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Abstract: Motivated by applications in unsourced random access, this paper develops a novel scheme
for the problem of compressed sensing of binary signals. In this problem, the goal is to design a
sensing matrix A and a recovery algorithm, such that the sparse binary vector x can be recovered
reliably from the measurements y = Ax + σz, where z is additive white Gaussian noise. We propose
to design A as a parity check matrix of a low-density parity-check code (LDPC) and to recover x from
the measurements y using a Markov chain Monte Carlo algorithm, which runs relatively fast due to
the sparse structure of A. The performance of our scheme is comparable to state-of-the-art schemes,
which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.

Keywords: unsourced random access; compressed sensing; low-density parity-check codes; glauber
dynamics

1. Introduction

The emergence of the Internet of Things (IoT) has motivated much research interest in
designing communication protocols for massive machine-to-machine type communication.
This type of communication setup is characterized by a large number of users that transmit
simultaneously to the same receiver, while each of these users has a very short message
to send. In addition, since IoT sensors are often required to be extremely cheap, the
transmission scheme must be as simple as possible, and the design objective is to minimize
the energy-per-bit, Eb/N0, under a reliability constraint.

In [1], Polyanskiy defined a communication model capturing the challenges in massive
machine-to-machine type communication. In this model, there is an unbounded number
of potential users, among which only k are active at each frame. Each active user has a
message of B bits to transmit, and transmission takes place over a multiple access channel
(MAC). Since the number of users is unbounded, the receiver cannot recover the identities
of the active users (as this information has unbounded entropy, assuming all potential users
are equally likely to transmit, and the channel has bounded capacity). Thus, the receiver’s
goal is to recover a list of k messages that contains “most” of the transmitted messages,
without identifying the sender of each message. This setup is therefore called the unsourced
random access channel [2]. The performance of a communication scheme over the unsourced
random access channel is assessed by the tradeoff it achieves between energy-per-bit
and the per-user probability of error (PUPE), which is the probability that the message
transmitted by an active user did not enter the list of messages the receiver outputs.

Over the last few years, there has been great interest in developing efficient low-
complexity schemes for the unsourced random access channel [2–15]. A natural approach
for this setup is for all users to transmit codewords from the same codebook. It can
be easily seen that if A ∈ Rn×2B

is a matrix whose columns are the codewords of this
codebook, and x ∈ {0, 1}2B

is a vector whose ith entry equals 1 if one of the active users
chose message i and 0 otherwise, the channel output is y = Ax + σz, where z is white
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Gaussian noise (we assume here for simplicity that no message was chosen by more
than one user). Since the number of active users k is typically of the order of tens to
hundreds, and is much smaller than 2B, whereas the blocklength n is typically on the order
of 104 to 105, the problem of designing efficient codebooks and decoding algorithm for
the unsourced random access channel corresponds to designing the sensing matrix A and
a recovery algorithm for a compressed sensing problem [1]. However, this compressed
sensing problem has two non-standard features: (i) the dimensions of the problem are huge
(recall that B = 100 is a typical number); and (ii) the sparse vector is binary, in contrast to
the standard compressed sensing setup where the nonzero entries can take values in an
interval within the real line.

To address the dimensions of the compressed sensing problem, Amalladinne et al. [7]
introduced the coded compressed sensing framework, where the B message bits are di-
vided to smaller chunks and are encoded on different sub-blocks. This idea breaks the
original compressed sensing problem into a sequence of compressed sensing problems
with manageable dimensions, which can be handled via existing tools from the compressed
sensing literature (we remark that this is somewhat related to ideas that have previously
appeared in the compressed sensing and group testing literature, wherein one constructs
the measurements matrix by combining an “outer” and “inner” code—see, e.g., [16–18]).
A difficulty that arises under this framework is that the sub-messages eventually have to
be stitched to one long message, and a tree code was developed by Amalladinne et al. [7]
for this purpose. While there has been many important advances in the field since the first
appearance of the coded compressed sensing framework [19], the idea of first solving small
compressed sensing problems and then leveraging the solutions to obtain estimates of the
entire message still appears in one way or another in practically all schemes achieving state
of the art performance.

Motivated by the above, the focus of this paper is the design of sensing matrices
and efficient decoding algorithms for (small dimensions) compressed sensing of binary
signals. Originally, Amalladinne et al. [7] treated this challenge by designing the sensing
matrix based on BCH codes and using off-the-shelf recovery algorithms, such as LASSO
or non-negative least squares (NNLS), for decoding. The main weakness of this approach
is that it fails to exploit the fact that the entries are binary. Later, Fengler, Jung and
Caire [9] suggested using Sparse regression codes with approximate message passing
(AMP) decoding. The main benefit of the AMP decoder is that it allows incorporating any
prior one has on the signal x, and not just sparsity. Consequently, it achieves excellent
performance when x is a binary sparse vector and the sensing matrix A is i.i.d. Gaussian.
This framework has more benefits, for example it allows one to efficiently jointly decode
all compressed sensing problems corresponding to the different sub-blocks and one can
even iterate between the AMP decoder and the tree decoder [11].

In this paper, we propose an alternative design for a sensing matrix A and a decoding
algorithm. Our sensing matrix A is taken as the parity check matrix of a low-density parity
check (LDPC) code, thought of as a matrix over the reals. The decoder is based on the
Markov Chain Monte Carlo (MCMC) method, more specifically, Glauber dynamics. This
method performs a random walk over a Markov chain whose state space consists of all
possible values of x and whose stationary distribution is the conditional probability of x
given the measurement y. Due to the sparse structure of the matrix A, each step in the
random walk can be simulated with a low computational cost.

For the compressed sensing problem with binary signals problem, our proposed
framework achieves comparable performance to that of AMP with a Gaussian sensing
matrix. However, in contrast to the AMP framework, which is based on sensing matrices
that are Gaussian i.i.d., or “Gaussian i.i.d.-like”, our sensing matrix is sparse. The sparsity
of the sensing matrix A in compressed sensing of binary signals has several benefits that
go beyond the unsourced random access application:

• Storage. Storing a sparse matrix requires fewer memory resources than storing a dense
unstructured matrix, such as a matrix sampled from the i.i.d. Gaussian ensemble.
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We remark, however, that the AMP algorithm often works very well for compressed
sensing of binary signals even when the Gaussian i.i.d. matrix A is replaced with a
sensing matrix that is dense yet easy to store. For example, Amalladinne et al. [20]
suggested taking A as a sub-sampled Hadamard matrix.

