
entropy

Article

Soft Interference Cancellation for Random Coding in Massive
Gaussian Multiple-Access †

Ralf R. Müller

����������
�������

Citation: Müller, R.R. Soft

Interference Cancellation for Random

Coding in Massive Gaussian

Multiple-Access. Entropy 2021, 23,

539. https://doi.org/10.3390/

e23050539

Academic Editors: Benjamin M.

Zaidel and Ori Shental

Received: 12 March 2021

Accepted: 23 April 2021

Published: 28 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Digital Communications, Friedrich-Alexander Universität Erlangen-Nürnberg,
91058 Erlangen, Germany; ralf.r.mueller@fau.de
† The Proceedings of the IEEE International Conference on Communications (ICC), Virtual/Montreal,

14–23 June 2021.

Abstract: In 2017, Polyanskiy showed that the trade-off between power and bandwidth efficiency for
massive Gaussian random access is governed by two fundamentally different regimes: low power
and high power. For both regimes, tight performance bounds were found by Zadik et al., in 2019.
This work utilizes recent results on the exact block error probability of Gaussian random codes in
additive white Gaussian noise to propose practical methods based on iterative soft decoding to
closely approach these bounds. In the low power regime, this work finds that orthogonal random
codes can be applied directly. In the high power regime, a more sophisticated effort is needed.
This work shows that power-profile optimization by means of linear programming, as pioneered
by Caire et al. in 2001, is a promising strategy to apply. The proposed combination of orthogonal
random coding and iterative soft decoding even outperforms the existence bounds of Zadik et al. in
the low power regime and is very close to the non-existence bounds for message lengths around 100
and above. Finally, the approach of power optimization by linear programming proposed for the
high power regime is found to benefit from power imbalances due to fading which makes it even
more attractive for typical mobile radio channels.

Keywords: multiple-access; successive cancellation; iterative decoding; finite blocklength; block error
probability; random coding; AWGN; low-latency communications; spectral efficiency; non-othogonal
multiple-access

1. Introduction

Massive multiple-access is a key component of the upcoming internet-of-things. In
contrast to classical settings, the number of devices typically exceeds the number of bits
which an individual device aims to communicate. Therefore, it makes sense to consider
different asymptotics for massive multiple-access: Keep the message length fixed, but let
the number of devices grow over all bounds. This is in contrast to the classical setting in
information theory where the message length becomes infinitely large, but the number of
devices remains constant.

This new asymptotic setting was first discussed in [1] and further developed in [2]
for static, non-faded channels. A key observation of [2] is that a new definition of error
probability is appropriate: It is sufficient if most devices are able to decode their messages
correctly. Thus, we refer to the per-device probability of error in the sequel, even if this is
not stated explicitly.

A similar asymptotic setting, focusing on bit error probability and convolutional codes
concatenated with random spreading, was first analyzed in [3], see also [4]. Qualitatively
similar conclusions as in [2] were reported: The spectral efficiency grows without need
for larger energy per bit up to some limit. Only beyond that limit, additional energy is
required to further increase spectral efficiency. So, the behaviors fundamentally differ in
the low and the high power regime.
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The considered multiple-access setting is similar to sparse superposition codes on
the single-user additive-white Gaussian noise (AWGN) channel which were found able
to achieve channel capacity in [5]. For certain rates, however, iterative decoding methods
show convergence issues. Similar to what is reported in [4], these issues can be overcome
by power profile optimization [6,7].

The existence bounds found in [2] were improved in the subsequent work [8] which
managed to very tightly quantify the tradeoff between spectral and power efficiency in
the regime of high signal-to-noise ratio (SNR). For low SNR, the gap between the two
bounds has remained significant. Furthermore, the bounds in [2,8] were obtained by non-
constructive means, i.e., just as Shannon’s 1948 random coding argument, they do not hint
towards any algorithm that is capable to achieve them closely, in practice. Therefore, this
work intends to pursue the following three aims:

(1) Improve the theoretical bounds in [8].
(2) Propose coding and decoding schemes with polynomial complexity that closely

approach the performances promised by these bounds.
(3) Investigate in which way these results for static channels carry over to fading channels.

In order to achieve these goals, the following methods are combined:

(A) Iterative soft cancellation of interference, i.e., only an attenuated version of the es-
timated interference is subtracted from the receive signal to reduce the potentially
harmful effect of error propagation [9,10].

(B) Treating residual interference as independent additive white Gaussian noise.
(C) Recent calculations of the exact ensemble-averaged block-error probability of inde-

pendent identically distributed (iid) Gaussian random codes in [11].
(D) Orthogonal constellations as efficient block codes with low rate.
(E) Finding the fixed-point of the iterations by tracking the evolution of the multiuser

efficiency of all devices as pioneered in [12].
(F) Power profile optimization by linear programming as proposed in [3,4] to cope with

the high power regime.

