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Abstract: Automated grading systems using deep convolution neural networks (DCNNs) have
proven their capability and potential to distinguish between different breast cancer grades using
digitized histopathological images. In digital breast pathology, it is vital to measure how confident
a DCNN is in grading using a machine-confidence metric, especially with the presence of major
computer vision challenging problems such as the high visual variability of the images. Such a
quantitative metric can be employed not only to improve the robustness of automated systems,
but also to assist medical professionals in identifying complex cases. In this paper, we propose
Entropy-based Elastic Ensemble of DCNN models (3E-Net) for grading invasive breast carcinoma
microscopy images which provides an initial stage of explainability (using an uncertainty-aware
mechanism adopting entropy). Our proposed model has been designed in a way to (1) exclude
images that are less sensitive and highly uncertain to our ensemble model and (2) dynamically grade
the non-excluded images using the certain models in the ensemble architecture. We evaluated two
variations of 3E-Net on an invasive breast carcinoma dataset and we achieved grading accuracy of
96.15% and 99.50%.

Keywords: breast cancer; histopathological images; entropy; uncertainty quantification; elastic
ensemble; dynamic ensemble; convolutional neural networks

1. Introduction

Breast cancer is a major public health concern around the world, where its prevalence
rate is the second-highest rate for women (excluding lung cancer) among all forms of
cancer [1]. The study of histopathological images remains the most commonly used
tool for diagnosing and grading breast cancer, even with the substantial advances in
medical science. Early diagnosis can dramatically improve the effectiveness of therapy.
The symptoms and signs of breast cancer are numerous, and the diagnosis encompasses
physical analysis, mammography, and confirmed by core needle biopsy tissue (CNB) from
the suspicious breast area. The sample tissue extracted from the CNB process demonstrates
the cancerous cells and the grade of cancer associated with them. Pathologists typically
look for certain characteristics that can help them predict disease prognosis during the
visual inspection of the biopsy specimen of the tissue (i.e., what is the likelihood of cancer
spreading and growing?).

For tumor grading, pathologists usually use the Nottingham scoring system that
depends on morphological changes including glandular/tubular formation, nuclear pleo-
morphism, and mitotic count [2]. Due to the high visual variability of the samples in terms

Entropy 2021, 23, 620. https://doi.org/10.3390/e23050620 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0982-4420
https://orcid.org/0000-0003-0339-4474
https://www.mdpi.com/1099-4300/23/5/620?type=check_update&version=1
https://doi.org/10.3390/e23050620
https://doi.org/10.3390/e23050620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23050620
https://www.mdpi.com/journal/entropy


Entropy 2021, 23, 620 2 of 21

of their morphological structure, visual qualitative grading assessment is a time-consuming
and laborious process [3]. In the context of histopathological image analysis, grading of
invasive breast cancer provides many challenging problems. First, there are variations in
subjective criterion evaluation between observers when it comes to diagnosis/grading.
Second, it is difficult to capture the proper combination of features and the morphological
heterogeneity within the tumor regions [3,4]. Such challenges usually lead to substantial
effort and exhaustive manual qualitative study from pathologists. Thanks to computa-
tional pathology which helped in alleviating this burden in recent years. In computational
pathology, deep learning (DL) approaches have made tremendous progress and achieved
outstanding results, leading many researchers to provide automated and unbiased solu-
tions for several different histopathological image analysis applications including breast
cancer grading and tissue classification [5]. Deep convolution neural networks (DCNNs)
are the most commonly used type of DL approaches, demonstrating outstanding per-
formance in extracting image salient features for the different computational pathology
applications [6].

Despite the prevalence of DCNNs in several histology image analysis applications
including grading, the ability of a single DCNN model to obtain discriminatory features is
constrained and usually results in sub-optimal solutions [7–9]. As a consequence, an ensem-
ble of DCNN models has been proposed to conserve the description of histopathological
images from recognizable perspectives to a more precise grading [10]. More importantly,
to the best of our knowledge, previously proposed DCNN-based grading tools lack a
preliminary measure of uncertainty, which is an initial important step towards an ex-
plainable computational pathology. Developing an uncertainty quantification component
can contribute to the recognition of multiple regions of ambiguity that may be clinically
instructive. It also allows pathologists and medical professionals to rate images that should
be prioritized for pathology annotations. Despite the existence of DCNN models and their
high potential in minimizing the workload burden from pathologists, a limited number of
microscopy images would require pathologists’ assistance.