• Joint source-channel coding with local updates. Consider the problem of storing
a sparse binary vector x ∈ {0, 1}M with Hamming weight at most k, in an array of
n noisy memory cells. By noisy memory cells, we mean that the value read from
memory cell i is modelled as si + zi, where si is the stored value and zi is additive
noise, e.g. Gaussian. This is a reasonable model for magnetic recording (ignoring
intersymbol interference) [21] and for flash memories (ignoring further impairments
like cross talk) [22]. Note that this is actually a joint-source channel coding problem
where the source is x ∈ {0, 1}M, the channel is Gaussian and can be used n times,
and the distortion measure is Hamming distortion. It is often desirable to use update
efficient schemes. In such schemes changing one bit in the input vector x, should
correspond to changing the content of a small number of memory cells (see, e.g.,
[23]). When the encoding scheme is s = Ax, an update in one coordinate of x, say xi,
corresponds to adding (removing) the ith column of A to (from) s. If each column has
a small number of nonzero entries, the update involves changing the stored value in a
small number of cells. Thus, using a matrix A with sparse columns is highly desirable.

• Group testing. In group testing, the goal is to detect a set of at most k defective items
from M possible items. To this end, we designate by x ∈ {0, 1}M the vector whose
nonzero entries are defective. We have n measurements of x, each corresponding to a
different “pool”. Each pool is a subset of [n], and the corresponding measurement is
obtained by passing the number of defective items in the pool, denoted by `, through
some noisy channel PY|L(y|`) (see, Definitions 3.1 and 3.3 in [24]). The typical case is
that the channel depends on the number of defective items ` only through the indicator
on the event {` > 0}, but the general model allows the measurement to be distributed
as `+ σz, where z ∼ N (0, 1). Thus, with this model the design of the group testing
scheme corresponds to designing a binary sensing matrix A ∈ {0, 1}n×M, and the
measurements are y = Ax + σz. Using pools, corresponding to the rows of A, with
small Hamming weight, results in simpler tests. For example, the original application
for which the group testing framework was developed was detection of syphilis
among a large group of patients, using a small number of tests. Using pools with
small Hamming weight means that we need to mix samples from fewer patients in
each pool, which results in less work for the lab technician.

In Section 2, we formalize the problem of compresses sensing of binary signals and
present our suggested construction for the sparse sensing matrix and our MCMC-based
recovery algorithm. Some theoretical analysis and justification for our suggested method is
also given. In Section 3, we evaluate the performance of the proposed scheme numerically
and compare it to other state-of-the art schemes for the compressed sensing of binary
signals problem. We also evaluate the performance of an end-to-end communication
scheme for the unsourced random access channel with a small amount of feedback, which
uses the proposed compressed sensing of binary signals scheme as an important ingredient.
Section 4 is devoted to conclusion and additional discussion.

2. Compressed Sensing of Binary Signals

We now define a formal mathematical model for the problem studied in this paper.
Consider a linear inverse problem of the form

y = Ax + σz, (1)

where x ∈ RM is an unknown signal, to be recovered; A ∈ Rn×M is a (known) linear mea-

surement matrix; and z ∈ Rn is i.i.d. Gaussian noise: z1, . . . , zn
i.i.d.∼ N (0, 1). This problem

becomes especially interesting in the under-determined regime, where the number of samples
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n is smaller than the signal dimension M—here, clearly, one cannot recover x generically,
and it is necessary to make additional structural assumptions on x. In compressed sensing,
one assumes that x is a sparse vector, where the number of non-zero entries k is very small
compared to M. Perhaps the most fundamental result in sparse recovery states that, in
order to recover exactly any k-sparse x from noiseless measurements y = Ax, one in fact
needs only n = O(k log(M/k)) linear measurements, where the sensing matrix A is taken
to be an i.i.d. Gaussian random matrix (see, e.g., [25], Chapter 9). The recovery procedure
itself, while not linear, can be formulated as a convex program which is computationally
easy to solve. In recent years, a vast literature on compressed sensing has formed, spanning
new theory, low-complexity algorithms and new constructions of good sensing matrices,
beyond the i.i.d. Gaussian setup. We make no pretense to give a literature review on this
topic; for a starting point, we refer primarily to surveys [25–34].

We consider a setting where x is constrained to be in a discrete set, on top of being
sparse. Specifically, we assume it is binary: x ∈ {0, 1}M. As described above, this problem is
closely related to communication over the unsourced random access channel, but problems
of this form have received some attention in the past (see, e.g., [35–38]).

Throughout, we assume a sparse binary prior for x. Specifically, let k be the ex-
pected sparsity, and denote ρ = k/M. The coordinates of x are assumed i.i.d. Bernoulli
random variables:

x1, . . . , xM
i.i.d.∼ Bernoulli(ρ), (2)

that is, Pr(xi = 1) = ρ and otherwise xi = 0. Clearly, the expected number of non-zero
entries is just E‖x‖0 = k. A recovery algorithm for x from y is a mapping x̂ : Rn → {0, 1}M.
The performance of a recovery algorithm is measured in terms of the bit error rate (BER)
it attains

BER(x, x̂) =
1
k

M

∑
i=1

Pr(xi 6= x̂i(y)), (3)

where the probability is taken with respect to both the additive noise, as described in (1),
and the signal prior (2). Note that the normalization in (3) is by the expected sparsity
k, rather than by the length M of the vector x. Since typically k � M in compressed
sensing, normalizing by M would yield a very small BER for any reasonable estimator, and
normalizing by k therefore makes more sense.

Given a signal dimension M and budget of measurements n, one would typically like
to: (i) construct “good” sensing matrices A that allow for noise-robust recovery of signals
with as little sparsity (large k) as possible; and (ii) come up with low-complexity recovery
algorithms for recovering x from y. As for Point (ii), note that one would like to go beyond
off-the-shelf compressed sensing algorithms, such as the LASSO [39–41] or Non-Negative
Least Squares (NNLS) [7,26,42–46], which are designed with any real or positive signal
in mind, and find algorithms that explicitly leverage the binary structure of the signal, to
attain an advantage in terms of recovery performance. In this paper, we address these
two points: for the sensing matrix, we propose to use sparse matrices based on LDPC
codes; as for the recovery algorithm, we propose to use an MCMC sampling method that
approximates the optimal (in terms of bit error probability) MAP estimator.

2.1. Sensing Matrices from LDPC Codes

We consider sensing matrices based on Gallager’s ensemble of LDPC codes [47].
Denote by LDPC(ν, s; M, n) the following ensemble of random bipartite and biregular
graphs, described below:

• One side of the graph has M vertices, which we call “variables” (the left side), and the
other has n vertices, called “factors” (the right side).
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• For simplicity, assume νM = sn. Each variable has degree ν, meaning it is connected
to exactly ν factors; each factor has degree s. Thus, there are exactly νM = sn edges in
the graph.