In order to achieve the three aims stated above, the paper is organized as follows: In
Section 2, the system model and iterative soft interference cancellation, i.e., Method A, is
introduced for an arbitrary number of devices. Section 3 is concerned with the analysis
of the proposed soft interference cancellation in the limit of infinitely many devices. First,
Section 3.1 finds the infinite device limit for the ensemble averaged posterior block error
probability of Gaussian random coding at fixed message length for a given amount of
residual interference combining Methods B and C. Then, this block error probability is
utilized in Section 3.2 to find approximate upper and lower bounds on the amount of
residual interference after soft cancellation and track their evolution combining Methods D
and E. Finally, Section 3.3 utilizes Method F to improve the convergence of the iterations
and the tightness of the bounds in the high power regime and completes the large-system
analysis. Section 4 addresses the influence of fading and shows that it is actually helpful
in the high power regime. Section 5 discusses numerical results and Section 6 outlines
conclusions and implications.

2. System Model

Let there be M devices with codewords c1, . . . , cM that want to communicate over the
Gaussian multiple-access channel

r =
M

∑
m=1

cm + n (1)

with AWGN n of unit covariance, i.e., E nn† = I. Every device wants to transmit K
information bits and encodes them into the codeword cm ∈ RMN for some N such that
MN ∈ Z. The codeword cm is chosen from the set Cm of 2K jointly iid Gaussian codewords
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by a bijective mapping to the information bits of device m. The codebooks of different
devices are chosen statistically independent from each other.

Let the total set of all devices be decomposed into a finite number of disjoint groups
G1, . . . ,GJ . Within group Gj, the power of every device is given by Pj/M, i.e., E cmc†

m =
PjI/M. The powers of the devices are equal within each group, but differ from group
to group. The fraction of devices in group Gj is denoted by αj = |Gj|/M. The aggregate
power of all devices is denoted by

P =
J

∑
j=1

αjPj. (2)

The devices are solely grouped to improve the convergence of successive cancellation
by means of power control, cf. Section 3.3; see [4,6,7] for detailed reasons on this device
grouping. All devices transmit independently from any other device in the same or a
different group.

Let
R =

K
N

(3)

denote the aggregate rate of all devices. It is sometimes referred to as spectral efficiency.
The meaning of the variable N is not intuitively clear. In fact, it is a free parameter for
system design. In the single device case (M = 1), it is the blocklength of the code. In [8], its
reciprocal 1/N is called user density.

Let all devices use parallel successive decoding in an iterative manner. That means all
devices are decoded in parallel resulting in estimated codewords ĉm. Then, the interference
is estimated for all devices and cancelled from the received signal, before all devices are
decoded again with (hopefully) lower error probability than initially. For any device m, the
new estimate at iteration i + 1 is formed from the estimate at iteration i by

ĉ(i+1)
m = f

r−
√

si)
J

∑
j=1

√
s(i)j ∑

m′∈Gj\{m}
q(i)m′ ĉ

(i)
m′

 (4)

for some soft-cancellation coefficients q(i)m and renormalization factors s(i) and s(i)j to be
specified later on, as well as some decoding function f (·). This process is repeated until a
steady state is reached.

During iterations, the estimates of the codewords of the devices become correlated.
Thus, it is not ideal to estimate the aggregate interference by directly summing the inter-
ference contributions of all interfering devices. In the sequel, we propose a simple low
cost countermeasure that, in Section 5, turns out to work, though it also leaves room for
further improvements.

In order to cancel interference, an estimate for the interfering signal due to group Gj is
calculated for all groups. The estimate is formed by

ı̂j =
√

sj ∑
m∈Gj

qm ĉm (5)

with sj being a renormalization factor that will be discussed in the sequel.
If all interference estimates qm ĉm in (5) were uncorrelated, the total interference power

would be given by

E ||ı̂j||2 =
sjPj

M ∑
m∈Gj

q2
m, (6)

since E ||ĉm||2 = Pj/M for devices in group Gj. Since the interference estimates qm ĉm are
not uncorrelated, the estimated interference is typically larger. This overestimation leads to
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a too aggressive interference cancellation policy which is prone to error propagation. To
avoid such harm, we set

sj =

Pj
M ∑

m∈Gj

q2
m∣∣∣∣∣

∣∣∣∣∣ ∑
m∈Gj

qm ĉm

∣∣∣∣∣
∣∣∣∣∣
2 . (7)

An additional minor improvement is achieved, if the re-normalization is repeated among
device groups. The total estimate of interference is, thus, formed as

ı̂ =
√

s
J

∑
j=1

ı̂j (8)

with

s =

J
∑

j=1

Pj
M ∑

m∈Gj

q2
m∣∣∣∣∣

∣∣∣∣∣ J
∑

j=1
ı̂j

∣∣∣∣∣
∣∣∣∣∣
2 . (9)

These two re-normalizations of the interference estimate strongly improve the block error
rate simulated in Section 5.

3. Large-System Analysis

The signals of all devices initially fully interfere with each other. After some iterations,
only a certain fraction vj of the interference power, which group Gj had initially contributed,
remains due to partially successful cancellation of interference. At this point, the aggregate
power of interference and noise is given as

I = 1 +
J

∑
j=1

αjvjPj (10)

in the large device limit M→ ∞, as the power of the device of interest vanishes.