In this paper, we propose a novel Entropy-based Elastic Ensemble of DCNN mod-
els (3E-Net) (The code is available at https://github.com/zakariaSenousy/3E-Net-Model
(accessed on 15 May 2021)) for the automated grading of breast carcinoma using histopatho-
logical images. 3E-Net has an elasticity capability in allocating different classifiers (e.g.,
DCNNs) for each particular image. Our model is supported by an uncertainty quantifi-
cation component which helps pathologists to refine annotations for developing more
robust DCNN models that can meet their needs. Conversely, in this work, we first extract
patches from the input image. Then, we designed a patch feature extractor network (i.e.,
pre-trained and fine-tuned DenseNet-161 [11]) to learn salient features from image patches.
The extracted feature maps are then fed into multiple image-wise CNN models which
are designed to capture multi-level spatial dependencies among the patches. Eventually,
an uncertainty-measure ensemble-based component is introduced to select the most cer-
tain image-wise models for the final image grading. The performance of our model is
evaluated on the Breast Carcinoma Histological Images dataset [12], which consists of
300 high-resolution hematoxylin-eosin (H&E) stained breast Histopathological images,
divided into three invasive grades.

The contributions of this paper are summarized as follows: (1) a novel uncertainty-
aware component adapted by an entropy formula to measure how confidence DCNN
models of our automated breast cancer grading system on input images. This uncertainty-
aware mechanism assists pathologists in identifying the complex and corrupted images
which are hard to be graded by automated systems; (2) an automatic exclusion of poor
histopathological images for manual investigation; (3) a new elastic ensemble mechanism
is proposed using most certain DCNN models, where each input image will be classi-
fied by a pool of models, but only confident ones contribute toward the final prediction
using a dynamic ensemble modeling mechanism; and (4) quantitative and qualitative
analysis study have been conducted using our automated grading system on breast car-
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cinoma dataset. To the best of our knowledge, this is the first attempt to introduce an
entropy-based uncertainty quantification metric to achieve an elastic-based ensemble of
DCNN models in automated grading of invasive breast carcinoma from histopathological
microscopic images.

The paper is organized as follows. In Section 2, we review the related work in breast
cancer grading using histopathological images. Section 3 describes the dataset used in
this work. Section 4 discusses, in detail, the architecture of our proposed 3E-Net model.
Section 5 describes our experimental results and discusses our findings. Section 6 concludes
our work and presents future work.

2. Related Work

The grading process using automated feature extraction models differs from bio-
markers (e.g., counting the number of cells), where the learning models depend on extract-
ing features from the input digitized image automatically unguided by any bio-marker.
The visual appearance of cells in the image is automatically processed and learned by
automated models to generate prominent features. These features are then used to produce
the final class label (i.e., one of the invasive carcinoma grades) in the classification problem.
More precisely, automated grading is considered as a classification task that is based on the
features extracted from the visual representation of the number of cells in a given image. In
this section, we review the related work based on three aspects: (1) traditional handcrafted
feature-based methods, (2) deep learning-based methods, and (3) ensemble-based methods.

2.1. Classical Handcrafted Feature-Based Methods

Several classical approaches for detecting and grading breast cancer in histological
images have been introduced in the literature [13–16]. The majority of such methods
concentrate on segmenting and distinguishing histological primitives such as nuclei, as
well as extracting relevant features. For instance, Doyle et al. [17] proposed a method for
automatically grading breast cancer histological images. Their approach combined spectral
clustering with textural (including Gabor, Grey Level, and Haralick) and architectural
(including Voronoi diagram, Delaunay triangulation, minimal spanning tree, and nuclear
characteristics) attributes. In another work, using the log-Gabor wavelet transform and the
least square support vector machine (LS-SVM) classifier, Niwas et al. [18] captured color
textural features for breast cancer diagnosis. Khan et al. [19] suggested grading nuclear
atypia in breast histopathological microscopy images using the geodesic geometric mean
of regional co-variance descriptors as an image-level function.