• The edges of G ∼ LDPC(ν, s; M, n) are sampled according to the following procedure.
The procedure runs in ν rounds, so that in every round one introduces M/s new
factors (we assume M/s is integer for simplicity), by randomly partitioning the
variables [n] into M/s parts of size s each, namely,

[n] =
M/s⋃
i=1

Si , Si ∩ Sj = ∅, |Si| = s for all 1 ≤ i, j ≤ n , i 6= j .

For every new factor 1 ≤ i ≤ M/s introduced in this round, one adds an edge between
i and all the variables in the corresponding Si.

The sensing matrix A ∈ {0, 1}n×M is taken to be the adjacency matrix of a randomly
sampled graph G ∼ LDPC(ν, s; M, n), that is,

Ai,j = A(G)i,j =

{
1 there is an edge in G between factor i and variable j
0 otherwise

.

The idea of constructing sensing matrices from bipartite graphs is not new. It is
known that when G is a sufficiently good expander, the corresponding adjacency matrix A
is a good sensing matrix (see, e.g., [48–51], ([25], Chapter 13) and the references therein).
Specifically, ensembles of LDPC codes have also been considered previously for compressed
sensing [52–54].

It is worthwhile to recall at this point that the recovery problem we consider here is
more structured than the “standard” compressed sensing setup: on top of being sparse, we
assume the unknown signal is binary, and in particular non-negative. Past results show that
the non-negativity assumption may give a considerable advantage in terms of the required
number of measurements, as well as robustness to noise (see, e.g., [26,42–46,55]).

We especially mention the results of Khajehnejad et al. [55]. We say that a bipartite
graph with left degree ν is an (r, ε)-expander if for every set |S| ≤ r of left vertices,
one has |N(S)| ≥ (1 − ε)ν|S|, N(S) being the neighbors of vertices in S. The results
of Khajehnejad et al. [55] state that a bipartite left-regular (r, 1− 1/ν)-expander yields,
after applying a very small perturbation to the entries of the adjacency matrix, a sensing
matrix where all non-negative dr/ν − 1e sparse vectors x can be recovered from y =
Ax (noiseless measurements). This guarantee, for non-negative signals, is considerably
better than what one has without the non-negativity constraint—to get recoverability
guarantees for “general” compressed sensing, one needs considerably larger expansion
(smaller ε) (see, e.g., [25], Chapter 13). There are well-known connections between the
decodability of LDPC codes and their expansion properties [56]. For example, for a slightly
different ensemble of LDPC codes (that contains Gallager’s ensemble), one can show ([56],
Theorem 8.7) (this result first appeared in [57]) that, with high probability, a random graph
is an (α∗M, 1− 1/ν)-expander, where α∗ is the positive solution of

ν− 1
ν

h2(α)−
1
s

h2

(
α

s
ν

)
− α

s
ν

h2

(ν

s

)
= 0 ,

and h2(p) = −p log(p)− (1− p) log(1− p) is the binary entropy function. While not pre-
cisely applicable for our setup (which uses Gallager’s ensemble), the following calculation
could nonetheless be thought of as a crude heuristic. For example, in the setup, we consider
later on in the numerical experiments, corresponding to a typical use-case for detection
in unsourced random access, M = 214, n = 211, ν = 16, s = 128, one can solve the above
equation numerically and get α∗ ≈ 0.993. Together with Khajehnejad et al. [55], this hints
that k = α∗M/′ν ≈ 101 sparse, non-negative signals can be consistently recovered. In fact,
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the experiments indicate that, practically, binary signals with considerably more non-zeros
can be recovered reliably in this setting (see Section 3.1).

2.2. MCMC Algorithm for Recovery

Recall that, for a given sensing matrix A, our goal is to construct an estimator x̂ = x̂(y)
such as to minimize the per-bit error rate (BER), as defined in (3). Clearly, the optimal
estimator in the sense of minimizing the BER is simply the per-coordinate maximum a
posteriori (MAP) estimator:

x̂BER,i = argmax
x̂∈{0,1}

Pr
(

xi = x̂
∣∣ y
)

, for all 1 ≤ i ≤ M . (4)

Computing the posterior Pr(xi | y) is a formidable task: it requires one to marginalize
over all other coordinates ` 6= i. From a computational point of view, this is highly
nontrivial, since the coupling between the coordinates of x, as induced by A, creates a
strong cross-coordinate dependency conditioned on y.

We propose to mitigate this difficulty by sampling. Instead of marginalizing and and
maximizing, we sample an x̂ ∈ {0, 1}M from the full posterior, given by

Pr
(
x = x̂

∣∣ y
)
=

1
Z

exp
{
− 1

2σ2 ‖y− Ax̂‖2 + λ‖x̂‖1

}
, (5)

where λ = log ρ
1−ρ , ρ = k/M and Z is the partition function (to see the correctness

of λ = log ρ
1−ρ in the expression above, note that the prior is Pr(xi = 1) = elog ρ and

Pr(xi = 0) = elog(1−ρ); in other words, Pr(xi = x̂i) = ex̂i log ρ+(1−x̂i) log(1−ρ) = eλx̂i+log(1−ρ) ∝
eλx̂i ). Taking the ith coordinate of x̂, call it x̂i, we obtain a sample from Pr(xi = ·|y), the
desired single-bit posterior distribution.

Intuition suggests that, when x̂BER,i has small error, the estimator obtained by sam-
pling, call it x̂SAMP,i, should have small error as well. This is because, if the optimal error is
small, the posterior Pr(xi|y) must put most of its mass on x̂BER,i = x̂BER,i(y); this in turn
means that, with high probability over the sampling procedure, one should in fact get
x̂SAMP,i = x̂BER,i. This reasoning is formalized in the following Lemma:

Lemma 1. Denote x̂BER = (x̂BER,1, . . . , x̂BER,M), with coordinates given by Equation (4). Let
x̂SAMP = x̂SAMP(y) ∼ Pr(· | y) be a random sample from the posterior (5). Then:

BER(x, x̂SAMP) ≤ 2 · BER(x, x̂BER)

In other words, the bit error rate of x̂SAMP is bounded by twice the optimal bit error rate, over
all estimators.

Note that, on the left-hand side, the probability is taken both over the randomness in x and the
noise, as well as the sampling procedure used for constructing x̂SAMP.

Several variants of Lemma 1 have been proved in the past (see, e.g., [58–60]). For
completeness, we provide a short proof in Appendix A.1.