3.1. Asymptotic Block Error Probability

Given a certain fraction of remaining interference, we want to calculate the posterior
(conditional) block error probability of the decoder averaged over the random code ensem-
ble in the large device limit M→ ∞. We will need this block error probability in Section 3.2
to find the fixed-point of the iterative cancellation process.

We start with the unconditional block error probability which is calculated in Appendix A
utilizing recent results in [11].

Theorem 1. Given the Gaussian multiple-access channel defined in (1) and residual interference
treated as AWGN, the unconditional block error probability of any device in group Gj averaged over
the random code ensemble of this same device converges almost surely to

pj = 1−
∫
R

Q
(

x−
√

ηNPj

)2K−1
Dx (11)

for M→ ∞ with Dx := e−x2/2/
√

2πdx denoting the Gaussian measure and

η =
1

1 +
J

∑
j=1

αjvjPj

(12)
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denoting the multiuser efficiency [13].

The unconditional block error probability (11) is the symbol error probability of a
2K-dimensional orthogonal constellation in AWGN and can already be found in [14], see
also ([15] 5.2-21). All codewords of all devices are asymptotically pairwise orthogonal to
each other in the large device limit. This is a special case of a stronger result in [16]:

Theorem 2. Let there be n iid zero-mean Gaussian random vectors in βn dimensions with
0 < β < ∞. Let α be the cosine of the smallest angle between any pair of them. Then, α

√
n/ ln n

converges almost surely to 2, as n→ ∞.

Note, however, that asymptotic pairwise orthogonality does not imply that codewords
do not interfere with each other. Even if the interference due to the codeword of an
individual device vanishes, the aggregate interference of infinitely many devices may be
strictly positive.

The asymptotic orthogonality allows us to calculate some posterior block error proba-
bilities in the large device limit MN � 2K. Consider an alternative Cartesian coordinate
system in 2K dimensions that results from the original coordinate system by the following
2-step procedure:

1. an orthonormal transformation such that c̃k, denoting the kth codeword of the code-
book of the device of interest, is a positive multiple of the kth unit vector, for all
1 ≤ k ≤ 2K.

2. the removal of all coordinates with indices greater than 2K.

The orthonormal transformation ensures that the statistical properties of all signals
are preserved. Treating residual interference as AWGN, the dropped coordinates do not
contain useful information about the data of the device of interest.

Let the r̃ = [r̃1, . . . , r̃2K ] denote the received vector in the new coordinate system.
The tildes serve to distinguish the original coordinate system in MN dimensions from
this newly introduced one in 2K dimensions. Assume that codeword c̃1 has been sent
and define

r̃k: = max{r̃k, r̃k+1, . . . , r̃2K}. (13)

Note that r̃1 and r̃2: are statistically independent and r̃1: = max{r̃1, r̃2:}. With these
definitions, a decoding error occurs, if r̃2: > r̃1. Conditioning on the largest component of
the receive word r̃1:, we get the posterior block error probability

pj|r̃1:
= Pr(r̃1 < r̃2:|r̃1:) (14)

=

∫
R

Pr̃1(r̃2:)pr̃2:
(r̃2:)δ(r̃2: − r̃1:)dr̃2:

pr̃1:
(r̃1:)

=
Pr̃1(r̃1:)pr̃2:

(r̃1:)

pr̃1:
(r̃1:)

(15)

utilizing Bayes’ law with Pa(·) and pa(·) denoting cumulative distribution function and
probability density function of a, respectively. The Dirac function δ(·) occurs, since r̃1 < r̃2:
implies r̃2: = r̃1:. Furthermore, exchanging random variables r̃1 and r̃2: in (14) gives the
probability of the complementary event. Thus, we have

pr̃1:
(r̃1:) = Pr̃2:(r̃1:)pr̃1

(r̃1:) + Pr̃1(r̃1:)pr̃2:
(r̃1:). (16)

which leads to

pj|r̃1:
=

1

1 +
Pr̃2:(r̃1:)pr̃1

(r̃1:)

Pr̃1(r̃1:)pr̃2:
(r̃1:)

=
1

1 + F
(

r̃1:
/√

I
) (17)

with implicit definition of F(·).
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Since r̃1 is a Gaussian random variable with mean
√

NPj and variance I, we have

Pr̃1(x) = Q
((√

NPj − x
)/√

I
)

. (18)

Furthermore, r̃2, . . . , r̃2K are Gaussian random variables with zero mean and variance I.
Thus, we have

Pr̃2:(x) = Q
(
−x
/√

I
)2K−1

. (19)

With (18) and (19) and their derivatives, the posterior block error probability (17) can be
evaluated for any observation r̃1:. In particular, we find

F(x) =
Q(−x)e−

1
2 (x−
√

ηNPj)
2

Q
(
−x +

√
ηNPj

)
e−

x2
2 (2K − 1)

(20)

where the interference power I was substituted by the multiuser efficiency η via (10)
and (12).

The closed form expressions (14) and (20) will be used in the next subsection to track
the evolution of residual interference during iterations.

3.2. Evolution of Residual Interference

In order to track the block error probability during iterations, we need to connect the
fraction of remaining interference vj to the error probability at the previous iteration. This
subsection serves exactly that purpose.

