing correctly. The attacker system-
atically checks all possible passwords to find the correct one [28].

• Backdoors are the techniques that attacker uses to remotely gain access and control
of the victim’s computer by normally responding to client applications. Many of
these techniques utilize the IRC backbone and often obtain commands from IRC users’
chats [14].

• Denial-of-service (DoS) is a malicious activity which tries to make a computer, OS or
server unavailable to its client by temporarily or permanently interrupting the host
services connected to the Internet [2].

• Exploits can be represented as a series of comments or a peace of code that often
enable cybercriminals to discover a security-related issue in an OS to remotely control
the whole machine [14].

• Distributed denial-of-service (DDoS) happens when multiple computers flood the
bandwidth or resources of a targeted system, generally one or more web servers [29].

• Fuzzers is a black box malicious software testing technique that tries to create a
program or network to interrupt the target machine by injecting randomly generated
data such as numbers, chars, metadata or pure binary sequence [14].

• Generic is initially a collision attempt on the private keys of ciphers. For example, if a
cipher takes an N bit key, in response, the generic attack gets a ciphertext and tries to
decrypt the original cipher with all possible 2N keys [14].

• Reconnaissance is a kind of data collection from networks or other services trough
illegal ways. In this sort of attack, cybercriminals try to obtain information about the
victim’s network or computer to use in an unauthorized investigation [29].

• Shellcode is basically the payload of another attack. The malicious orientation pro-
vides a command-line to the attacker in order to give access to a computer, all with
the benefits of the procedure being abused. When an exploit builds up a connection to
the vulnerable procedure which is not already closed, the shellcode can later re-utilize
this connection to negotiate with the attacker [14].

• Shellshock attacks usually breach the command-line shell of OSs such as, Apple,
Linux, and UNIX. The attacks were discovered in 2014 and at the time, many computer
systems had been penetrated by a remote code execution which had achieved full
access and control [3].

• Worms duplicate their own code in order to spread it to other computers. These often
employ a network environment to propagate themselves and occur when there are
security failures on the target computers [14].

3. Data Pre-Processing and Feature Extraction

Data pre-processing is a significant step in every machine learning technique and
may take a considerable amount of time in the whole anomaly detection process. This
step involves feature creation, reduction, conversion, and normalization processes in order
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to find the most informative features. Then, the desired feature set will be fed—as input
parameters—to the learning system module. In addition to informative data, the extracted
network data also contain unnecessary and duplicated information, which negatively affect
the detection performance as well as time. Pre-processing refines the network-related data
and removes unnecessary and noisy instances; thereafter, the extracted features will be
suitable inputs for the detection phase. In NADSs, the main steps of the pre-processing
phase include feature creation, feature reduction, feature transformation, and feature
normalization as explained below [14].

3.1. Feature Creation

Initially, network traffic features are extracted using various collection tools, such
as Netmate, BRO-IDS, Argus, Netflow and Tcptrace. In anomaly detection systems, it is
essential to accurately characterize the potential features of every user to detect all malicious
activities. Therefore, different features like the extracted features in the UNSW-NB15 and
the KDD99 datasets (flow features, basic features, content features, time features, and
generated features) should be meaningfully and accurately extracted. Moreover, in these
two datasets, additional features are constructed using both transactional connection times
and transactional flow identifiers to mathematically represent the potential attributes of
network observations [30]. The flow process of feature generation from Pcap files to CSV
files are depicted in Figure 2. In Table 2, the different categories of network features in the
UNSW-NB15 dataset and the corresponding feature numbers are listed. More details about
the UNSW-NB15 and KDD99 datasets are explained in the Section 6.

Pcap files

Cloud

SQL

Log files
Conn, Http
and Ftp

Network 
packages

Argus tools

Bro tools

Database

Matched 
features

Additional features

CSV files

Figure 2. The flow process of feature generation from Pcap files to CSV files.

3.2. Feature Reduction

Feature reduction step plays a crucial role in network data pre-processing that filters
and removes noisy and useless instances. In a real-time raw network traffic collection
scenario (e.g., Tcpdump and Libpcap), the number of normal features are usually signif-
icantly greater than the malicious ones. Hence, such unbalanced datasets usually face a
huge number of duplicated and redundant features, which are not required to reduce the
malicious detection performance. On the other hand, it is required to extract the potential
and informative features, which contain important information. Meanwhile, these features
should be cautiously analyzed to segregate only appropriated data, which assists in the
detection phase to accurately identify malicious instances [14].

Independent component analysis (ICA) [31], principal component analysis (PCA) [32]
and association rule mining (ARM) [20], are popular techniques for selecting and reducing
important network data features [33–35]. PCA is a famous linear feature reduction method
that requires less memory storage and less processing time compared to other mentioned
techniques [36].
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The feature selection component consists of four steps, subset generation (constructed
from original feature set), subset evaluation, stopping criterion, and the final selected
feature set [1], which are explained below:

• Subset generation: is an informed (heuristic) search strategy that generates subset
candidates from the original search space. For instance, in a dataset including f
features, there are 2 f possible subsets of features.

• Subset evaluation: every generated subset needs to be evaluated based on appropri-
ated metrics. These metrics can be applied to the selected subsets based on learning
techniques, dependently or independently [14].

• Stopping criterion: is a conditional step to finish the feature selection process, with
common rules, such as the maximum number of iterations or the minimum se-
lected features.

• Result validation: in this step, the result can be evaluated based on estimating the
output of reduced features using a priori information.

3.3. Feature Conversion

Network traffic data consist of different parameters, such as time, flow, content, and
basic features, and every feature includes various properties in the original version of the
dataset. These features will be finally represented in multiple qualitative (i.e., symbolic)
and/or quantitative (i.e., numeric) data categories. Since most detection techniques can
only handle the integer data type, the features that are not in the integer type, must be
converted into a unified numeric format [13].

Table 2. Features and categories in the UNSW-NB15 datasets [14].

Feature Type Feature Number Total

Integer 2,4,8,9,10,11,12,13,17,18,19,20,21,22,23,24,25,26,37,38,40,41,42,43,44,45,46,47 28
Nominal 1,3,5,6,14 5

Timestamp 29,30 2
Float 7,15,16,27,28,31,32,33,34,35 10

Binary 36,39 2

3.4. Feature Normalization

In this step, the feature values need to be normalized and scaled down/up into a
suitable interval. The main advantage of normalization is removing the bias from the raw
network instances without losing statistical properties. In order to accomplish this process,
techniques such as Min–Max (a linear transformation function [13]) can be used for the
normalization of features, as given in Equation (1):

Xnormalised =
(X−min(X))

(max(X)−min(X))
(1)

In Equation (1), X defines the value of the feature, min(X) represent the minimum
value of the feature and max(X) represent the maximum value of the feature among all
values in a pattern.

Jamdagni et al. [37] proposed a technique to analyze and construct features from
network traffic using Wireshark. The authors used n-Gram text categorization to extract
raw network features and transformed into feature vectors. Every packet payload was
represented by a feature vector in a 256-dimensional feature space based on the follow-
ing formula:

fi =
Oi

256
∑

j=1
Oj

(2)
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where Oi is the occurrence of ith n-gram. The overall value of the relative frequencies is

given by
256
∑

j=1
fi = 1 [37].

4. Machine Learning Techniques for Network Malicious Behavior Detection
and Recognition

The detection and recognition phase of a network anomaly detection system (NADS)
is an essential component to accurately discover malicious activities. Basically, machine
learning-based NADSs approaches are classified into four main categories: supervised
leaning, unsupervised leaning, deep leaning, and ensemble learning approaches, which
are illustrated in Figure 3, and described as follows:

Figure 3. Classification of intrusion detection systems.

4.1. Supervised Learning Approaches
4.1.1. Regression Techniques

• Regression: is a set of statistical processes that specify the relationship between one
dependent value and one or more than one independent values. This method is
divided into two main regression techniques, linear, and polynomial [38].

• Decision Tree (DT) learning: is a classifier technique based on tree structure. Every
node in this structure is correlated to a specific feature in the dataset and the cost
(weight) of the connected edges are feature values. Each leaf node of the tree structure
represents a malicious behavior in a DT-based detection system [39]. Generally, deci-
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sion trees fall into two main categories: regression tree analysis and classification tree
analysis. Regression tree analysis is when the predicted outcome can be considered a
real number, whereas classification tree analysis is when the predicted outcome is the
class (discrete) to which the data belong.
Narouei et al. [40] proposed a malware detection technique based on structural mining.
The behavioral features have were extracted from a dynamic-link library dependency
tree. In the detection phase, similar measurements such as Cosine (M1), Jaccard (M2),
Pearson (M3) were used to detect the similar variants or to obfuscate the versions of
a malware, so the drawback of this paper is the identification of only Malware and
benign programs with the known tree’s string encoding format.
Singh et al. [41] proposed a random forest-based decision tree technique. The authors
reported that the random forest method utilized for Botnet detection achieves a high
accuracy of prediction. This technique is also capable of processing various bots and
further characterizes the data by a large number of multiple types of descriptors,
though only peer-to-peer (P2P)-based Botnet anomalies were studied in this research
work, which could be a limitation in new computing technologies. Jabbar et al. [42]
designed an ensemble classifier scheme based on two learning algorithms, namely
random forest and average one-dependence estimator (AODE). The AODE overcomes
the feature dependency problem in naïve Bayes classifier and the RF technique en-
hances the overall accuracy while it reduces the misdetection rates, while one of the
main limitations of the proposed technique is the necessity of labeling the attack
data patterns.

4.1.2. Classification Techniques

Classification is a technique of assorting behavioral instances into predefined classes
over a network dataset. The training dataset normally contains approximately 75% of the
whole dataset while testing the dataset contains the remaining instances for evaluation
purposes. Classification based-techniques are categorized into two types: linear and non-
linear classification. In the case of network data, the network observations are basically
labeled ‘0’ and ‘1’ (such as 0 for malicious observation and 1 for normal) as depicted in
Figure 4a for one-class classification and in Figure 4b for multi-class classification.