Thus, we are left with the problem of sampling from the posterior Pr(x | y)—doing so
“directly” might seem, at first glance, essentially just as hard as maximizing the posterior
(namely, we would need to go over all 2M possible signal configurations). Markov-Chain
Monte Carlo (MCMC) methods provide a strong toolbox for sampling, approximately, from
high-dimensional distributions. The idea is to construct an ergodic Markov chain such
that: (i) its stationary distribution is the desired (high-dimensional) distribution one would
like to sample from, namely Pr(x | y); and (ii) the chain is easy to propagate in time (e.g.,
its update rule is local). Having constructed such a chain, and assuming that it mixes
sufficiently fast (which is often difficult to ensure), one can therefore efficiently sample
from the desired distribution, up to high precision. For further background and discussion
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on MCMC, we refer to the work of Levin and Peres [61] (Chapter 3). The use of MCMC
methods for solving inverse problems in signal processing and for decoding/detection
in communication is by no means novel (see, e.g., [62–69]). While both the idea of using
LDPC codes as sensing matrices and the idea of using MCMC methods for decoding are
not new, our innovation here is in combining the two concepts for the compressed sensing
of binary signals problem. As becomes evident below, the sparse structure of the sensing
matrix constructed from an LDPC code significantly reduces the computational load from
the MCMC decoder by reducing the computational cost of each iteration.

We propose using the well-known Gibbs sampling method, also known as Glauber
dynamics, which is a general-purpose recipe for sampling from high-dimensional distribu-
tions. Let Q(x) be a distribution over {0, 1}M from which one wants to sample; in our case,
of course, Q(x) = Pr(x | y). We construct a chain x(1), x(2), . . . ∈ {0, 1}M starting from some
(arbitrary) initial state x(0) according to the following transition rule. Suppose that the cur-
rent state is x(t); one samples a coordinate to update at random, it ∼ Uniform({1, . . . , M}),
so that x(t+1)

j = x(t)j for all j 6= it. As for coordinate it, it is sampled according to the

conditional distribution of xit , with all other coordinates fixed and given by x(t), that is:

x(t+1)
it

∼ Q(xit | x∼it = x(t)∼it
) (we denote the vector of all coordinates, except for it, by x∼it ).

Applied to the posterior in (5), Glauber dynamics reads as follows:
It is easy to see that the process x(1), x(2), . . . ∈ {0, 1}M is an ergodic Markov chain,

and therefore has a unique stationary distribution. Furthermore, it is easy to verify that
Q(x) is a stationary distribution of this chain. Thus, for T sufficiently large, we have that
indeed x(T) is distributed as a random sample from Q(x). Note that, when A is a sparse
LDPC matrix, each iteration of Algorithm 1 is computationally very cheap. One can easily
keep track of y(t) = Ax(t) and ‖y − y(t)‖2 across iterations, noting that an update to a
coordinate of x(t) requires updating only ν coordinates of y(t), where ν is the degree of
a variable in A. Thus, the computational complexity of Algorithm 1 is O(Tν), where a
typical choice of T should be T = O(M log M) (see Lemma 2 below).

Algorithm 1: Glauber dynamics for binary compressed sensing.

Input: T = number of steps to run; x(0) ∈ {0, 1}M = initial state; y ∈ Rn =
measurements;

parameters σ2 > 0, λ ∈ R.
1 for t = 1, . . . , T do
2 it ∼ Uniform({1, . . . , M}); new coordinate to update

3 Let q(t)0 = exp
{
− 1

2σ2 ‖y− Ax(t)it=0‖
2
}

, q(t)1 = exp
{
− 1

2σ2 ‖y− Ax(t)it=1‖
2 + λ

}
Update:

x(t+1)
it

= 1 w.p. p(t)1 =
q(t)1

q(t)0 +q(t)1

; otherwise x(t+1)
it

= 0

x(t+1)
∼it

= x(t)∼it

4 (Note: Above, x(t)it=0, x(t)it=1 stand for setting, in x(t), the itth coordinate to 0, 1
respectively).

5 end
6 return x(T)

We can give the following guarantee for the mixing time of Glauber dynamics:

Lemma 2 (Fast mixing for Glauber dynamics). Let y ∈ Rn, x(0) ∈ {0, 1}M, σ2 > 0 and
λ ∈ R be any parameters. Denote the following distribution Q(·) on the cube {0, 1}M by

Q(∞)(x) = Q(∞)
y,σ2,λ(x) =

1
Z

exp
{
− 1

2σ2 ‖y− Ax‖2 + λ‖x‖1

}
,



Entropy 2021, 23, 605 8 of 20

where Z is the partition function. Denote by Q(T)(·) = Q(T)
y,σ2,λ,x(0)

(·) the distribution of x(T), the
state returned after running Algorithm 1 for T steps. Suppose that

4σ2 > ν(s− 1) , (6)

where ν and s are, respectively, the variable and factors degrees in A.
Let ε > 0 let be a target precision. Then, for any T ≥ (log(1/ε) + log(M)) · 4σ2 M

4σ2−ν(s−1) =

Θ(M log M) (here the Θ(·) notation suppresses a dependence on ε, σ2, ν, s), one has

dTV

(
Q(T),Q(∞)

)
≤ ε ,

where dTV(·, ·) stands for total variation (statistical) distance.

A proof is given in Appendix A.2.
Note that Lemma 2 applies for any y ∈ Rn and σ2, that do not necessary have anything

to do with the model (1). However, when y, σ2 do correspond to measurements from (1),
namely y = Ax + σz, Lemma 2, combined with Lemma 1, allows us to bound the bit
error rate of the estimator x = x(T) returned by running T iterations of Glauber dynamics.

Assuming condition (6) holds, Lemma 2 tell us that running T = 4(c+1)σ2

4σ2−4ν(s−1) ·M log M =

O(M log M) iterations of Glauber dynamics gives, with probability one (over x, y) an
output x(T) whose law is M−c-close to the law of x̂SAMP, in total variation distance—
here, c > 0 can be taken as large as one likes. Recall that total variation distance is just
dTV(P,Q) = max0≤ f≤1

{
Ex̂∼P[ f (x̂)]−Ex̂∼Q[ f (x̂)]

}
; maximization here is done over all

bounded functions f : {0, 1}M → [0, 1] (recall that the maximum is actually attained at
the indicator function f = 1S, where S = {x : P(x)/Q(x) ≥ 1}). Plugging f (x̂) =
1
k ∑M

i=1 1xi 6=x̂i
and noting that f is non-negative and bounded by M/k, we deduce

BER(x, x(T)) ≤ BER(x, x̂SAMP) +
M
k
Ex,ydTV(Px̂(t) ,Px̂SAMP

)

≤ BER(x, x̂SAMP) + M−c+1/k ,

which, by Lemma 1, is bounded by twice the optimum BER, up to an inverse polynomial
(in M) error.