The remaining interference is determined by the way potential interference is cancelled.
There are various ways of performing soft interference cancellation. Irrespective of the
precise algorithm, the dynamics of the iterations can be studied by tracking the multiuser
efficiency, as proposed in [12]. The advantage of tracking multiuser efficiency in comparison
to, e.g., using extrinsic information transfer charts (see [17] for details), is the fact that the
multiuser efficiency of all devices is equal in the large system limit ([12] Proposition 2). So
only a single parameter needs to be tracked.

With (12), we have

η(i) =
1

1 +
J

∑
j=1

αjv
(i)
j Pj

(21)

with η(i) and v(i)j denoting the multiuser efficiency and the remaining fraction of interfer-
ence in group Gj, both at iteration i. The goal of this section is to characterize the mapping

η(i) 7→
[
v(i+1)

1 , . . . , v(i+1)
J

]
(22)

in order to track the evolution of the multiuser efficiency.
During iterations, the interference may become correlated to the true data. This is a

severe issue, since decision rules based on Euclidean distance, as used in this work, require
the statistical independence between data and interference. As found in the very related
context of sparse superposition coding [7], such correlations do indeed occur. This problem
is often addressed by means of approximate message passing [18,19] and its various recent
improvements [20–22] via cancellation of the Onsager reaction terms; see [23] for details.
Due to the multidimensional nature of the codebook, approximate message passing is
anything but straightforward to apply to the problem at hand and is left for future work.

Correlations between data and noise are not as severe as for scalar interference cancel-
lation with antipodal data due to the following property of the random code construction:
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The codewords of all devices are chosen statistically independent. Thus, they are orthogo-
nal in the large device limit. This means that a wrong decision in iteration i, by means of
erroneous cancellation, does not lead to an additional interference in iteration i + 1 that
points into the same direction as the true signal, as it would be the case for, e.g., binary
antipodal constellations. In contrast, it creates additional interference that is orthogonal
to the true data. For the sake of analytical tractability, we assume that the correlation of
noise and data during iterations can be neglected. This implies that sj = s = 1, ∀j. We
have to keep in mind that the results, obtained under this assumption, are not exact, but
an approximation.

For the calculation of error probability, we rely on self-ergodicity. Self ergodicity
means that, in an infinite population of independent devices, the relative frequency of
decoding errors matches its statistical distribution. Thus, the instantaneous interference
power after interference cancellation based on potentially erroneous decoding also equals
its statistical expectation.

If we have received word r and decided for a codeword ĉm, this decision is correct
with probability 1− pj|r for all m ∈ Gj. Paying tribute to potentially wrong decisions,
we do not fully subtract the codeword ĉm from the received word r, but only subtract
qm ĉm with some soft-cancellation factor 0 ≤ qm ≤ 1, cf. (4). In the large system limit, the
error probabilities within each group are identical due to self-ergodicity and so are the
soft-cancellation factors. So, we can set qm = qj|r. After soft cancellation, the remaining
interference power due to any device in group Gj is

[
(1− qj|r)

2(1− pj|r) +
(

1 + q2
j|r

)
pj|r

] Pj

M
(23)

on average. Note again that all codewords are orthogonal. In case of erroneous cancellation,
the interference does not add in amplitude, but in power. Direct optimization of (23) leads
to the soft-cancellation rule

qj|r = 1− pj|r. (24)

Together with (23), the fraction of remaining interference becomes

vj = 1− E
r

(
1− pj|r

)2
. (25)

In order to implement (24), we need to know pj|r, the error probability within device group
Gj given the receive word r.

Since we do not know how to calculate pj|r, we will use upper and lower bounds on
the fraction of remaining interference. For the upper bound, we base our soft-cancellation
on pj|r̃1:

instead of pj|r. This yields

vj < vu
j = 1−

∫
R

Q
(
− x√

I

)2K−1
e−

(
x−
√

NPj

)2

2I

[1 + 1/F(x)]
√

2π I
dx (26)

= 1−
∫
R

Q
(
x−

√
ηNPj

)2K−1

1 + 1/F
(√

ηNPj − x
) Dx. (27)

For the lower bound, we assume perfect knowledge of whether a decision is correct or not.
This implies

vj > vl
j = pj. (28)

In the sequel, we will refer to these bounds when addressing the performance of decision-
directed soft-cancellation. A comparison of (27) and (11) shows that the two bounds only
differ by the denominator in (27).
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3.3. Improving Convergence

Irregularity aids the convergence of iterative systems. This phenomenon is well stud-
ied, e.g., in the context of low-density parity check codes [24]. It has also been observed
for iterative multiuser decoding in [3]. There are various ways to introduce irregular-
ity into iterative multiuser decoding. In the sequel, we will address power imbalances
among devices.

While for low rates, equal power levels for all devices turn out optimal, this does not
hold if the rate exceeds some finite threshold. This effect was first observed in [3] and
also reported for sparse superposition codes in [6,7]. In the sequel, we apply the ideas
of power optimization laid out in [3] to Gaussian random coding assuming an infinite
number of devices.