In real-time network traffic, the normal observations are considerably greater than
malicious observations (attacks), which is the nature of the network traffic data. In this
scenario, linear anomaly detection methods or one-class anomaly detection are the most
popular and appropriated techniques. Conversely, multi-class techniques are useful when
the normal and malicious observations are equally existent in the dataset in order to classify
different types of attacks.

The following methods are the most frequently used classification techniques in
network anomaly detection and recognition systems.

• Classification tree: is a test design technique which is used in various areas of soft-
ware development. The classification tree methodology includes two main phases:
identification and combination. The first phase is the identification of test-relevant
aspects, called classifications in pattern recognition domains, and their corresponding
values, called classes. The second phase is the combination of different classes from
all classifications into test cases.

• Support vector machine (SVM): is a successful maximum margin linear classifier sys-
tem. A typical SVM classifier contains two main steps to classify network
data instances.
Firstly, the training dataset is transferred to a higher dimensional feature space and
then, using a kernel function, the linear non-separable problem converts into a linearly
dividable problem. In anomaly detection problems, all normal instances are placed
in one class and different malicious land in another class. Afterwards, the network
observations are over a hyperplane with the highest margins at the closest spots on
every sector. Only the patterns that are very close to the margin, affect the computation
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of these margins. The remaining patterns could be eliminated without influencing the
final results.
Ambusaidi et al. [43] proposed an IDS named the least square support vector ma-
chine (LSSVM-IDS), which has the capability to handle both linear and non-linearly
dependent data instances. By using LS-SVM, the network attacks are classified into
DoS, Probe, R2L, and U2L. Moreover, the performance classification for these attacks
evaluated based on three datasets (KDD CUP 99, Kyoto 2006, NSL-KDD), labeling the
patterns to train the detection system, is one of the main challenging gaps in this study.
Kang et al. [34] described a one-class classification method to enhance the performance
of intrusion detection for harmful attacks. The outcome results was evaluated based
on artificially generated instances in a two dimensional space. In the detection phase,
the authors followed a simple logic, the center of the normal patterns was located
at (0, 0), and two malicious class centers were at (1, 1) and (−1, −1), respectively.
Experimental results over simulated data show better performance and then extracted
data in the DARPA dataset. Perdisci et al. [35] presented several one-class SVM
methods for ADSs based on the Harden Payload. The authors constructed several
SVM classifiers and each classifier was applied on a various observation from the
payload. The experimental analyses showed that the combination of the obtained
classifiers improves both the detection accuracy and the hardness of evasion, the main
gap of this study is the complexity of feature selection and labeling process of the
features. Some other works for malicious detection using a one-class support vector
machine are reported in [44–47].
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Figure 4. Illustrated example of one-class classification (a); and multi-class classification (b).

• K-nearest neighbors (KNN): is a supervised machine learning technique that uses a
pattern and classifies new neighborhood patterns by considering a similar measure
based on various distance functions. In malicious detection applications, the classi-
fication is performed by a majority vote for its nearest neighbors to the object and
classifying malware, while if it is benign then it is based on the closest training instants
in the Windows API calls [48].
Alazab [48] proposed a profile-based classification technique to analyze the behavior
of malicious observations based on KNN. The authors statically and dynamically
extracted various features from the malware to represent the behavioral type of its
code, such as Windows Application Programming Interface calls. KNN techniques
have been used to profile malware behaviors and to categorize them into malicious
and normal classes [48]. One of the main gaps in this paper is only using API calls to
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reflect the behavior of user, therefore, it would be very hard to identify contemporary
malware. KNN-based NADSs first establish a normal network profile, and like other
binary classification problems, any deviation from the normal profile is considered
malicious. KNN is a strong anomaly detection technique since adapting parameters is
not required in the training phase. Nevertheless, these techniques are mostly time-
consuming and need a large storage space for the classification of high-speed traffic
data, though some other similar works can be found in [49,50].

• Bayesian networks (BNs): are graphical models, with evidence propagation con-
trolled by the Bayesian theorem. BNs are inherently sturdy for missing information,
and are better adapted to categorical information compared to distance-based classi-
fiers [51]. The structure of BNs and its representation is understandable for human
operators, in comparison with other machine learning approaches. This structure
allows modeling the flow of information through the network and traces the causes of
malicious instances [51].
Xu et al. [52] designed an intrusion detection model by proposing a hierarchical
continuous time Bayesian network (CTBN). The system traces the network packets and
applies the Rao-Blackwellized bit filtering to learn the parameters, the combination of
system calls and network events in feature selection and extraction phase provided
strong abilities to identify anomalies. Altwaijry [53] developed a Bayesian-based
intrusion detection system to detect anomaly activities over network traffic. First,
the different sub-attacks were detected, then they were classified into four main
attacks: including DOS, Probe, R2L and U2R. Initially, the system was developed to
recognize intrusions by using a naïve Bayesian classifier; eventually, the technique
extended to a multi-layer Bayesian-based intrusion detection.
Moustafa et al. [54] proposed a malicious behavior classification approach using a
correntropy-variation technique. The authors believe that modern network attacks
can mimic normal activities and make it very complicated for the network to trace the
malicious observations. The authors designed a network forensic technique for inves-
tigating network-based attacks. In the first step, network traffic data were captured;
afterwards, the authors extracted significant features using the chi-square statistic.
Finally, malicious instances were detected by applying the correntropy-variation
technique, and the proposed statistical technique that the authors proposed was not
a learning-based technique as well as not applicable to Cloud and Fog computing
environments—which are gaps we identified in this research study. [54]. Another
research study into anomaly-based IDS using kernel density estimation can be found
in [55].

• Fuzzy logic (FL): FL has been applied in IDSs for two main concerns [56]. Firstly,
there are plenty of quantitative network parameters related to network packets and
other environmental properties. The parameters involved in the network anomaly
detection systems, such as CPU usage time, protocol type, connection interval, etc.,
could potentially be represented as fuzzy variables and equivalent rules. Secondly,
as described by Bridges et al. [56], the concept of security itself is fuzzy. That is to
say, fuzzy rules smooth out the unexpected deviation of normal instances against the
malicious ones [56].
Dickerson et al. [57] introduced the fuzzy intrusion recognition engine (FIRE) by
applying the fuzzy rules and fuzzy sets. This technique employed different data
mining methods for processing network packages and created fuzzy sets for network
data instances. Later, the fuzzy sets were applied to make fuzzy rules for detecting
malicious instances against normal ones, [58], and the main gap in this research work
was that the feature extraction was not properly done in the pre-processing phase.
Haider et al. [59] provided a dataset used for intrusion detection by trying fuzzy
qualitative modeling. The issues of realistic assessment and systematic metric for
evaluating different types of IDS datasets were investigated. Practically, it is difficult
to access and obtain real-world network traffic data due to business stability and
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integrity issues. In order to achieve this, in the first step, the authors established a
metric based on fuzzy logic to assess the quality of the realism of existing intrusion
detection datasets. Afterwords, a synthetically realistic intrusion detection dataset was
developed using the presented metric results. In this study, only DoS and DDoS attacks
were investigated, which is the main limitation of the proposed detection system.

4.1.3. Challenges and Future Directions for Supervised Learning Techniques

The main assumption in supervised learning approaches is the availability of an appro-
priate training dataset. In addition to this, the dataset should contain labeled data for every
class, including normal and malicious instances. Every known/unknown input datum
goes through a comparison against a predefined model in order for the belonging classes to
be determined. Generally, there are two major drawbacks for applying supervised learning
techniques that the researchers in the area of network anomaly detection may consider for
future research studies. Firstly, malicious instances are always significantly less numerous
than normal observations in any training dataset. Therefore, this problem causes an imbal-
anced class distribution in the dataset during training. Secondly, preparing accurate and
characterized representative labels, particularly for the instances in the malicious class, is
usually a challenging task. Some techniques inject artificial malicious patterns in a normal
dataset to collect a labeled training dataset [14].

4.2. Unsupervised Learning Approaches
4.2.1. Clustering Techniques

In anomaly detection, clustering is the manner of grouping a set of network data
instances in such a way that all malicious instances in the same batch (called a cluster)
achieve higher similarity as compared to the other groups (clusters which can be normal
instances). Another method that is technically close to the clustering concept is that of
outliers, which define some data instances as more highly digressed than the usual groups
in a data space.

Clustering-based network anomaly detection techniques have several advantages
as compared to classification techniques. Firstly, the network data are classified in an
unsupervised fashion and do not require class labels for all the network features. Secondly,
clustering techniques are effective in large datasets, by dint of the fact that they reduce
computational complexity and achieve better performance than the other classification
techniques. Hence, the first disadvantage of clustering-based network anomaly detection
would be the fact that these techniques are highly related to the efficacy of creating a
profile for normal instances. Secondly, clustering is often time-consuming for dynamically
updating a profile for legitimate network instances:

• Hierarchical clustering: is a cluster analysis method that attempts to generate a
hierarchy of clusters and technically falls into two main categories: agglomerative
clustering, which is a bottom–up modeling approach, and the other one, divisive, is
top–down clustering. Horng et al. [60] introduced an SVM-IDS based on hierarchical
clustering. The clustering method provided a classifier with higher-qualified training
patterns which were extracted from the training dataset, and one of the limitations of
this technique was that despite its high performance in two attacks in the KDD Cup
1999 dataset (DoS and Probe), it was not acceptable for the U2R and R2L attacks.