As a remark, we mention that in practice, MCMC methods are often implemented
using annealing, which in our case amounts to basically running Glauber dynamics with a
noise variance σ2 which is larger than the true noise. This can help steer the system away
from local maxima of Q, by “smoothing” it out.

We would like to emphasize that condition (6) is very pessimistic, and in practice
Glauber dynamics appears to mix rapidly at substantially lower noise levels than predicted
there. For example, in the setup we consider below, M = 214, n = 211, ν = 16, s = 128,
so that the bound σ2

0 = ν(s − 1)/4 = 508, translates into energy per transmitted bit
as Eb/N0 = ν

2σ2·lg2(M)· = 1
7(s−1) ≈ 0.001, which is roughly −29.5 dB. This Eb/N0 is

very far from sufficient for reliable recovery of x̂ even when k is small (see experiments
in Section 3.1). In this regime, while indeed Lemma 2 holds in the sense that Glauber
dynamics mixes fast, the error rate of the optimal estimator is too high to be of use. Thus,
Lemma 2 should not be thought of as an accurate predictor for the performance of Glauber
dynamics for binary compressed sensing. Instead, it should be thought of as a “sanity
check”—evidence that Glauber dynamics is a reasonable thing to do, at least in some regime
of the problem.

On the same note, we observed, that when k is large, Glauber dynamics tends some-
times to get stuck at “bad” local maxima, even when the noise is moderate. To mitigate this,
one can initialize x(0) reasonably close to the true signal x, using an off-the-shelf compressed
sensing solver like NNLS—and then use Glauber dynamics as a refinement step. Applying
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this additional step of Glauber dynamics may improve the performance substantially (see
the numerical results in Section 3.1). Of course, the result of Lemma 2 does not predict in
any way this behavior; rather, it is completely agnostic to the starting location. Additionally,
the bound on the mixing time there does not depend at all on k, which, as just mentioned,
is crucial for the behavior of Glauber dynamics in practical regimes. A more sophisticated
analysis of Glauber dynamics for compressed sensing of binary signals, which takes into
account the points above, is an interesting problem, and, to the best of our judgement,
highly nontrivial.

3. Simulation Results
3.1. Performance in Compressed Sensing of Binary Signals

We start by demonstrating the performance of Glauber dynamics in the compressed
sensing of binary signals setup of Section 2.

We run many random recovery experiments, to recover x ∈ {0, 1}M from
y = Ax + σz ∈ Rn. In all the experiments, we use M = 2J , J = 14, n = 211 and sparsity
values k ∈ {50, 100, 200, 300}. These parameters are representative of a typical setup for
unsourced random access (see Section 3.2). For each k, we vary the energy per transmitted
bit, Eb/N0 = Em

2σ2·J (here, Em is the average energy per transmitting user—the energy of a
column of A) and plot the corresponding bit error rate.

We plot the performance under the following schemes:

1. The scheme of Amalladinne et al. [7]: A based on BCH codes, and NNLS decoder. To
obtain a binary estimator from the NNLS solution, we simply assign every entry to
its closest binary value (that is, according to whether it is smaller or greater than 1/2).

2. A given by a sparse LDPC matrix, with parameters ν = 16 (consequently, s = 128),
under the following decoding algorithms:

(a) NNLS.
(b) Glauber dynamics with initialization at x(0) = 0.
(c) Glauber dynamics, with x(0) initialized at the NNLS solution.

When using Glauber dynamics, we always let it run for T = 10M lg2 M
= 10 MJ iterations.

3. A is a dense random i.i.d. Gaussian matrix of mean 0 and variance 1/n, with Approx-
imate Message Passing (AMP) decoder (thus, Em = 1; of course, in the experiments,
the noise level σ is normalized according to the appropriate choice of Eb/N0). The
denoiser used in AMP is the optimal denoiser for the i.i.d. Bernoulli source, essentially
as proposed by Fengler et al. [70]. AMP is a state-of-the-art algorithm for compressed
sensing of binary signals, and is our main benchmark. For convenience, the exact
implementation details of AMP are given in Appendix B.

Our results are summarized in Figure 1. We see that when the sparsity is moderate
(up to k = 200), our proposed scheme attains essentially state-of-the-art performance.
However, when k is large (k = 300), performance falls short of AMP: if initialized at zero,
Glauber dynamics consistently gets stuck in a local maximum, far away from the true
signal; on the other hand, if one initializes Glauber dynamics with the NNLS solution,
the combined scheme eventually attains performance which is substantially better than
off-the-self compressed sensing solvers.

In Figure 2, we plot the evolution, across consecutive iterations, of both the BER
and the “energy” E(x(t)) = − 1

2σ2 ‖y− Ax(t)‖2 + λ‖x(t)‖1 along a single run of Glauber
dynamics (initialized at x(0) = 0). We use k = 100 and Eb/N0 = 1 dB. Note that the
iterations are given in units of MJ = M lg2 M (meaning, it is t/MJ). Ignoring stochastic
fluctuations, we see that Glauber dynamics essentially monotonically minimizes the energy
(the error, however, is not monotonically decreasing).
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Figure 1. BER vs. Eb/N0 for several sparsity levels k. When k is small to moderate, our proposal
achieves state-of-the-art performance, on par with AMP on a dense Gaussian matrix. Each point on a
curve is the average BER over a 100 random experiments. Dashed horizontal line: BER = 0.05.
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Figure 2. Energy and error along a typical trajectory of Glauber dynamics, with k = 100 and
Eb/N0 = 1.0 dB. The dashed horizontal curve correspond to the energy and error respectively of the
true signal x.

3.2. End-to-End Performance in Grant-Based Random Access

As mentioned in the Introduction, the compressed sensing of binary signals problem
is an important component of many schemes that have been proposed for communication
over the unsourced random access channel. In this model [1], communication is performed
in blocks of n channel uses of a Gaussian multiple access channel

y =
Ktot

∑
i=1

sixi + σz,

where (s1, . . . , sKtot) ∈ {0, 1}Ktot is the “activity pattern” vector whose Hamming weight is
k, xi ∈ Rn is the codeword transmitted by user i assuming it was active and z ∼ N (0, I) is
additive white Gaussian noise (AWGN). Note that this channel model implicitly assumes
perfect power and phase control, which is often difficult to attain in practice. We further
assume that all active users have a message of B bits to transmit, and that each of these
messages is independently and uniformly distributed over [2B]. The activity pattern is
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assumed unknown to the decoder, and known only locally to the transmitters, i.e., each
user only knows whether or not it is active, but does not know which of the other users
are active. The decoder’s goal is to output a list of k messages that contains as many
transmitted messages as possible. The per-user probability of error (PUPE) is defined as
the number of transmitted messages that did not enter the list, normalized by k.