Power optimization can be performed by linear programming. This is possible, as
the multiuser efficiency is identical for all device groups. Its evolution during iterations
can be tracked by the dynamical system defined in (21) and (22). The mappings from the
multiuser efficiency to the fractions of remaining interference depend on the particular
way, interference cancellation is implemented. For the upper and lower bounds considered
in this paper, they can be found in (27) and (28) via (11).

In order for iterations to converge, we need to ensure that the multiuser efficiency at
the next iteration exceeds the current multiuser efficiency by at least an arbitrarily small
margin ε > 0. This can be ensured by the linear program

min
α1,...,αJ

J
∑

j=1
αjPj

subject to αj ≥ 0 ∀j
J

∑
j=1

αjPjvj(η) <
1

η+ε − 1 ∀η ∈ E

J
∑

j=1
αj = 1

. (29)

for appropriately chosen interval E ⊂ [0; 1] and margin ε. The upper end of the interval and
the margin are design parameters of the multiuser system. The smaller the margin is, the
more iterations are needed. The choice of E , however, is not trivial at all. The lower end can
be chosen arbitrarily close to 0, but eventually also somewhat larger to speed up the linear
program as long as it does not exceed the multiuser efficiency before the first iteration.
The choice of the upper end determines the final error probability by means of a strictly
monotonous function (more remaining interference implies higher error probability). It is
typically close to one.

The powers Pj are quantized versions of the optimal distribution of powers. The
larger the number of groups J, the better is the approximation to the optimal distribution.
This indirect way of power optimization is chosen, as the function vj(η) depends in a
non-convex way on the powers of the devices, see (27), but does not involve the group size.
In this way, the optimization can be efficiently solved by linear programming and takes
only few seconds on a desktop computer.

4. The Near-Far Gain

In practice, receive powers of devices will vary anyway due to different propagation
conditions among devices. This can be utilized to reduce the average transmit energy
per bit following the ideas of [25], see also ([26] Chapter 5) and [27]. In [28], the term
near-far gain was coined to refer to this convenient property of wireless systems in order
to emphasize that the near-far effect does not cause problems, but is actually beneficial, if
the system is designed in the right way. A similar concept was popularized more recently
under the generic term non-orthogonal multiple-access (NOMA) [29]. In context of the
current work, one simply needs to slightly adjust the objective function of (29).
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The origin of the near-far gain is sometimes obscured in recent papers on NOMA. In
fact, the near-far gain is difficult to understand intuitively, if one is too focussed on a direct
boost in data rate. Information theory, however, establishes a fundamental duality between
data rate and energy per bit. If our aim is to minimize the energy per bit for a given target
data rate instead, the near-far gain is very intuitive, as explained in the sequel.

For iterative decoding and/or successive cancellation to work close to capacity limits,
irregularity is required, in general. This irregularity can be provided by the system design
at some price, e.g., protecting some data symbols by more parity-checks than others.
This comes at the expense of more redundancy and, thus, reduced data rate. In successive
cancellation, the equivalent is larger transmit power. Here the price is paid in dual currency:
in the energy per bit.

Near-far situations provide irregularity for free. It takes the form of receive power
imbalances. These natural receive power imbalances are not exactly distributed as they are
supposed to be. Adjustment is needed. However, it takes less effort to adjust from already
imbalanced receive powers than starting from the worst case: equal received powers. The
reduced adjustment effort is the near-far gain measured in reduced transmitted energy-per
bit. It may be quantified running the linear program (33) once with unit weights and once
with weights provided by natural attenuation, then comparing the two total powers (2).
Standard methods can be applied for currency conversion into bits/s/Hz.

The near-far gain is not restricted to path loss alone. Long-term fading typically
exhibits dynamics slow enough to be utilized in the same or a similar way. For some
systems, even short-term fading may be utilized. These details have been extensively
discussed in the recent NOMA literature, cf. [29] for a survey.

5. Numerical Results

Numerical results can be difficult to obtain. If the number of bits per device exceeds
values around 35, the exponent 2K − 1 in various equations becomes numerically unstable
to evaluate, as the basis is very close to one. This can be circumvented as follows:

Q(x)a = ea ln(1−Q(−x)) =
∞

∏
i=1

e−aQ(−x)i/i (30)

For sufficiently large a, all factors for i > 1 are so close to one that they can be ignored;
see [11] for details. Furthermore, the Gaussian integration can be tedious. We recommend
Gauss–Hermite quadrature with several hundred terms (we use 300 in this work).

5.1. Equal Path Loss for All Devices

Figure 1 shows the trade-off between spectral efficiency and power efficiency for block
error rate 10−3, the power distribution optimized among devices with parameter ε = 10−3,
and equal message lengths for all devices. In order to find the upper end of the interval E ,
the method of interval nesting was applied and typical values for target error probability
10−3 were found to range from 0.95 to 0.99 depending on the signal-to-noise ratio. Figure 1
shows that there are two different paradigms: the equal power regime and the distributed
power regime.
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Figure 1. Spectral efficiency vs. rate-compensated SNR for per device block error rate 10−3. The solid
lines refer to our inner and outer bounds introduced in Section 3.2. The dashed and dotted lines refer
to the best inner and outer bounds of [8]. The two indistinguishable red lines are given by setting
w` = 1 in (36) for K = 100 and K = 8. Points marked by circles and crosses refer to simulations with
256 and 32 devices in the largest group, respectively.