• K-means clustering: is a famous unsupervised learning approach applied to cluster-
ing problems. The technique follows a simple strategy to classify a given number of
patterns in a dataset through a predefined number of clusters. A standard type of
K-means algorithm (naïve K-means) can be created by repeating two steps. The first
step is assigning each observation to the cluster whose mean has the least squared
Euclidean distance. The second step is updating and calculating the new means
(centroids) of the observations in the new clusters [61]. Figure 5 shows a pictorial
representation of K-means clustering.
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Lee et al. [62] proposed a proactive detection technique for DDoS attacks using cluster
analyses. The cluster algorithm that the authors used, contains two main types
of clustering algorithms; hierarchical clustering and partitioning clustering, to pre-
determine the number of clusters, the limitation of this work is the weakness of the
system to identify other attacks such as R2L, U2R and probing, with the exception of
DoS and DDoS attacks. Similarly, Li [61] implemented an anomaly detection model
based on clustering analysis using the K-mean clustering algorithm. In this research,
the author reported some limitations, such as the sensitivity of the algorithm to initial
conditions, outliers, and noise. Even if an object is quite far away from the centroid of
the cluster, it is still directed into a cluster. Thus, it re-curves the cluster shapes.
Costa et al. [63] designed an optimum-path forest clustering technique to estimate the
probability density function (pdf) employed in clustering algorithms. The authors
applied this clustering technique for intrusion detection systems by speeding up the
optimum-path in forest clustering. The feature selection and extraction process is not
clearly explained in this study and this can be the main gap of this research work.
Jadhav et al. [64] proposed a scheme for a network anomaly detection system based
on packet signature clustering and network analysis. The clustering technique follows
a simple rule; whenever the input network instances match one of the intrusion
signatures, the system reacts to the security administrator concerning the possible
threat in details, one of the limitations of proposed system is the paucity of extracted
features, which is a lot less compared to the features in popular datasets such as
UNSW-NB15, KDD99, and NSL-KDD datasets.
Although various clustering techniques have been used for NADSs, the most utilized
techniques for malicious detection are regular and co-clustering techniques using
different strategies and processing methods [9,65,66]. For example, the K-means, as
a regular clustering method, assembles features from the dataset instances, but co-
clustering techniques concurrently consider both features and instances in the dataset
to make clusters.

Initial	Seeding After	Round	1

After	Round	2 Final

C1

C2

C1

C2

C2

C1

C2

C1

Figure 5. Pictorial representation of K-means clustering.

• Gaussian Mixture Models (GMM): is a technique of probabilistically representing
normally distributed sub-sets throughout a dataset. A finite mixture mechanism is
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presented as a convex collection of two or more PDFs, and the joint attributes of these
PDF functions can predict any random distribution [67].
Moustafa et al. [67] introduced an outlier Gaussian mixture (OGM) model for discover-
ing zero-day attacks based on the concept of network abnormal behaviors. The authors
collected the Web application data and extracted the related features. After preparing
significant features, the normal model was created by using the outlier Gaussian mix-
ture (OGM) technique based on GMM. Some other techniques for anomaly detection
using GMM have been reported in [20,68–70].

4.2.2. Dimensionality Reduction Techniques

These techniques basically try to obtain a set of principal variables by diminishing
the number of random variables under statistical consideration [71]. The popular di-
mensionality reduction approaches used for anomaly detection systems are described in
the following:

• Principal component analysis (PCA): is the main linear technique and a well known
unsupervised dimensionality reduction method, which determines the principal direc-
tions of the data distribution. In order to acquire these principal directions, one needs
to create the co-variance matrix of data and calculate its conquered eigenvectors [72].
Han et al. [73] developed a naïve Bayesian NADS based on PCA. The system calcu-
lates the attribute value of the original network dataset, then extracts the essential
properties using PCA. With the aim of improving the traditional naïve Bayesian clas-
sification method, the authors took the main properties as the new features and the
corresponding principal component contribution rate as weights, though a drawback
of the proposed technique is the complexity of labeling attack data. Bhagoji et al. [74]
introduced a dimensionality reduction method to protect the networks against eva-
sion attacks on machine learning classification techniques. The authors incorporated
PCA to increase the flexibility of machine learning techniques, targeting both the
classification and the training phases, though there are two limitations in this work,
insufficient on its own and a lack of universality, where it falls short of being a compre-
hensive defense mechanism against evasion attacks, the authors suggested using other
dimensionality reduction techniques for addressing these limitations. Ding et al. [75]
proposed a PCA subspace model for anomaly detection in high-dimensional data
space. The authors introduced a model of compressed PCA subspace projection and
characterized key theoretical quantities, relating to its usage as a tool in malicious
detection. In addition, the technique and application implemented for identifying
IP-level volume anomalies in network traffics, the important phase of an IDS which is
pre-processing and feature extraction was not covered in this paper and the evaluation
criteria to assess the technique is missing.

• Independent component analysis (ICA): obtains the independent variables by max-
imizing the statistical independence of the estimated components. As an example
for this technique in network anomaly detection, Palmieri et al. [31] proposed an
approach based on ICA. The authors created a two-phase anomaly detection scheme
using various distributed sensors located in the entire network. By using this di-
mensionality reduction technique, the authors modeled the anomaly detection as a
blind source separation problem, and the gap identified in this research work is that
analyzing fundamental independent traffic is time-consuming and predicts a weak
performance in high-speed network traffic data.

4.2.3. Association Analyses Techniques (Hidden Markov Models (HMMs))

HMMs are generative models employed to characterize stochastic procedures. HMMs
are appropriated methods for modeling the dynamic behaviors of underlying systems,
and these models are popular in the pattern recognition area. HMMs are often applied to
construct time series models and also successfully used on different domains of network
anomaly detection systems. Moustafa et al. [21] proposed a threat intelligence scheme
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based on mixture hidden Markov models (MHMM). The MHMM technique is utilized
by the Gaussian mixture model (GMM), whenever the quantity of mixture components is
known, and borders of perceived data are unlimited (i.e., (−∞,+∞), and a disadvantage of
the proposed system requires a large number of normal and attack instances to accurately
estimate the BMM and HMM parameters, moreover, the system also needs a new functions
that enables running the algorithm for adjusting the sliding window to be implemented [21].
Some other similar works for malware detection using HMMs have been conducted
in [76,77].

4.2.4. Artificial Neural Network (ANN) Techniques

ANN or connectionist systems are inspired by biological human brains. Traditionally,
ANN-based anomaly detection techniques have been used for host-based IDSs that focus
on predicting any divergence from the normal profile as a sign of an abnormality. In the
ANN-based IDSs, the network has the ability to learn in the training phase and predict
the behavior of different users. The main superiorities of ANN techniques are firstly its
tolerance to the uncertain or the wrong data and secondly its capability to predict the
anticipated outputs without having previous knowledge and predefined labeling of the
input data. These properties are what made ANN an appropriated approach to NADSs;
however, there are several drawbacks in neural network-based techniques. The first one
is that ANN-based approaches may not achieve acceptable results due to weak learning
function or insufficient data. Second, the training phase of ANN is often slow due to data
feeding and also adjusts the weights for all neurons while back-propagating the errors.

Saber et al. [78] proposed an IDS based on ANN. The purpose of the work was to
design an optimized neural network with crucial parameters for anomaly detection which
was capable of detecting different kinds of attacks. In the first phase, basic attributes were
extracted to nourish the input layer and to verify the dependence between these parameters
and malicious instances. In the second phase, the authors incorporated the parameters
according to content in order to prove the efficacy and also to show in what situation the
parameters are crucial; their proposed technique works well for identifying three attacks
in the KDD datasets (Probe, DOS and R2L), however, it detects U2R attacks with a low
detection rate.

Rabbani et al. [14] proposed a hybrid machine learning approach based on a probabilis-
tic neural network for malicious behavior detection and recognition in Cloud computing.
The authors designed a particle swarm optimization-based probabilistic neural network
(PSO-PNN) to firstly detect the malicious instances against normal ones and then rec-
ognize the type of abnormality based on an attack classification algorithm. In addition,
the UNSW-NB15 datasets were exploited to assess the malicious detection and recognition
techniques, though one of the limitations of this study using the PSO-PNN technique is
finding high intra-class similarity in the backdoors attack and DoS attack observations.
Ramadas et al. [79] proposed a technique named anomalous network-traffic detection with
a self organizing map. The technique attempts to establish a two dimensional SOM for
every monitored network, and then the neural network was trained using normal traffic
instances in the training phase to learn the network properties. This technique has been
tested using the DNS and HTTP services, and the limit of this research work is that the
infrequently occurring corner-case behavior might be identified as malicious. Some other
ANN-based anomaly detection approaches have been conducted in [80–85].

4.2.5. Genetic Algorithm (GA) Techniques

In search-based problems, GA is used to find approximate solutions to optimization.
In IDSs. this technique has also been widely used to discriminate malicious activities against
normal ones in network traffic instances. The main superiority of GA in malicious detection
systems is its robustness and flexibility as a global search method. Moreover, the GA search
strategy relies upon probabilistic search rules in lieu of deterministic rules [58]. In the area of
NADSs, GAs have been applied in numerous ways. Folino et al. [86] proposed a distributed
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anomaly detection scheme based on ensemble GA. Network instances distributed on
various independent websites and the trainer system extract useful information from these
data. Then, a normal profile was used to identify anomaly instances. The experiments
were assessed on the KDD Cup 1999 dataset, meanwhile the author did not provide
information about how the features were selected and extracted in the KDD Cup 1999
dataset. Pillai et al. [87] introduced a network anomaly detection system based on GA.
In the first step, the network sniffer traffic was analyzed to create a dataset, and in the
next step, the rule set was automatically generated. Using the generated rule set and GA,
the authors implemented a network IDS to analyze the particular portions of a network
and prevent the traffic overflow. Another similar work based on GA was proposed,
though the gap identified in this research work was the fewer number of features that they
considered in the feature selection phase.