In this section, we use the scheme developed above for compressed sensing of binary
signals as a building block for an end-to-end communication scheme for the unsourced
random access channel. We slightly deviate from the mainstream literature on unsourced
random access, by allowing for some feedback to be sent from the receiver to all potential
users through a broadcast channel. This option was mostly avoided until now, with
the exception of Facenda and Silva [12], as it was believed that the large number of
potential users and the small payloads for each active users renders scheduling too wasteful.
Recently, Kang and Yu [71] established a connection between scheduling for the unsourced
random access channel and perfect hashing and demonstrated that in fact scheduling for the
unsourced random access channel can be attained with a very small cost. Based on their
observation, we propose the following scheme for the unsourced random access channel
with an unbounded number Ktot of potential users, among which k are active users that
have to send a B bits message each, over n channel uses:

• Phase 1: Each active user transmits the first J bits of its message over n1 < n channel
uses. To that end, we use a sensing matrix A drawn from the LDPC(ν, s; M, n1)
ensemble, with M = 2J . Each active user chooses one of the M = 2J columns of A,
corresponding to the first J bits in its message, scales it by α > 0 and transmits them
over the channel. Since there are k active users, the channel output after n1 uses is
y1 = αAx + σz. The vector x consists of entries in Z+ (all non-negative integers) and
satisfies ‖x‖1 = k. If all k active users chose messages that begin with a different string
of J bits, the vector x will further be in {0, 1}M. For our choices of J and k described
below, typically almost all entries of x will be binary. The basestation (which is now
the receiver) applies Algorithm 1 to estimate x. In the end, we compute p(T+1)

1 (i)
for any i ∈ [M], and output a list consisting of the k coordinates with the highest
p(T+1)

1 (i).
• Phase 2: The basestation applies a set partitioning scheme for collision-free feedback,

as described in [71], for broadcasting to the users a list of the k strings of J prefixes it
has decoded in phase 1. Naively, this would require broadcasting a message of k · J
bits. However, as shown in [71] using a more intelligent scheme, this can information
theoretically be done with about k · lg2(e) bits, and practical schemes can encode this
information using less than 2k bits. Each active user decodes the message transmitted
by the basestation and finds the location of the J bits prefix of its message within the
list of k prefixes that was transmitted.

• Phase 3: The remaining n2 = n− n1 channel uses are split to k slots, each of length
n′ = n2/k. Each active user transmits the remaining B− J bits of its message during
the slot whose index it has decoded in Phase 2. To this end, off-the-shelf point-to-point
codes are used. Active users that did not find their J bits prefix in the list of Phase 2,
do not transmit a thing in Phase 3.

Note that in the end of this procedure the receiver outputs a list of at most k messages.
The message sent by a particular active user enters the list the decoder outputs whenever
neither of the following error events occur:

(i) Another active user chose a message with the same J bits prefix, causing a collision in
Phase 1 above.

(ii) The J bits prefix of the user’s message did not enter the list produced by the basestation
in Phase 2.

(iii) The user failed to decode the message sent from the basestation in Phase 2.
(iv) There was a decoding error in the point-to-point transmission of that user in Phase 3.
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For the remainder of this discussion, we neglect the cost of Phase 2 in terms of
channel resources (energy and bandwidth) and its contribution to the error probability.
We do this to avoid the need to model the broadcast channel from the basestation to
the active users. In light of Kang and Yu [71], the message sent by the basestation in
Phase 2 is significantly shorter than the messages sent by the active users. Adding this to
the fact that the basestation is typically less power-constrained than the end-devices in
machine-to-machine type communication, it follows that indeed Phase 2 will usually have
negligible effect in both aspects (bandwidth and error probability). As mentioned above,
our performance figure of merit is the per-user error probability.

We conducted experiments to estimate the expected performance of this end-to-end
scheme. In each experiment, each of k users generates a random message of B bits to
be transmitted. Let x ∈ {0, 1, . . . , k}2J

be such that xm = the number of users who sent
message m during Phase 1. The per-user error probability for Phase 1 is

ε1 =
1
k

k

∑
i=1

Pr
(

xm(i) > 1 ∨ m(i) /∈ L
)

,

where L is the list of k messages returned by the base station, and m(i) is the message
transmitted by user i. The error probability ε1 is estimated via Monte-Carlo simulation. For
the error of the second phase, we use the finite block normal approximation of Polyanskiy–
Poor–Verdú ([72], Theorem 54):

B− J
n′
≈ C(P)−

√
V(P)

n′
Q−1(ε2) , (7)

where n′P is the total energy per user, C(P) = 1
2 lg2(1 + P) is the AWGN capacity and

V(P) = P(P+2)
2(P+1)2 (lg2(e))

2 is the AWGN channel dispersion. Given a target error probability
ε2, we can solve (7) with an equality to obtain an achievability estimate P∗ on the power P
necessary to attain user-basestation point-to-point error probability at most ε2. The total
energy per transmitted bit (per user) is just

Eb/N0 =
1
2 n′P∗ + J · (Eb/N0)phase1

B
,

where, as in the previous section, (Eb/N0)phase1 = Em
2σ2·J , Em being the energy of a column

of A. For every k, we wanted to find the smallest Eb/N0 that achieves total per-user error
ε1 + ε2 = 0.05. This optimization have has performed numerically.

The performance attained by this end-to-end scheme is plotted in Figure 3. We plot the
performance corresponding to Phase 1 implemented by the sensing matrix and recovery
algorithm introduced in this paper, as well as an i.i.d. Gaussian sensing matrix and AMP
recovery. Both implementations for Phase 1 correspond to similar performance, with
slight preference for the latter, and substantially improve the state-of-the-art for unsourced
random access with (a small amount of) feedback [12].
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Figure 3. Total Eb/N0 required to achieve end-to-end PUPE ≤ 0.05. We see that, by using a better
compressed sensing algorithm for binary signals, significant gains can be achieved over the current
state of the art [12].

4. Conclusions and Additional Discussion

We propose a scheme for compressed sensing of binary signals, consisting of a sparse
sensing matrix, based on Gallager’s ensemble of LDPC codes, and a decoder based on
MCMC. When used as a building block in grant-based random access, the scheme is
demonstrated numerically to attain essentially state-of-the-art performance. To conclude,
we mention several points that rise up as follow-up questions to our results.