5.1.1. Equal Power Regime

In the equal power regime, all devices transmit at the same power. In this regime, our
outer and inner bounds on power efficiency coincide and spectral efficiency is independent
of power efficiency. Iterations proceed until the multiuser efficiency approaches unity
closely and nearly all interference is removed. Thus, the error probability relates to Eb/N0
approximately as

Pe = 1−
∫
R

Q

(
x−

√
2K

Eb
N0

)2K−1

Dx. (31)

In this regime, the error probability is determined by the minimum required Eb/N0 and
the number of information bits per device, i.e., K.

5.1.2. Distributed Power Regime

In the distributed power regime, the sizes of the device groups are optimized by the
linear program (29). Within each group, the power per device is the same, but it differs from
group to group. In order to reduce granularity effects of the discretization of the power
distribution, the linear program is run with more than hundred power groups. However,
the linear program returns most of them empty (with zero devices). This indicates that the
optimum number of groups is finite. Numerical results of the optimum power grouping
are shown in Tables 1 and 2 for K = 8 and K = 100, respectively. The larger spectral
efficiency and SNR, the larger is the optimal number of groups. For the minimal SNR, all
devices are in the same group. Any larger SNR has its own individually optimal power
distribution. All these observations are in line with the results on power optimization in
iterative decoding of convolutionally encoded code division-multiple access reported in [4].
The optimal power distributions in this reference are qualitatively very similar to the ones
found in this work.
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Intuitively, the power grouping solves the convergence issues in the following way:
There is a certain maximum number of equal power devices that can be handled by
successive interference cancellation. If the number of devices exceeds a certain threshhold,
decoding drowns in interference and iterations do not converge to a steady state with few,
but one with many errors. If we want to go beyond that threshhold, we need to give the
additional devices such a large power that they can be decoded almost error-free in the
presence of the lower power devices. Then, they can be cancelled perfectly, they do not
interfere any longer and the iterative decoding of the low power users can start. If the
number of devices increases further, we will, at some point, begin to need a third, forth,
fifth group, and so on.

For large values of spectral efficiency, the outer bound of [8] (red line in Figure 1)
becomes tighter than our outer bound which is based on the genie-added lower bound on
the remaining interference (28). For K = 100, inner bound and best outer bound differ by
about a quarter of a decibel, while for K = 8, they differ by approximately 1.5 dB.

Table 1. Optimal power profile for the approximate upper bound, K = 8 information bits per device,
and per device block error rate 10−3.

R = 1 100% average
log Eb

N0
3.82 dB 3.82 dB

R = 1.2 81.6% 18.4% average
log Eb

N0
3.76 dB 6.53 dB 4.42 dB

R = 1.4 69.0% 31.0% average
log Eb

N0
3.67 dB 7.56 dB 5.28 dB

R = 1.6 63.3% 36.7% average
log Eb

N0
3.64 dB 8.38 dB 6.01 dB

R = 1.8 58.4% 41.6% average
log Eb

N0
3.60 dB 9.10 dB 6.73 dB

R = 2 50.9% 23.1% 26.0% average
log Eb

N0
3.53 dB 8.15 dB 10.9 dB 7.68 dB

Table 2. Optimal power profile for the approximate upper bound, K = 100 information bits per
device, and per device block error rate 10−3.

R = 0.4 100% average
log Eb

N0
0.30 dB 0.30 dB

R = 0.6 68.3% 31.7% average
log Eb

N0
0.23 dB 1.73 dB 0.76 dB

R = 0.8 52.8% 22.3% 24.9% average
log Eb

N0
0.19 dB 1.86 dB 2.81 dB 1.36 dB

R = 1 41.7% 23.3% 10.6% 24.2% average
log Eb

N0
0.13 dB 1.93 dB 2.87 dB 3.92 dB 2.04 dB

R = 1.2 34.5% 22.0% 3.16% 7.61% 11.3% 21.4% average
log Eb

N0
0.10 dB 1.96 dB 3.24 dB 3.36 dB 3.74 dB 5.11 dB 2.76 dB

5.1.3. Finite Number of Devices

Simulations for a finite number of devices utilizing double re-normalization are
shown as circles and crosses in Figure 1. For all simulation points 25,000 symbols are
transmitted and up to 30 iterations are performed. For the fives simulation points around
log Eb/N0 = 4 dB a single group of devices was used with M = 256 and M = 32 for the
circles and the crosses, respectively. Performance strongly increases with the number of
devices, as the codewords become more and more orthogonal and the variations of the mul-
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tiuser efficiency around its large-system limit become smaller and smaller. Unfortunately,
simulations with larger number of devices were not feasible on the author’s computer due
to lack of memory.