4.2.6. Challenges and Future Directions for Unsupervised Learning Techniques

Training data are not necessary in unsupervised learning techniques, and this can
be a great advantage and appropriate technique which have been widely utilized in the
literature. Unsupervised learning techniques assume that legitimate observations are far
more frequent than malicious instances in the testing dataset. Whenever this expectation
does not occur, these techniques face high FAR. In this scenario, semi-supervised learning
techniques are applicable in an unsupervised fashion with an unlabeled portion in the
training dataset. Semi-supervised learning techniques assume that the network data in the
testing dataset include signficantly less malicious patterns and the model learnt during the
training process is solid against those few malicious instances.

4.3. Deep Learning-Based Anomaly Detection Techniques

Deep learning is a subdivision of machine learning in AI with the capability of learning
in an unsupervised fashion from unstructured and unlabeled patterns. The foundation
strategy behind deep learning in comparison with traditional ANN techniques is the
employment of an advanced neural network in both the training and feature extraction
processes. In shallow learning ANN, the network consists of one or two hidden layer(s).
On the other hand, the network structure of deep learning consists of several hidden layers
with various architectures [78]. Recently, deep learning techniques have become very
popular in the area of pattern recognition and network applications. This is due to their
intellectual properties such as fast learning in an unsupervised fashion, a quick and in
depth computational process, and handling massive amounts of data. In NADSs, both
traditional and deep learning networks need basic information about the normal traffic
data to systematically design an appropriate structure. This network contains convenient
middle layers to train the weights of the network and establish a model that can distinguish
malicious instances against normal ones [88,89]. The architecture of deep learning networks
is mainly divided into two models—discriminative and generative—as illustrated in Figure 6
and detailed in the following.
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Figure 6. Taxonomy of recent deep learning methods.

4.3.1. Discriminative Deep Architectures

• The recurrent neural network (RNN) is a model of deep learning techniques where
connections between nodes (neurons) form a directed graph along with a temporal
sequence and allows the network to expose temporal dynamic behavior. In this
architecture of the neural network, the input data are linked in long sequences via a
layer-by-layer connection with a feedback loop [89].
Based on the connection between layers, RNN consists of two types: Elman and
Jordan. The Elman type includes three main layers (input, hidden, and output) and
also one context layer. The hidden layer has a connection to the context layer and
after every feed-forward training progress, a copy of the previously hidden units are
stored at the nodes of context layer. Jordan networks perform similar to Elman but
the context nodes are directly fed from the nodes in the output layer [89].
Bontemps et al. [90] proposed an anomaly detection model based on long short-term
memory recurrent neural network (LSTM RNN). In this technique, the LSTM RNN
is firstly employed as a time series anomaly detection model and the prediction of a
current observation depends on both the current and its previous observations. Sec-
ondly, the technique was adapted to detect aggregate malicious patterns by generating
a circular array. The circular array includes previous prediction errors which were
stored from a specified number of the latest time steps. If the prediction errors were
greater than the predefined threshold and lasted for certain time steps, these will be
detected as anomalies. The model was created on a time series version of the KDD
1999 dataset.
Shone et al. [91] proposed a deep neural network(DNN) that consisted of 100 hidden
units. The model incorporated the rectified linear unit activation function and the
ADAM optimizer for network anomaly detection. This technique was implemented on
a GPU using TensorFlow, and the performance of the method was evaluated using the
KDD99 dataset with the average accuracy rate of 99. Moreover, for any future works,
the authors suggest the improvement of the method by using RNN and long short-
term memory (LSTM) models [91]. Maya et al. [92] proposed an RNN model based on
delayed long short-term memory (dLSTM) for network malicious pattern detection on
the time-series data. In the first step, a predictive model was generated from normal
traffic instances, then identified malicious patterns based on the prediction error for
observed data. To deal with the various states in the waveforms of normal traffic
data, which reduces the prediction accuracy, the authors applied multiple prediction
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techniques based on LSTM for malicious detection, pre-processing phase, feature
selection and evaluation criteria are missing gaps in this survey.
An overall graphical RNN model is represented in Figure 7a, which includes two parts:
(a1) qnet and (a2) pnet. At time t, xt is the input network data and x′t is the reconstruc-
tion of xt. et and dt are memory variables in GRU cells which are deterministic. zt is a
z-space variable which is stochastic, and the edges represent the dependence between
variables [93]. In Figure 7b, an example of the multivariate time series snippet with
two detected malicious regions (highlighted in red) is demonstrated.

• Convolutional neural network (CNN) is a multi-layer perceptron ANN consisting
of many hidden layers. The structure of CNN typically includes two operations:
convolution and pooling. In addition, it contains fully connected layers and normal-
ization layer. Convolution transforms input patterns via a sequence of filters to an
output (usually called a feature map) that highlights the input features. Subsequently,
the convolution output is processed by an activation function and then down-sampled
by pooling to trim off the noisy and irrelevant data. The pooling process helps elimi-
nate glitches in the data to improve the learning process [94,95]. The convolutional
layers share multiple weights that have a few parameters which facilitates the CNN
architecture’s training progress compared with other neural network models with the
same number of hidden units [89].
Wu et al. [96] proposed a CNN-based intrusion detection system. The authors used
spatial and temporal network traffic features and designed a hierarchical CNN + RNN
network named LuNet. The proposed system was composed of a combination of
CNN and RNN models to learn from the input traffic data in synchronization with
a gradually increasing granularity. Therefore, both spatial and temporal network
features can be simultaneously extracted. This proposed technique does not perform
well to classify attacks from Backdoors and Worms due to insufficient samples in the
training dataset.
To apply deep learning in multiple network anomaly detection datasets such as
NSL-KDD, UNSW-NB15, Kyoto, WSN-DS, and CICIDS 2017, as well as provide
the benchmark dataset, Vinayakumar et al. [97] proposed a framework by using
a distributed deep learning model. This technique uses DNNs for handling and
analyzing very large scale data in real-time network traffic. In this study, the authors
provided a comparison between the deep and classical machine learning classifiers on
various benchmark IDS datasets; one of the drawbacks of this research work is the
time complexity of the proposed detection system which is associated with complex
DNN architectures.

(a) (b)

Figure 7. (a) A graphical representation of an RNN-based anomaly detection; (b) an example of a multivariate time series
snippet with two detected malicious regions are highlighted in red.
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4.3.2. Generative Deep Architectures

The generative model calculates the joint probability distributions from observed data
with its classes [88], though in this section, the most popular generative techniques applied
in the area of intrusion detection involve the following models.

• Deep auto-encoder (DAE) is basically for training efficacious coding in an unsuper-
vised fashion and typically consists of an input layer, one (or more) hidden layer(s)
and an output layer [89]. The outcome achieved in the output layer is a reconstruction
of the input layer after the input nodes have been ‘squished’ via the smaller hidden
layer. Therefore, DAE performs similarly to dimensionality reduction techniques such
as PCA. In the case of anomaly detection, the network features which are extracted
through the hidden layer could be used for training feedforward layers. The overall
training of the network happens by training each autoencoder in an unsupervised
manner, followed by the fine-tuning step whereby the last layer is trained by super-
vised network data [98].
Muna et al. [89] proposed a detection system for network malicious activities based on
auto-encoder and deep feed forward neural network. The required information and
network features have been collected from TCP/IP network packets. The combination
of the deep forward neural network and auto-encoder have made a solid learning al-
gorithm to deal with both the labeled and unlabeled network features, along with both
the training and testing for the evaluation process which used two popular network
anomaly datasets—NSL-KDD and UNSW-NB 15. A disadvantage of this technique
is the complexity of selecting appropriate parameters for the training phase while
facing real-time network traffic data with a fast transmission rate. Ludwing et al. [98]
proposed an intrusion detection system based on the autoencoder (AE) to classify
different types of attacks. The attacks in the NSL-KDD dataset such as R2L, U2R, DoS
and Probing have been classified with a total accuracy of 0.92.

• Restricted Boltzmann machine (RBM) is a popular deep learning technique among
generative models which consist of two main architectures: deep Boltzmann machines
(DBM) and the deep belief network (DBN). RBM techniques are basically applied
to diminish hidden layers in the network and do not accept intra-layer connections
between hidden neurons. To construct a DBN architecture, a stack of DBM should
be trained by using the unlabeled data as inputs of the next layer and concatenating
another layer for discrimination [89].
Alom et al. [99] developed a deep belief network to interpret the intrusion attempts in
incoming network traffic. The authors discovered the capabilities of DBN performing
intrusion detection through series of experiments after training it with the NSL-KDD
dataset. The trained DBN was able to detect all types of unknown attacks in the dataset
and classified them into five different categories; however, in the case of unknown
malicious attacks beyond those in the dataset (DoS, U2L R2L, Prode), the proposed
technique would fail to identify them.

• A deep belief network (DBN) is a generative graphical model consisting of multiple
hidden layers, with connections between the layers but not between the units within
each layer. This type of deep learning architecture is a hybrid model of supervised
and unsupervised learning networks. The unsupervised section was trained based
on one greedy layer-by-layer connection at a time, in which the layers act as feature
detectors and perform the expected classification, whereas the supervised section is
one or more layers linked for classification [89].

4.3.3. Challenges and Future Directions for Deep Learning Techniques

Obviously, deep learning techniques can significantly improve the NADSs’ perfor-
mance effectively and efficiently, with high TPR and low FAR. Nevertheless, the network
construction is often a time-consuming process to systematically specify the appropriate
weights for neurons and reduce the misclassification rates. Research studies show that deep
learning techniques achieve acceptable accuracy and avoid much manual work, but the
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structure of deep learning, particularly in the malicious feature extraction phase, requires
further research to achieve a self-optimized architecture.

4.4. Ensemble Learning Approaches

Most current NIDSs either use misuse detection or anomaly detection techniques.
However, both of these techniques still face potential challenges. For instance, misuse
detection techniques fail to identify anonymous intrusions, whilst on the other hand,
anomaly detection approaches usually struggle with high false positive rates. In order
to tackle these issues, ensemble approaches are propounded with a powerful design,
exploiting features from multiple anomaly detection techniques, and the hybridization of
several models enhances the performance of IDSs. Ensemble learning techniques apply
multiple machine learning methods into one powerful and flexible model in order to
decline variance (bagging), bias (boosting), or improve predictions (stacking) [1]. The main
goal of ensemble learning is to attain an overall accuracy compared with each classifier
independently. The structure of ensemble learning consists of bagging, boosting, and stack
generalization/stacking as depicted in Figure 8 and explained in the following [1].