Belief Propagation. One of the most popular algorithms for decoding LDPC codes is
Belief Propagation (BP) (see, e.g., [56,63]). We conducted very limited experiments with
sum-product and max-product BP (not reported in this paper); our preliminary findings
suggest that our MCMC decoder outperforms BP (in terms of its tolerance to noise), at least
in the regime considered in Section 3.1. A possible explanation for this could be that the
sensing matrix A has many small cycles, which severely violates the tree assumption and
is common in BP analysis of LDPC codes. A thorough study of BP for compressed sensing
with binary signals is left as an interesting direction for future research.

Grantless unsourced random access. In Section 3.2, we demonstrate that our scheme
can attain essentially state-of-the-art performance in grant-based unsourced random access
(wherein a compressed sensing problem is solved in the first, scheduling, step). However,
most previous works on unsourced random access have considered a different approach,
which does not allow for feedback. The idea is to divide transmission into several blocks
and perform coding in two steps: (1) an outer code, to allow the decoder to relate (“stitch”)
messages across different blocks to one another; and (2) an inner code, wherein each user
codes its message (payload + parity bits) over an AWGN multiple access channel—in
this framework, decoding the inner code boils down to solving a compressed sensing
problem with a binary signal. An interesting question is whether our proposed scheme can
provide any gains if used to construct an inner code in this framework. In [11], the authors
proposed to use a certain tree code (outer code) and an i.i.d. Gaussian sensing matrix for
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the inner code, together with a certain AMP decoder, which in decoding iteratively passes
information between the inner and outer codes. We tried replacing the AMP decoder with
our scheme. Specifically, we considered an iterative procedure that alternates between
the following steps: (1) run Glauber dynamics on each block, producing a soft decision
rule for the (sparse, per-block) activity pattern; and (2) a tree code inference step, that
takes the per-block “likelihoods” produced by Glauber dynamics and computes a posterior
over the entire activity pattern, by integrating information across all the blocks. The next
time we decode the inner code, this posterior is used for the new prior of the signal. Our
preliminary experiments indicate that the performance of this combined scheme is rather
disappointing and quite far off from state of the art [11].

Generalizing to non-equal channel gains. When discussing random access, we
modeled the received signal at the base station as y = Ax + σz where x ∈ {0, 1}M is the
pattern of active users and σz is Gaussian noise; namely, the channel between the users and
the basestation is an AWGN multiple access channel where all gains are equal. This model
is based on the assumption of perfect power and phase control, which is not always realistic,
and designing communication schemes for the fading model, where channel gains are not
assumed equal, is desired. Generalizing our MCMC decoder to incorporate fading looks
somewhat challenging. Consider a model y = AHx + σz where H = diag(h1, . . . , hm)
is a diagonal matrix of (random) fading coefficients. We would like to sample from the
posterior of x given y:

Pr(x = x̂|y) ∝ EH exp
{
− 1

2σ2 ‖y− AHx̂‖2 + λ‖x̂‖1

}
,

where notice that we now need to marginalize over H = diag(h1, . . . , hM). This marginal-
ization appears to complicate things considerably: in particular, in contrast to the case
where H is the identity matrix, in the general case, it is not so straightforward to sample xi
conditioned on all other coordinates. Devising an MCMC decoder that can handle fading
is an interesting problem for future research.
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Appendix A. Omitted Proofs

Appendix A.1. Proof of Lemma 1

Clearly, it suffices to show that Pr(x̂SAMP,i 6= xi) ≤ 2 Pr(x̂BER,i 6= xi) for all i. In
addition, recall that the ith coordinate, x̂SAMP,i, is simply sampled from the posterior
Pr(xi|y).

https://github.com/dalevonamor/BinaryCompressedSensingEntropy
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Note that {x̂SAMP,i = xi} ⊃ {x̂SAMP,i = x̂BER,i ∧ x̂BER,i = xi}, and therefore

Pr(x̂SAMP,i 6= xi) ≤ Pr(x̂SAMP,i 6= x̂BER,i ∨ x̂BER,i 6= xi)

≤ Pr(x̂SAMP,i 6= x̂BER,i) + Pr(x̂BER,i 6= xi) .

Thus, we are done once we show that Pr(x̂SAMP,i 6= x̂BER,i) = Pr(x̂BER,i 6= xi). By
definition, for any x′i which is deterministic given y,

Pr
(

x̂SAMP,i 6= x′i
∣∣ y
)
= Pr

(
xi 6= x′i

∣∣ y
)

,

where, on the left, probability is taken only with respect to the sampling procedure. Choos-
ing x′i = x̂BER,i, and taking the expectation over y,

Pr(x̂SAMP,i 6= x̂BER,i) = E
[
Pr
(

x̂SAMP,i 6= x̂BER,i
∣∣ y
)]

= E
[
Pr
(
xi 6= x̂BER,i

∣∣ y
)]

= Pr(xi 6= x̂BER,i) .

Appendix A.2. Proof of Lemma 2

The proof uses the path coupling method, which is a fundamental technique in the
theory of Markov chains [61].

Before getting to the proof of Lemma 2, let us start by recalling some useful notions
and set some notation.

• Distance and neighbors on the hypercube: Denote byX = {0, 1}M the M-dimensional
hypercube. X has a natural graph structure: two vertices x, x′ ∈ X are neighbors,
denoted x ∼ x′, iff they differ in exactly one coordinate. Denote by dH(·, ·) : X ×X →
[0, ∞) the Hamming distance:

dH(x, x′) =
M

∑
i=1

1xi 6=x′i
.

Of course, Hamming distance coincides with the shortest path distance with respect
to the graph structure on X .

• Coupling: Let X and X′ be two random variables taking values on X . Denote by
PX and PX′ the laws of X, X′, respectively. A coupling between X, X′ is a probability
distribution PX,X′ on X ×X , whose X-marginal is PX and X′-marginal is PX′ . In other
words, a coupling is an embedding of two random variables onto a joint probability
space, defined by a joint law.

Notation. For x ∈ X , let Xx be the X -valued random variable whose law corresponds
to running one step of Glauber dynamics, starting from the initial state x (using the

notations of Algorithm 1, one has x(0) = x and so Xx
d
= x(1), where d

= indicates equality in
distribution).

The following result follows from ([61], Corollary 14.7):

Theorem A1. Suppose that there is 0 ≤ η < 1 with the following property: for any two neighbors
x ∼ x′, there exists a contracting coupling of Xx and Xx′ with

E[dH(Xx, Xx′)] ≤ η .