For the simulation points at 5 dB and above, the power profile is optimized by try
and error, as the linear program (29) cannot be utilized for finite M. To keep the size of the
search space reasonable, only J = 2 groups are considered. In all cases, the largest group of
devices contains 256 and 32 devices, respectively, that operate with minimum power to
achieve the target block error rate of 10−3. At average log Eb/N0 ≈ 5 dB, a second group
with 64, respectively 8, devices of larger power is added. This increases the total number of
devices to 320, respectively 40. Due to the devices with higher power, the average Eb/N0
raises. At the same time, the parameter N can be reduced, such that the spectral efficiency
increases, as well. At average log Eb/N0 ≈ 6 dB, the second device group is chosen
twice as large as for log Eb/N0 ≈ 5 dB. Although the simulation results fall quantitatively
behind the theoretical predictions for M → ∞, they show the same qualitative behavior
as the proposed theory. Recent subsequent works [30,31] show that simulations based on
approximate message passing instead of basic soft interference cancellation perform well
between the asymptotic bounds proposed in this paper.

5.1.4. Minimum Signal-to-Noise Ratio

The block error probability at the minimum possible Eb/N0 is shown in Figure 2
for various message lengths K. The solid and dashed lines refer to (31) and the lower
bound [32]

Pe > 1−Q

(
Q−1

(
2−K

)
−

√
2K

Eb
N0

)
(32)

respectively. While the lower bound is tight for long messages, it is considerable loser
for short messages, where it may deviate from the exact result by even several orders of
magnitude. The looseness for K = 8 can also be observed in Figure 1.

-2 -1 0 1 2 3 4 5 610-15

10-10
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100

K

Figure 2. Block error probability at minimum required Eb/N0 for various message lengths
K = 4, 8, . . . , 512, 1024 (following arrow). Solid and dashed lines refer to (31) and (32), resp.

5.2. Discretized Path Loss Model

Path loss is commonly modeled by a continuous statistical distribution. The linear
program (29), however, can only handle a finite number of different received power levels.
Therefore, we use a simple discretized model, in the sequel.

Let there be only L different fading weights
√

w1, . . . ,
√

wL. Partition each of the J
device groups into L subgroups with the `th subgroup experiencing fading gain

√
w` and
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αj` denoting the fraction of devices in the `th subgroup of group Gj. We modify the linear
programm (29) to read

min
αj`,∀j,`

J
∑

j=1

L
∑
`=1

αj`w`Pj

s.t. αj` ≥ 0 ∀j, `
J

∑
j=1

L
∑
`=1

αj`w`Pjvj(w`η) <
1

η+ε − 1 ∀η ∈ E

J
∑

j=1
αj` = Pr(w`) ∀`

(33)

where we introduced additional constraints to prevent the linear program from changing
the distribution of the fading gains.

Considering a linear path loss model and free space propagation (which gives similar
results as a circular path loss model with attenuation exponent 4), we set the fading
weights to

√
w` =

1
`

(34)

and denote the average fading gain by

µ =
1
L

L

∑
`=1

w`. (35)

We redo the numerics of Figure 1 under otherwise identical conditions. However, we
measure power efficiency in transmitted energy per bit normalized to the average fading
gain, i.e., Eb/(µN0), which obeys the upper bound ([26] Equation (5.24))

Eb
µN0

≥ 1
2R

L

∑
`=1

w`

[
4aR`/L − 4aR(`−1)/L

]
. (36)

Here,
a = 1− Pe − H2(Pe)/K. (37)

is a correction factor accounting for finite blocklength; see [8] for details. Numerical results
are shown in Figure 3. In comparison to Figure 1, there is a smoother transition from the
equal to the distributed power regime. The gap between our two bounds has widened.
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Figure 3. Spectral efficiency vs. rate-compensated transmit signal-to-noise ratio for per device block
error rate 10−3. The two indistinguishable red lines are the outer bounds (36) for K = 100 and K = 8.
All curves for L = 10. The other lines refer to the inner and outer bounds introduced in Section 3.2.
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The equal power regime has moved towards lower values of Eb/(µN0). The effect is
particularly pronounced for short message lengths, cf. K = 8. This happens, as there is no
side constraint enforcing fairness among devices: While the overall block error probability
is still 10−3, devices in bad channel conditions experience larger error probability. Devices in
good channel conditions compensate for that. For devices in good channel conditions, low
error probability is very cheap in terms of transmit power. As a result, this overcompensates
for the excess power required by devices in bad channel conditions.

6. Conclusions

Random codes perform well for very massive multiple-access even if devices have
short messages. They can be iteratively decoded by soft-cancellation of interference,
but may required power optimization to create enough irregularity to allow iterations
to converge.

In the large device limit, orthogonal constellations in 28 dimensions carrying 8 infor-
mation bits are hardly more than 1.5 dB behind random codes of infinite length, if spectral
efficiency is larger than 1.1 bits/s/Hz. This gap is the larger, the smaller is the number of
devices. Further research into iterative algorithms for soft cancellation, e.g., utilizing ideas
of approximate message passing, may turn out helpful.