• Bagging (bootstrap aggregation): mostly considers homogeneous weak classifiers,
trains all classifiers parallelly and independently; thereafter, it combines them based
on a deterministic averaging process [1].

• Boosting: employs the weighted averages to construct weak classifiers into a pow-
erful classifier. As opposed to the bagging strategy in which every classifier is run
independently, boosting is all about “teamwork”. Each model that runs dictates what
features the next model will focus on [1].

• Stack generalization: achieves the supreme overall accuracy by applying the proba-
bilities of every model based on the specific classification method [1].
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Figure 8. Boosting, bagging and stacking in ensemble learning approaches.

Tsai et al. [100] introduced an ensemble IDS approach based on the triangle area
nearest neighbors to discover the network anomaly instances. In the first step, a K-mean
clustering algorithm was applied to find the cluster centers related to the malicious classes,
and in the second step, the triangle area using two cluster centers with one datum was
calculated and obtained a new signature of the network datum. Finally, the KNN classifier
technique was applied to categorize similar malicious activities based on the new incoming
features extracted by triangle areas, though the high complexity of this proposed system in
pre-processing step is a disadvantage of the detection system. Another similar work using
K-means and KNN techniques is proposed in [49].
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Comar et al. [101] presented a framework to detect network anomaly activities and
Zero-Day malware using extracted network traffic features. The authors used supervised
classification techniques (SVM and KNN) for detecting known classes with the adaptability
of unsupervised learning techniques for detecting new malicious instances, though when
the number of attack classes becomes very large, the detection phase becomes expensive
due to the large number of hyperspheres that need to be tested. To address this issue, hier-
archical multi-class learning techniques need to be incorporated with a detection system.
Li et al. [46] proposed the significant permission identification (SigPID) technique that de-
tects malicious instances based on permission usage analysis. The SigPID method utilized
SVM and decision tree techniques to classify various malware and benign applications.
Bamakan et al. [102] developed a multi-class technique to IDS based on a classification
regression model named amp loss K-support vector. The authors utilized the K-SVCR
model as a main decision engine for anomaly detection, and the SVM technique and its
extensions were used to deal with the noises and outliers in the training dataset. One of
the limitations of this work in its present form is facilitating the batch SVM learning over
very large datasets and high network traffic. Dubey et al. [103] proposed a hybrid model
for malicious detection using K-means, a back propagation neural network and naïve
Bayes. Initially, the K-means clustering was applied as an unsupervised cluster analysis
technique to attain the gathered data, then, the outputs were provided to the Bayesian
classifier based on the probability model to obtain the most important attributes. Finally,
the training and learning were accomplished by the back propagation neural network to
learn the instances with minimum training cycles. The main disadvantage of this research
work is the performance of attack classification via the back propagation neural network
which is time consuming.

Khan et al. [104] introduced an IDS using SVM and hierarchical clustering. The authors
utilized SVM to classify network-based anomalies and enhanced the training time of SVM
using the hierarchical clustering technique in large scale datasets. Moreover, the authors
developed a dynamically growing self-organizing tree technique to overcome the limita-
tions of traditional hierarchical clustering algorithms such as hierarchical agglomerative
clustering. Another similar work conducted in [60]. Moustafa et al. [105] proposed an
ensemble IDS to detect malicious instances, specifically, Botnet attacks. The authors created
statistical flow features based on significant network properties. Afterwards, developed an
AdaBoost ensemble learning model based on three machine learning techniques (decision
tree, naïve Bayes, ANN), to evaluate the effect of extracted features and identify network
anomaly instances. Jongsuebsuk et al. [106] developed a real-time IDS using a fuzzy generic
model for network attack classification. The fuzzy rule algorithm was utilized to classify
the different types of attacks, while a genetic algorithm used to find an appropriate fuzzy
rule and give the optimized solution. Similarly, the same author in [107] introduced another
IDS based on a fuzzy genetic algorithm for various denial-of-service (DoS) attacks and
Probe attacks. Damavsevivcius et al. [108] proposed an ensemble-based classification using
neural networks and machine learning models for windows PE malware detection. The
first phase of the classification progress was performed by a stacked ensemble of dense and
convolutional neural networks (CNNs). Afterwards, the second phase was accomplished
by a combined learning-based engine using 14 classifier systems called a meta-learner.

As a result, ensemble learning models are advantageous, as these techniques can
deal with large scale datasets and achieve higher detection rates compared to individual
techniques and perform better by combining multiple classifiers. However, it is hard to
adopt a subset of stable and unbiased classification techniques to combine the models.
Moreover, the greedy techniques to choose training datasets are often time-consuming for
massive datasets. Among ensemble techniques, Adaboost and Stack generalization are
efficacious due to the variety in predictions using multiple base level classifiers. Some other
works for anomaly detection systems based on ensemble learning techniques conducted
in [16,23,109–113]. A comparison of ensemble learning approaches on various datasets is
listed in Table 3; moreover, Table 4 shows the advantages and disadvantages of machine
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learning approaches in the overall and the detailed comparison for all supervised learning
techniques separately are listed in Table 5 and for unsupervised learning techniques in
Table 6.

Challenges and Future Directions for Ensemble Learning Approaches

According to studies in the literature, both theoretically and empirically, it was shown
that ensemble learning techniques are always preferable to single classifier techniques,
with regard to classification accuracy. In terms of anomaly detection, the advantages of
ensemble learning classifier techniques are particularly obvious because so many intru-
sions are existing in the network environments, especially intrusions in new computing
technologies. Consequently, different types of detector techniques are required for iden-
tification. In addition, if one of the classifier techniques fails to identify the attack, there
is still a chance to be detected in other classifier techniques. Generally, there are two
types of ensemble structures with different architectures: homogeneous and heterogeneous
ensembles. In homogeneous ensembles, all classifiers in the ensemble are created with a
similar technique; whereas in heterogeneous ones, they are created with various classifier
techniques. For example, bagging and boosting are usually utilized to create homogeneous
ensembles, and stacking and voting can be applied to generate heterogeneous ensembles.
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Table 3. Comparison of ensemble learning approaches on various datasets.

Used Algorithms Authors Objective(s) FS Accuracy (%) FAR (%) Datasets Detected Attack(s) Ref

K-means + KNN Tsai et al. IDS Yes 93.55 4.79 KDD-Cup’99 DoS, U2L R2L, Prode [100]
Bar et al. Encrypted traffic classification Yes 95.4 - Generated records Malicious instances [49]
Lin et al. IDS Yes 99.46 2.95 KDD-Cup 99 DoS, U2L R2L, Prode [50]

SVM + KNN Comar et al. Zero-day malware detection Yes 90 10 Commercial IDS/IPS High-risk malwares [101]

SVM + kNN + PSO Aburomman et al. IDS Yes 88.44 - KDD-Cup 99 DoS, U2L R2L, Prode [113]

SVM + DT Li et al. Android malware detection Yes 93.62 2.36 Generated dataset - [46]

K-Support Vector Classification-Regression Bamakan et al. IDS Yes 98.68 0.86 NSL-KDD + UNSW-NB15 All attacks in Table 7b [102]

PCA Filtering + Probabilistic SOM Hoz et al. IDS Yes 88 - KDD99 Anomalous connections [111]

K-Means + NB + BNN Dubey et al. IDS No 99.9 0.1 KDD cup99 DoS, U2R, R2L, probe [103]

Density Based Clustering + GMM Gruhl et al. IDS No 98.4 0.9 - - [114]

HC + SVM Horng et al. IDS Yes 95.72 - KDD Cup 1999 DoS, U2R, R2L, probe [60]
Khan et al. IDS No 69.8 37.8 1998 DARPA DoS, U2R, R2L, probe [104]

RF + AODE Jabbar et al. IDS Yes 90.51 14 Kyoto - [42]

DT + NB + ANN Moustafa et al. IDS Yes 95.25 0.01 UNSW-NB15 and NIMS Botnet Botnet, all attacks in Table 7b [105]

NB + KNN Pajouh et al. NADS Yes 84.86 4.86 NSL-KDD DoS, U2R, R2L, probe [23]

Multivariate Correlations + Triangle Area Tan et al. DoS attack detection Yes 99.93 2.64 KDD Cup 99 DoS [109]

SVM + DT + KNN Mohaisen et al. Malware classification Yes 98 - AutoMal ZAccess, Ramnit, FakeAV, Autorun, TDSS, Bredolab, Virut [110]
Santos et al. Unknown malware detection Yes 94.5 5.5 VxHeavens Malware families [115]

SVM + RF + DT Islam et al. Malware classification Yes 97.055 0.055 Generated datasets - [116]

SVM + KNN + NB + RF Wang et al. Malicious apps detection No 99.39 - - Android malicious instances [117]

FL + ES Liao et al. Network forensics Yes 91.5 - DARPA 2000 DDoS, DARPA attacks [16]
GMMs + PSO + SVM Hu et al. IDS Yes 99.99 1.35 KDD CUP 1999 DoS, U2R, R2L, probe [112]

FL + GA Jongsuebsuk et al. IDS Yes 97.5 13 KDD99 Various DoS and Probe attacks [106]
Jongsuebsuk et al. IDS Yes 97 - KDD99 DoS, Probe [107]

Chadha et al. IDS Yes 94.6 - DARPA-KDD99 DoS, U2R, R2L, probe [118]

FS: feature selection; FAR: false alarm rate; SVM: support vector machine; KNN: K-nearest neighbors; PSO: particle swarm optimization; DT: decision tree; PCA: principal component analysis; SOM: self-organizing map;
GMM: Gaussian mixture model; AODE: average one-dependence estimator; BNN: back-propagation neural network; HC: hierarchical clustering; NB: naïve Bayes; AODE: average one-dependence estimator; RF: random
forest; FL: fuzzy logic; ES: expert system; GA: genetic algorithm; IDS: intrusion detection system; NADS: network anomaly detection system.
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Table 4. Comparison of machine learning mechanisms.