Then, for any initial state x(0) = x and t ≥ 1, one has

dTV

(
Q(t),Q(∞)

)
≤ M · ηt .
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Here, Q(t) is the law of x(t), the state of Glauber dynamics at time t, starting from x0 = x,
and Q(∞) is the stationary distribution.

The proof of Lemma 2 follows by constructing a contracting coupling between Xx and
Xx′ for any x ∼ x′, and applying Theorem A1. The construction proceeds as follows. Let
i ∼ Uniform([M]) be a random coordinate to update. For all ` ∈ [M], let

q0(`) = exp
{
− 1

2σ2 ‖y− Ax`=0‖2
}

, q1(`) = exp
{
− 1

2σ2 ‖y− Ax`=1‖2 + λ

}
,

and

p1(`) =
q1(`)

q0(`) + q1(`)
= ϕ

(
λ +

1
2σ2

{
‖y− Ax`=0‖2 − ‖y− Ax`=1‖2

})
,

where ϕ(x) = 1/(1 + e−x) is the logistic function. Let p1(`)
′ be defined similarly, with x

replaced by x′. To obtain Xx and Xx′ , sample U ∼ Uniform[0, 1], independent of i. Xx, Xx′

coincide with x, x′, respectively, on all coordinates ` 6= i; as for the ith coordinate, set
(Xx)i = 1 if U ≤ p1(i) (and otherwise set to 0), and likewise set (Xx′)i = 1 if U ≤ p1(i)′.
Clearly, the random variables (Xx, Xx′) constructed in this manner have the “correct”
marginal distribution; thus, we have defined a legitimate coupling.

It remains to show that this coupling is contracting. Since x ∼ x′, there is a unique
coordinate on which they differ, call it `0. Observe that, conditioned on i = `0, we have
Xx = Xx′ exactly. On the other hand, when i 6= `0, the Hamming distance either stays
the same or increases by 1, depending on U. Indeed, the distance increases if and only
if min{p1(i), p1(i)′} < U ≤ max{p1(i), p1(i)′}, and, conditioned on i, this happens with
probability |p1(i)− p1(i)′|. Thus,

E[dH(Xx, Xx′)] = 1− 1
M

+
1
M ∑

`∈[M], ` 6=`0

∣∣p1(`)− p1(`)
′∣∣ .

It remains to bound the expression on the right. For a variable ` ∈ [M], let F(`) ⊂ [n]
be all the factors to which it is connected in A; similarly, for a factor f ∈ [n], let V( f ) ⊂ [M]
be all the variables to which it is connected. Now,

p1(`) = ϕ

(
λ +

1
2σ2

{
‖y− Ax`=0‖2 − ‖y− Ax`=1‖2

})

= ϕ

λ +
1

2σ2 ∑
f∈F(`)


y f − ∑

k∈V( f )\{`}
xk

2

−

(y f − 1)− ∑
k∈V( f )\{`}

xk

2



= ϕ

λ +
1
σ2 ∑

f∈F(`)

y f −
1
2
− ∑

k∈V( f )\{`}
xk

 ,

and a similar expression holds for p1(`)
′, with x replaced by x′. Since ϕ(·) is 1/4-Lipschitz,

∑
`∈[M]\{`0}

∣∣p1(`)− p1(`)
′∣∣ ≤ 1

4σ2 ∑
`∈[M]\{`0}

∣∣∣∣∣∣ ∑
f∈F(`)

∑
k∈V( f )\{`}

(xk − x′k)

∣∣∣∣∣∣
=

1
4σ2 ∑

`∈[M]\{`0}
∑

f∈F(`)
1`0∈V( f ) ,

where we used that x and x′ differ only on `0. Observe that the double sum simply counts
the number of pairs (`, f ) such that `0 and ` 6= `0 are both connected to the factor f .
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Recalling that the degree of all variables is ν and the degree of all factors is s, which is just
ν(s− 1). We conclude that

E[dH(Xx, Xx′)] ≤ 1− 1
M

[
1− ν(s− 1)

4σ2

]
which is < 1 whenever 4σ2 > ν(s− 1) ; this is exactly the condition (6), appearing in the
statement of Lemma 2. Applying Theorem A1,

dTV

(
Q(t),Q(∞)

)
≤ M ·

(
1− 1

M

[
1− ν(s− 1)

4σ2

])t
≤ e−

t
4σ2 M

(4σ2−ν(s−1))+log M .

This bound is ≤ε whenever t is exceeds the quantity in Lemma 2.

Appendix B. Approximate Message Passing (AMP)

In this section, we provide implementation details for the AMP algorithm used in the
numeric comparisons of Section 3.

Introduced by Donoho et al. [73], AMP is a state-of-the-art recovery algorithm for
solving linear inverse problems y = Ax + z. Originally developed for sparse vector
recovery (compressed sensing), AMP and its extensions have been shown to yield state-of-
the-art algorithms for several other linear inverse problems, with Gaussian or “Gaussian-
like” (for example, orthogonally invariant or with some spatially coupled structure) random
sensing matrices. For a very partial, selective list of references, see, for example, [73–84].
In unsourced random access, AMP was first used by Fengler et al. [9] and extended by
Amalladinne et al. [11].

The AMP algorithm of Donoho et al. [73] uses an iteration of the following form,
starting from x(0) = 0, r(0) = 0:

b(t) = A>r(t) + x(t)

x(t+1) = ft

(
b(t)
)

r(t+1) = y− Ax(t+1) +
1
n

n

∑
i=1

f ′t
(

b(t)
)

.

(A1)

Here, ft : R→ R is a sequence of univariate functions (for a vector b, f (b) stands for
applying f separately to each coordinate). The main idea of AMP (“State Evolution”) is
that in the large-dimensional limit (and under certain technical assumptions), the iterates
b(t) behave as b(t) ≈ x + σtN (0, I); that is, additively corrupted measurements of the
true signal x. The variance σ2

t can be estimated from r(t), which approximately has the
law N (0, σ2

t I); conversely, it can be tracked via an explicit recursive formula. For our
experiments, we use the proposal of Donoho et al. [74], and use the robust estimator
σ̂t = median(|r(t)|)/Φ−1(0.75), where Φ−1(·) is the inverse Gaussian CDF.

The details of the AMP algorithm (A1) rely on the specific choice of functions ft.
In compressed sensing of binary signals (1), a natural choice is the MSE-optimal estimator
for x from b = x + σtN (0, I), namely,

ft(b)i= E
[
xi
∣∣ bi
]
=

k
M · e

− 1
2σ2

t
(bi−1)2

(
1− k

M ·
)

e
− 1

2σ2
t

b2
i
+ k

M · e
− 1

2σ2
t
(bi−1)2

.

This is what we used for the experiments presented in Section 3.
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