For high spectral efficiency, devices should be received at unequal power levels.
This is beneficial in practice, as wireless propagation conditions unavoidably create such
power imbalances.
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Appendix A. Unconditional Block Error Probability

Let z ∈ RNM denote the vector of interference and noise. The ensemble-averaged
block error probability for any device in group Gj given the Euclidean norms of receive
word r and interference-and-noise vector z, r = ||r|| and z = ||z||, respectively, is given
by [11]

pj|r,z = 1−Q MN
2

 r√
Pj/M

,
z√

Pj/M

2K−1

(A1)

with Qa(b, c) denoting the generalized Marcum Q-function. Although the Euclidean norms
of received word and interference-and-noise vector are not independent of each other,
they can be constructed out of three statistically independent random variables χ, ζ, and
γ [11] by

z2 = χ2 + ζ2 (A2)

r2 = χ2 + (ζ + γ)2. (A3)

As discussed in [11], ζ and |χ| are the radial component and the Euclidean norm of the
tangential component both of noise and interference, respectively. Furthermore, |γ| is
the Euclidean norm of the transmitted codeword. Thus, ζ is zero mean Gaussian with
variance I, γ2M/Pj and χ2/I are chi-square distributed with MN and MN − 1 degrees of
freedom, respectively.



Entropy 2021, 23, 539 15 of 17

The conditional error probability can be written as

pj|χ,ζ,γ = 1−Q MN
2

(√
χ2 + (ζ + γ)2

Pj/M
,

√
χ2 + ζ2

Pj/M

)2K−1

. (A4)

Both arguments of the generalized Marcum Q-function in (A4) linearly scale with M. The
term (χ2 + ζ2)/I is chi-square distributed with MN degrees of freedom. Its mean and
standard deviation are MN and

√
2MN, respectively. Its distribution, if normalized by

M, converges to a mass point at N. Due to the term Pj/M in the denominator, the second
argument of the generalized Marcum Q-function asymptotically scales linearly in M. The
first argument is even slightly larger due to the addition of γ. However, γ does not scale
with the number of devices, so asymptotically both terms scale in the same way. Thus, we
are interested in the behavior of the generalized Marcum Q-function when all arguments
grow over all bounds. In Appendix B, we show

lim
M′→∞

QaM′(M′ − ε, M′) = Q(ε− a) (A5)

with Q(·) denoting the standard Gaussian Q-function. Thus, we obtain

pj|χ,ζ,γ
·
= 1−Q

(√
χ2 + ζ2

Pj/M
−
√

χ2 + (ζ + γ)2

Pj/M
−

N
√

MPj

2
√

χ2 + ζ2

)2K−1

(A6)

with ·
= denoting asymptotic equivalence for M→ ∞. With probability approaching 1 for

large M, we have
χ2 � ζ2 ∧ χ2 � (ζ + γ)2. (A7)

Thus, we can develop the roots in (A6) into first order Taylor series at χ2 and obtain

pj|χ,ζ,γ
·
= 1−Q

−NPj − γ2 − 2|γ|ζ

2|χ|
√

Pj/M

2K−1

(A8)

The random variable |γ|√M/Pj is chi-distributed. Thus, its variance is upper bounded by 1
2 .

This implies that the variance of |γ| vanishes for large M. This is in contrast to γ2 and ζ
which have variance 2NPj and I given in (10), respectively. For M→ ∞, |γ| is arbitrarily
closely approximated by its asymptotic mean

√
NPj. Similar considerations imply that |χ|

may be replaced by its asymptotic mean
√

IMN. This gives

pj|χ,ζ,γ
·
= pj|ζ,γ

·
= 1−Q

(
−NPj − γ2 − 2

√
NPjζ

2
√

INPj

)2K−1

(A9)

The argument of the Q-function is the sum of a constant and two random variables with
asymptotic distributions

− ζ√
I
∼ N (0, 1) (A10)

− γ2

2
√

INPj
∼ N

(
−
√

NPj

2
√

I
,

1
2IM

)
. (A11)

The second random variable turns into a constant as M→ ∞. This implies

pj|ζ,γ
·
= pj|ζ

·
= 1−Q

(
−
√

NPj − ζ
√

I

)2K−1

. (A12)
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From the three random variables χ, ζ, and γ, only ζ has survived the infinite device
limit. The variance of γ has vanished. The variance of χ has not vanished, but the influence
of χ on the conditional block error probability has done so. It can be seen from [11] that ζ
is the radial component of noise and interference relative to the true codeword. Averaging
over the Gaussian random variable ζ, we obtain (11).

Appendix B. Limit of the Generalized Marcum Q-Function

The noncentral chi-square distribution with k degrees of freedom and non-centrality
parameter λ follows the CDF

1−Q k
2

(√
λ,
√

x
)
→ 1−Q

(
x− µ

σ

)
(A13)

which converges to the Gaussian distribution of same mean µ and variance σ2 due to the
central limit theorem. We have

µ = k + λ, σ2 = 2k + 4λ (A14)

Letting k = 2aM, λ = (M− ε)2, and x = M2, we get

QaM(M− ε, M)→ Q
(

x− k− λ√
2k + 4λ

)
= Q

(
M2 − 2aM− (M− ε)2√

4aM + 4(M− ε)2

)
(A15)

which for M→ ∞ converges to (A5).
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