Technique Advantages Disadvantages

Supervised
Learning
Approaches

Techniques are flexible for training and testing. The techniques are very much relying on the presump-
tions.

Achieve high detection accuracy for known attacks
based on appropriated threshold.

Need more patterns compare with other methods.

The techniques are able to update implementation
strategies with the concatenation of new data.

The techniques fail to identify unknown attacks until
similar training data are fed.

Unsupervised
Learning Ap-
proaches

In case of clustering approach, such as K-mean, if k
value is determined, then the remaining process is
easy.

Most approaches have been developed for the cluster-
ing of continuous features only.

Clustering techniques are advantageous for quick re-
sponse generation.

In anomaly detection systems based on clustering,
an initial assumption is assigning a big cluster to the
normal instances and smaller clusters to malicious
instances. In the absence of this assumption, it is hard
to assess the technique.

In the case of a large training dataset, it is better to split
it into similar classes to efficiently detect malicious in-
stances, because it decreases the computational com-
plexity.

Using unsuitable proximity measures often reduces
the detection rate.

The techniques provide a trustworthy performance in
comparison to supervised or statistical approaches.

It is usually time-consuming to dynamically update
the profiles.

The techniques can identify outliers easily in small
datasets.

Unsupervised techniques often utilize both clustering
and outlier detection and it produces higher complex-
ity compared with other methods.

The techniques can detect bursty and isolated attacks. The detection parameters are highly dependent on
these techniques.

Ensemble
Learning
Approaches

The ensemble classifier techniques perform better by
combining multiple classifiers whenever the individ-
ual classifiers are weak.

Subset selection among unbiased classifiers is a diffi-
cult task.

Appropriated for large scale datasets. The greedy approach for choosing subsets is often
time-consuming for large scale datasets.

Ensemble techniques use a set controlling parameters
that are comprehensive and can be easily adjusted.

Real-time performance is hard to achieve.

Adaboost and Stack generalization are efficacious due
to the variety in predictions using multiple base level
classifiers.

Lack of suitable hybridization often faces high com-
putational costs.
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Table 5. Comparison of supervised learning approaches on various datasets.

Used Algorithms Authors Objective(s) FS Accuracy (%) FAR (%) Datasets Detected Attacks Ref
Support Vector Machine (SVM) Prabaharan et al. MDS Yes 72.75 - - Drive-by-download [45]

Ambusaidi et al. IDS Yes 99.79 (KDD Cup 99 dataset) 13 (KDD Cup 99 dataset) KDD Cup 99, NSL-KDD, Kyoto DoS, Probe, R2L, U2L [43]
Wagner et al. NADS No 93.4 1 Lincoln Zero-day attacks [44]

Kang et al. IDS Yes 96.9 7.7 DARPA DOS, R2L, U2R, PROBE [34]
Perdisci p et al. NADS Yes 97.6 2.4 Simulated dataset Payload-based anomalies [35]

K-Nearest Neighbors (KNN) Alazab Malicious codes detection Yes 94 - Honeynet project Datasets Malware and benign [48]
Bar et al. Anomaly traffic detection No 99.1 - - Payload-based anomalies [49]

Zargar et al. IDS Yes 99.01 17 DARPA 1998 DOS, R2L, U2R, Probe [33]
Lin et al. IDS Yes 80.6 11.4 KDD-Cup 99 DOS, R2L, U2R, Probe [50]

Bayesian Networks Jing et al. IDS Yes - - DARPA 1998 Intrusions using system call logs [52]
Hesham Altwaijry IDS Yes 96 3.15 KDD-99 Dataset DOS, Probe, U2R and R2L [53]

Moustafa et al. Attack detection Yes 95.98 4.02 UNSW-NB15 All attacks in Table 7 [54]

Decision Tree Singh et al. Botnet detection Yes 99.8 3 CAIDA Botnets [41]
Narouei et al. Malware detection Yes 97.8 (Depth 6) 8.3 Nappa Malware and benign programs [40]
Jabbar et al. IDS Yes 82.5 17.3 Kyoto Attacks in Kyoto dataset [42]

Fuzzy Technique Dickerson et al. IDS Yes - - - Malicious instances [57]
Haider et al. IDS Yes 92.8 8.1 NGIDS-DS DoS and DDoS [59]

FS: feature selection; FAR: false alarm rate; MDS: malicious detection system; IDS: intrusion detection system; NADS: network anomaly detection system.
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Table 6. Comparison of unsupervised learning approaches on various datasets.

Used Algorithms Authors Objective(s) FS Accuracy (%) FAR (%) Datasets Detected Attacks Ref
K-means Clustering Nguyen et al. IDS No 90.22 2.75 KDD99 DOS, R2L, U2R, Probe [66]

Lee et al. Attack detection Yes - - DARPA 2000 DDoS [62]
Li NADS Yes 92.3 5.81 KDD CUP 1999 DoS, U2R, R2L, Probe [61]

Costa et al. IDS No - - KddCup, NSL-Kdd and Netflow Different attacks [63]
Jadhav et al. IDS No 90 - - Malicious instances [64]

HC Horng et al. IDS Yes 95.72 7 KDD Cup 99 DoS, U2R, R2L, Probe [60]

GMM Moustafa et al. Web application attacks Yes 95.68 4.32 UNSW-NB15 All attacks in Table 7 [67]
Fan et al. NADS Yes 79.45 13.91 KDD Cup 1999 and Kyoto DoS, U2R, R2L, Probe [68]

Moustafa et al. NADS Yes 96.7 3.5 UNSW-NB15 All attacks in Table 7 [20]

PCA Han et al. IDS Yes 80.31 - KDD CUP 99 DoS, U2L R2L, Prode [73]
Bhagoji et al. Malicious detection No 97.52 - MNIST Vanilla, Strategic attacks [74]

Jamdagni et al. IDS Yes 99 - DARPA 99 and GATECH Payload-based attacks [37]
Ding et al. NADS Yes - - - Anomalies network traffic [75]

HMMs Moustafa et al. Malicious detection Yes 98.45 2.21 UNSW-NB15 All attacks in Table 7 [21]
Lin et al. Virus detection Yes - - - - [77]

GA Folino et al. IDS No 95 - KDD Cup 1999 DoS, U2L R2L, Prode [86]
Hasan et al. IDS Yes - - - Malicious instances [119]
Pillai et al. IDS Yes - - Created dataset Port scanning attacks [87]

ANN Hawkins et al. Outlier detection Yes - - KDD Cup 1999 DoS, U2L R2L, Prode [80]
Saber et al. IDS No 80.05 - KDD99 DoS, U2L R2L, Prode [78]

Jirapummin et al. IDS No 90 5 KDD cup 1999 Neptune, Port Sweep, Satan [81]
Ghosh et al. IDS Yes 84 7 DARPA U2R, R2L [82]

Saurabh et al. NADS No 82.72 7 KDD Cup 99 DoS, U2L R2L, Prode [84]
Rabbani et al. NADS Yes 97.5 3.6 UNSW-NB15 All attacks in Table 7 [14]

SOM Ramadas et al. NADS Yes 76.06 - - - [79]

Deep Learning Ludwing et al. IDS Yes 92.5 5.7 NSL-KDD DoS, U2L R2L, Prode [98]
Bontemps et al. NADS No 86 0 KDD99 DoS [90]

Shone et al. IDS No 97.85 2.15 KDDCup99 and NSL-KDD DoS, U2L R2L, Prode [91]
Maya et al. NADS No - - Artificial datasets Anomalies [92]
Wu et al. IDS No 82.78 4.72 NSLKDD and UNSW-NB15 All attacks in Table 7 [96]
Yin et al. NIDS Yes 81.29 1.27 KDDTest DoS, U2L R2L, Prode [120]

Muna et al. Malicious detection No 98.4, 92.5 1.8, 8.2 NSL-KDD and UNSW-NB 15 All attacks in Table 7a,b [89]
Alom et al. IDS Yes 97.5 - NSL-KDD DoS, U2L R2L, Prode [99]

FS: feature selection; FAR: false alarm rate; HC: hierarchical clustering; GMM: Gaussian mixture models; PCA: principal component analysis; HMMs: hidden Markov models; ANN: artificial neural network; GA: genetic
algorithm; SOM: self-organizing maps; IDS: intrusion detection system; NADS: network anomaly detection system.
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5. Evaluation Criteria

To accurately evaluate the performance of any IDSs, it is necessary that the system can
detect the attack and normal instances (as a binary detection problem) and in case of attack
recognition, the system should correctly classify the different types of attacks (as a multi-
class classification problem). There are various datasets and evaluation metrics available to
mathematically assess NADSs. The most popularly used datasets and evaluation metrics
are discussed as follows.

5.1. Datasets

The dataset is an important component of any anomaly detection system to assess the
efficiency and effectiveness of a detection and recognition system. The pre-processing of
the captured network traffic packets in high speed traffic is a very complicated task due to
the difficulty of labeling normal and malicious instances. Network traffic packages have
been captured and processed in an off-line or real-time dataset by using various tools such
as Gulp, Wireshark, tcptrace, etc. These raw data contain a massive variety of normal and
malicious instances.

The following are recent benchmark and real-life datasets used in the domain of NADSs.

• The UNSW-NB15 dataset [121] was generated in 2015 at Cyber Range Lab of the Aus-
tralian Center for Cyber Security (ACCS) in the University of New South Wales [121].
The UNSW-NB15 has been collected via IXIA PerfectStorm tool and consists of a
hybrid of normal and synthetic contemporary attack observations, in the form of
numerous patterns with normal evidences and nine groups of attacks. Backdoors,
DoS, Analysis, Fuzzers, Generic, Worms, Shellcode, Reconnaissance, and Exploits are
the types of attacks which are meaningfully characterized by 47 features for every
attack and normal ones. A closer look at the dataset shows that 2,540,044 numbers of
records (100 GB) of the raw network traffic observations were collected via different
devices. This dataset consists of 700,000 samples (in total) including 677,789 normal
and 22,211 malicious behaviors, respectively [122]. In the UNSW-NB15 dataset, IXIA
traffic creators were connected to three different servers: servers 1 and 3 were allocated
to generate normal instances and server 2 for malicious instances, while all servers
are connected to two routers, and router 1 is the main router. Using router 1, all pcap
files are captured to extract feature vectors. All the attack categories and the number
of patterns in the training and testing subsets for each attacks are listed in Table 7b.

• The KDD99 and NSL-KDD datasets: the KDD99 is a benchmark dataset [123] de-
veloped in the Lincoln Laboratories of the Massachusetts Institute of Technology.
The authors created a simulation involving a large variety of normal and malicious
samples in the Air Force LAN environment of the US military. The analysis of the
KDD99 datasets revealed some important issues that need to be addressed, so that
they could negatively effect the assessment of malicious detection techniques. To set-
tle these problems, a new benchmark dataset named NSL-KDD [124], contains the
extracted records of KDD dataset was developed and has the following advantages
over the first version of KDD99. The dataset is free of duplicated instances, though
also the features in bot testing and training datasets are extracted from various parts
of the original version of previous dataset. However, neither KDD99 nor NSL-KDD
datasets are able to accurately represent network traffic data as normal and malicious
instances are significantly different from contemporary network traffic [1]. All attack
categories and the number of patterns in the training and testing subsets for each
attack are displayed in Table 7a for the NSL-KDD dataset.

• LITNET-2020 [125] is an annotated real-world network flow dataset for network
intrusion detection and presents instances of normal and under-attack network traffic
observation. The dataset consists of 85 different features utilized to classify 12 types
of network attacks. The experimental analysis of this dataset conducted by two
classical and four modern datasets by key features and described its advantages and
limitations. The network traffic data captured over 10 months and this type of network
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data acquisition provides an advantage compared to the other artificial synthetically
generated datasets.

• The CAIDA dataset [126] is a benchmark dataset which contains various types of
malicious events to evaluate anomaly detection systems, particularly DoS and DDoS
attacks with the footprint of the packet headers. The CAIDA DDoS 2007 dataset is
more familiar in anomaly detection which contains an hour of anonymous network
traffic data exclusively for DDoS attacks. However, this dataset has some disadvan-
tages; the first one is that it does not have a ground truth for the attack observations
and the second one is its pcap files which were not correctly examined to extract
informative features.

• The DEFCON dataset [127] is another well-known dataset for the evaluation of
anomaly detection systems. It consists of network traffic data generated during the
capture the flag (CTF) hacking and information security competition. In CTF, students
were distributed into two categories: attackers and defenders. The generated traffic
during competition is very different from the actual network traffic instances, since it
includes only intrusive traffic without normal traffic observations; thus, the DEFCON
dataset is appropriate for assessing alert correlation techniques.

• The UNIBS dataset, [128] which is a real life dataset for IDSs, was obtained from the
network router during 3 days at the University of Brescia, Italy. The network instances
were captured from 20 different workstations using the tcpdump tool.

• The Kyoto dataset was conducted at Kyoto University. The dataset contains a por-
tion of network traffic packages extracted from honeypot devices. Feature creation
tools were used to extract 24 different features from the KDD99 datasets. Thereafter,
the extracted features were classified into 14 conventional and 10 additional features
to accurately represent network data properties. However, the main disadvantage of
this dataset is the lack of labeling and describing attack behaviors.

• The DARPA 2009 dataset and DARPA 2000 dataset [129] are benchmark datasets
which synthetically created the assessment of the network traffic data between the In-
ternet and 16 sub-networks accumulated during ten days in November 2009. The dataset
consists of SMTP, DNS, and HTTP background traffic instances and involves DoS and
DDoS attack observations.

• The CICIDS2017 dataset [130] was created at the Canadian Institute for Cybersecurity.
The CICIDS2017 consists of contemporary attack scenarios that was generated based
on data profiling, which is the same as the ISCX dataset. The network traffic packages
were processed using CICFlowMeter tools to extract significant features such as time
stamp, protocol types, and IP addresses.

• The ISCX-UNB dataset [131] is a real-life dataset developed based on users profiling
and descriptions of attacks. The datasets were recorded from a real-time simulation
network environment during 7 days of normal and synthetic malicious data simulators.
However, the authors included various multi-stage attack scenarios to enhance the
number of malicious instances, but the ground truth of different types of attacks was
not provided in this dataset to justify the credibility of the labeling [132].

• The TUIDS dataset [133] is a real-life dataset created at the University of Tezpur, India.
The dataset includes different types of attack scenarios and the network traffic packets
were collected using tools such as the nfdump and gulp to obtain representative fea-
tures. The features are classified into basic, time, window, content and connectionless
features from the preprocessed data and the corresponding labels [133].

• The CDX dataset [134] was created by the cyber-security team of the US military
academy. The dataset was captured over a network warfare competition and contains
ASNM features collected from tcpdump files of normal and malicious instances.

• The CTU-13 dataset [135] was captured at the CT university, including normal traf-
fic and Botnets data instances (13 batches of various Botnet scenarios). In every
scenario, a specific malicious datum was implemented using many protocols and
executed actions.
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• NGIDS-DS dataset [59] was created at the New South Wales university in Australia
to investigate Linux Host-based IDSs. The dataset consists of a variety of kinds of
malicious and normal instances generated using feature creation tools such as the
IXIA perfect-storm and stored in different CSV files.

• The LBNL dataset [136] is a benchmark dataset developed at the Lawrence Berkeley
National Laboratory (LBNL). Two different routers have been used at the LBNL to
collect network traffic packets and include about 1000 host systems for approximately
100 h.

• The ADFA dataset [137] was created at the New South Wales university in Australia
to investigate Linux and Windows host-based IDSs. In the training phase, the system
call traces greater than 300 bytes to 6 kB were neglected and also, in the evaluation
phase, the traces outside of the bound were omitted.

To recommend a suitable dataset for a researcher in the area of attack classification
and malicious behavior detection, two popular datasets (the NSL-KDD dataset in Table 7a
and UNSW-NB15 dataset in Table 7b) and the corresponding attack categories are listed
in Table 7. Overall, Table 8 represents a comparison of 10 well-known datasets from
the literature, and the comparison results show that the UNSW-NB15 dataset meets the
important requirements of a reliable dataset to evaluate NADSs.

Table 7. Dataset distribution for two popular datasets.

(a) The NSL-KDD Dataset

Category Training Data Testing Data

DoS 45,927 7458
R2L 995 2887
U2R 52 67

Probe 11,656 2422
Normal 67,343 9710

Total Records 125,973 22,544

(b) The UNSW-NB15 Dataset

Category Training Data Testing Data

Normal 56,000 37,000
Backdoor 1746 583
Analysis 2000 677

DoS 12,264 4089
Generic 40,000 18,871

Shellcode 1133 378
Reconnaissance 10,491 3496

Fuzzers 18,184 6062
Exploits 33,393 11,132
Worms 130 44

Total Records 175,341 82,332
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Table 8. Comparison of 10 popular datasets for NADSs.

Datasets Year U V W X Y Z

UNSW-NB15 [121] 2015 Yes Yes Yes Yes Yes Yes
KDD99 and NSL-KDD [123] 1999 Yes No Yes Yes Yes Yes

NGIDS-DS [59] 2017 Yes Yes Yes Yes Yes No
CAIDA [126] 2007 Yes Yes No No No No

DEFCON [127] 2002 No No Yes No Yes Yes
UNIBS [128] 2009 Yes Yes Yes Yes No Yes
DARPA [129] 2009 Yes Yes No No Yes Yes

ISCX and CICDS [131] 2017 Yes Yes Yes Yes Yes Yes
TUIDS [133] 2012 Yes Yes Yes Yes Yes Yes
LBNL [136] 2016 No Yes No No Yes No

U: (whether the dataset provided realistic network configuration information); V: (whether the dataset provided
realistic network traffic); W: (whether the dataset captured total interaction); X: (whether the observations labeled
accurately); Y: (whether the dataset provided many malicious scenarios); Z: (whether full packets were captured).

5.2. Evaluation Metrics

The performance of methods based on machine learning techniques and distance-
based measurement methods depend on calculating a confusion matrix to assess the
performance and effectiveness of the decision engine; in a binary classification normal
observation (class 1) discriminated against malicious ones (class 2) and the corresponding
confusion matrix depicted in Table 9.

The terms true positive (TP), true negative (TN), false negative (FN) and false positive
(FP) are popular evaluation elements to produce evaluation measurements such as false
positive rate (FPR), true positive rate (TPR), precision, recall and F-measure. In anomaly
detection scenarios, these terms are utilized to produce the following malicious behavior
evaluation metrics described as follows:

• Confusion matrix: compares the predicted class labels against the actual ones. The di-
agonal cells (TNs and TPs) represent the correct predicted classes and the other sides
represent FNs and FPs. The size of the confusion matrix depends on the number of
predefined classes. The confusion matrix for IDS can be binary detection, as shown in
Table 9, which is a 2-by-2 matrix to classify malicious instances against normal ones
or a multi-class classification anomaly recognition to recognize the type of network
anomalies (attacks).

Table 9. Confusion matrix for binary anomaly (attack and normal) detection.

Actual

Positive (Attacks Classes) Negative (Normal Class)

Predicted Positive (Attacks classes) TP FP

Negative (Normal class) FN TN

• True positive rate (TPR) is the proportion of malicious observations correctly de-
tected over the total number of malicious observations in the testing dataset.

• True negative rate (TNR) is the proportion of malicious observations wrongly de-
tected as normal over the total number of normal observations in the testing dataset.

• False positive rate (FPR) is the proportion of normal observations wrongly detected
as malicious over the total number of normal observations in the testing dataset.
The equation below describes how FPR is computed:

FPR =
(FP)

(TN) + (FP)
(3)
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• False negative rate (FNR) is the proportion of normal observations classified as nor-
mal over the total number of malicious observations in the testing dataset.

FNR =
(FN)

(FN) + (TP)
(4)

• Precision is the proportion of malicious observations correctly detected over the total
number of detected observations in the testing dataset:

Precision =
(TP)

(TP) + (FP)
(5)

• Recall is the proportion of malicious observations correctly detected over the total
number of malicious observations in the testing dataset:

Recall =
(TP)

(TP) + (FN)
(6)

• F-measure mixes the properties of both precision and recall measures and is a harmo-
nious mean of these two metrics:

F-measure = 2 ∗ (Precision) ∗ (Recall)
(Precision) + (Recall)

(7)

F-measure is a powerful measure for anomaly detection when the problem contains
unbalanced classes or target values.

• Overall accuracy basically assesses how accurately an anomaly detection system
works by measuring the percentage of correctly classified and miss-classified patterns.
If the accuracy of a system is 80%, this means the system correctly detected 80 patterns
out of 100 to their actual classes. The below equation describes how the overall
accuracy is computed:

OverallAccuracy =
(TP) + (TN)

(TP) + (TN) + (FP) + (FN)
(8)

• Receiver operating characteristics (ROC) curve is originally derived from signal
processing theory. In network anomaly detection, ROC curves visualize the relation
between significant rates such as FP and TP rates of a classifier system and also to
figure out the accuracy performance between two or more classifier systems.

• Matthews correlation coefficient (Mcc) can only be employed in binary malicious
behavior detection systems in which the users’ behaviors are classified as either
normal or attack [4]:

Mcc =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

Anomaly detection systems and broadly IDS techniques are evaluated to assess to
what extent these techniques are precise in detecting malicious observations. An ideal
detection system that achieves a 100% DR with 0% FPR indicates that all malicious activities
are correctly identified without any miss-detection. However, such ideal detection systems
are experimentally not achievable or very hard to achieve in a real-time network traffic
environment due to the complexity of traffic packages, and the large size and speed of
contemporary network systems. Sensitivity (also called TPR or recall) is more advantageous
when the designed system is preserved at the cost of a high FPR and FNR. On the other
hand, specificity (also called TNR) is more suitable when the accuracy of a system is
very low. The accuracy measure is a useful metric whenever intrusion detection data are
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balanced, however, in real network traffic data, the normal instances are significantly more
than the malicious ones.

6. Challenges and Future Directions

Contemporary malware detection systems are often insufficient for the new gener-
ation of malware, because such malicious software are created based on novel attacking
technologies. In this context, users’ observations including both normal and malicious in-
stances, and need to be carefully characterized and represented using the extracted packets
throughout a network. The responsibility of a malware analysis system is not only to detect
observations as malicious or normal, though the system might be improved to recognize
the type of abnormality that malware may perform (attack types). The authors believe that
an integration of traditional IDSs with recognition-based techniques can expand the system
into a new intrusion detection and recognition system. This supports that the system can
detect all malicious observations, and then classify the type of abnormality to accomplish
the appropriate response according to the attack nature [14].

As a result, existing studies in the area of NIDSs, show that it is still very hard to
develop a new NIDS to ensure three important properties such as robustness, scalability
and high performance in emerging technologies, to effectively and efficiently prevent
any types of malicious activities. In addition, experimental works show that locating the
place of NIDS and the best configuration for deployment within shared environments in
new computing technologies such as Cloud, edge, Fog computing and IoT, with various
stakeholders is also a very challenging task [132,138]. Some of the important issues with
respect to different phases of NADSs are sorted out as main challenges in the following.

6.1. Network Feature Selection and Extraction

In feature extraction phase, the dynamic processing and static processing methods
have some superiority and drawbacks. In real-time detection systems, it is preferable to
use static processing at the beginning until approximately 80% of network data instances
are well represented by using static features. In case of any probable problem in static
feature representation, the features can be represented using dynamic processing. In ad-
dition, recent features, e.g., file-to-file relation graphs, contain informative data about the
network properties.

6.2. Detection and Recognition Machine

• Based on various IDS datasets with multiple feature extraction tools, there is no
single machine learning technique which always performs well. Moreover, the per-
formance of anomaly detection techniques significantly depends on how to extract
informative features that can discriminate malicious instances against normal ones
via detection engines.

• Generally, ensemble learning classifiers can always perform better compared with
individual learning classifiers and achieve higher accuracy. In real-time network
anomaly detection systems, a successful malicious detection scheme needs to apply
various diverse classifiers over different kinds of feature representations.

• Another challenging task in ensemble learning architectures is how to select a suitable
number of unbiased and non-correlated classifiers among the various supervised
and/or unsupervised techniques to create an appropriate ensemble system for NADS.

• Since the properties of malware keep changing gradually, accordingly, the malicious
detection and recognition techniques should be improved and updated with the
contemporary anomalies encountered in the local network or the Internet.

• Cyber espionage attacks detection using traditional data extraction tools, which has
become one of the main challenges in IoT networks [25]. It is very hard to identify
these kinds of malicious activities through traditional NADSs, because the profiles of
normal instances for telemetry data of IoT sensors and network traffics still need to
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be created. A combination of deep learning and mixture algorithms can improve the
NADSs performance.

6.3. Datasets

• The dynamic updating of NADS datasets is a very important issue. The existing
instances in the database should be updated as soon as a new malicious observation
is detected by NADS.

• The availability of an unbiased NADS dataset is another concern for training and vali-
dating NADS models. Briefly, normal instances are significantly larger then malicious
ones in existing publicly available NADS datasets. For example, the KDD99 dataset
contains only four types of attacks and a huge amount of normal instances; similarly,
the UNSW-NB15 dataset contains nine groups of attacks (total of 22,211 malicious
instances) against 677,789 normal instances. Therefore, a benchmark and unbiased
network anomaly dataset for evaluating anomaly detection techniques is required.
Other datasets suffer from wrong labeling, less attack variety, and the incompleteness
of network data—which is not containing both headers and payloads. To create a new
IDS dataset for future works realistic environments is required that contains mixture
of various normal and contemporary attack scenarios in new computing technologies
(e.g., zero-day attacks). In addition, the ground truth that contains attack specifications
needs to be created to trust the datasets credibility while assessing new NADSs.

• It is usually better to provide sufficient features in the training dataset with balanced
distributions for normal and malicious instances to achieve the best reliable performance.

6.4. Real-Time Response

• Real-time malicious detection is an extremely challenging part of a NADSs. The first one
is related to a pre-processing step in which the network traffic packages always contain
a set of irrelevant and duplicated instances that need to be carefully and accurately
eliminated. The second one is the structure of detection and recognition techniques
which need to be dynamically adopted for existing and zero-day attacks. The above
reasons increase the pre-processing and detection time if not carefully addressed.

• Runtime limitation is a significant issue for anomaly detection systems. Without es-
caping any network packets, a real-time anomaly detection should be ideally suited
and be capable to capture and extract every packet.

6.5. Managing False Alarm (False Positive/Negative Errors)

FPR and FNR errors happen when there is miss-classification between normal and
malicious behaviors; in this case, normal instances may fall in an anomaly region and
conversely, a malicious one in the normal region. This is a very challenging and complex
task almost in all detection techniques. Creating a comprehensive profile that comprises
all normal behaviors is extremely difficult because the discrimination boundary between
legitimate and malicious instances is not always accurate; some recent attacks intelligently
mimic normal behaviors to deceive detection systems.

6.6. Adaptively and Scalability

New computing technologies such as IoT, Cloud/Fog computing paradigms and
deployed devices are expected to handle a big amount of data in high-speed networks that
exchange high data rates in real time; consequently, the architecture of new NADSs should
be self adaptive and scalable to monitor the large size and high speeds of current network
traffics. To this end, a collaborative NADS is required to process multiple network nodes
and concatenate its data to detect and recognize any malicious observation [22,70].

7. Conclusions

This paper discussed the state-of-art in the recent IDSs and applications, particularly
anomaly detection systems. Although IDSs play a significant role in cyber-security systems
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and applications, this technology still faces challenges for designing a real-time, reliable
and compatible system for online applications. Generally, NADS is assessed based on
network anomaly datasets, including a mixture of recent normal and malicious instances,
which reflects the efficiency of the detection system. In order to extract and prepare the
informative features from these datasets, data pre-processing methods including feature
creation, reduction, transformation, and normalization have been discussed to provide
machine learning techniques with appropriate features.

The main part of a NADS is the detection and recognition of malicious observations;
therefore, in this paper, the authors comprehensively discussed different types of machine
learning systems and applications to detect malicious instances against normal ones;
various machine learning methods based on supervised learning, unsupervised learning
and new ensemble and deep learning techniques have been discussed to comparatively
show their superiorities and limitations in terms of designing an effective network anomaly
detection system. In addition, several evaluation metrics for measuring the performance
of anomaly detection techniques have been discussed. A brief description of multiple
network anomaly datasets is also provided. For the future research directions, it is possible
to investigate the detection and recognition of zero-day attacks and as well as other deep
learning models without pattern labeling and feature extraction formalities in high-speed
network traffic data.

Given a comprehensive learning-based anomaly detection architecture, followed by
various properties for each phase discussed in this survey article, the authors believe it
is appropriate for researchers working in the domain to meet all of the key criteria for
designing and developing new network anomaly detection systems.
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