Barker et al. [20] proposed a method that uses a coarse-to-fine study of pathology
images’ localized characteristics. Their method has two stages. The first stage examines
the range of coarse regions across the entire slide image. This involves extracting spatially
localized shape, color, and texture features from tiled regions that cover the entire slide.
The second stage examines a single representative tile in greater depth. Each representative
tile receives a diagnostic decision value from an Elastic Net classifier. To get a diagnosis
at the entire slide level, a weighted voting scheme aggregates the decision values from
these tiles. The work conducted by Filipczuk et al. [21] used a circular Hough transform
to identify nuclei and then used four separate classifiers to extract a series of features for
biopsies classification. Zhang et al. [22] proposed a classification scheme using a one-class
kernel theory component analysis model ensemble with various features derived from a
grey level co-occurrence matrix. Finally, Vink et al. [23] suggested an adjusted AdaBoost
algorithm to construct two nucleus detectors that concentrate on various aspects of nuclei
presence for nuclei detection.

Although these conventional approaches are simple to incorporate and easy to train/
use, they are feature-dependent and computationally expensive due to (1) the use of pre-
processing steps such as segmentation, nuclei separation, and detection, and (2) the lack of
heuristics to guide the feature extraction.
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2.2. Deep Learning-Based Methods

Many researchers have turned to more robust and sophisticated approaches, such
as DL, to learn directly from input images. More precisely, Shaban et al. [24] proposed a
colorectal cancer grading model to integrate a larger context using a context-aware neural
network. To make a final prediction, this model transforms the local representation of a
histology image into high-dimensional features, then combines the features by perceiving
their spatial arrangement. Zhou et al. [25] introduced a new cell-graph convolutional neural
network (CGC-Net) for grading of colorectal cancer, which transforms each large histology
image into a graph, with each node represented by a nucleus within the input image and
cellular associations denoted as edges among these nodes based on node similarity.

Sornapudi et al. [26] introduced a DL-based nuclei segmentation technique, which is
based on collecting localized information through super-pixels generation using a basic
linear iterative clustering algorithm and training with a CNN. Their framework detects
nuclei and classifies them into one of squamous epithelium cervical intraepithelial neoplasia
(CIN) grades. The work introduced by Li et al. [27] proposed a DCNN architecture for
fine-grained classification and grading in breast cancer histopathological images. Their
architecture has three stages. First, they integrated multi-class recognition and verification
tasks of image pairs in the representation learning process. Second, a piece of prior
knowledge is developed during the feature extraction process, where the variance in
feature outputs between different sub-classes is significantly large while the variance
within the same subclass is minimal. Finally, the feature extraction method incorporates
prior knowledge that histopathological images with various magnifications belong to the
same classification.

Awan et al. [28] introduced a novel metric called Best Alignment Metric (BAM)
for measuring the shape of glands in colon cancer. They showed a correlation between
glandular shape metric and grade of the tumor. Their model is based on a DCNN for
detecting gland boundaries and a support vector machine (SVM) classifier is used for
deciding the grade of cancer. Arvaniti et al. [29] presented a DL approach for automated
Gleason grading of prostate cancer tissue micro-arrays with (H&E) staining. Their system
was trained using detailed Gleason annotations. The work proposed in [30] developed a DL-
based model for clinical-grade detection of microsatellite instability in colorectal tumors.

Recently, Munien and Viriri [31] investigated the use of the EfficientNet architecture
for the classification of H&E stained breast cancer histology images. They used seven
EfficientNets that are fine-tuned and tested to distinguish images into four categories:
normal, benign, in situ carcinoma, and invasive carcinoma. Likewise, the work introduced
by Alzubaidi [32,33] proposed a study to optimize the performance of breast cancer classi-
fication using novel transfer learning techniques. Their work suggested a transfer learning
method that involved training a DL model on vast unlabeled medical image datasets and
then transmitting the information to train a DL model on a limited number of labeled
medical images. In addition, they built a hybrid DCNN model using a combination of ideas
such as parallel convolutional layers, residual connections, and global average pooling.

Despite the success of single CNNs, several computer vision challenging problems
(such as the limited availability of training images, high-level of noise and high variability
of the morphological architecture of region of interests in images) still persist, multiple
CNNs models are required to improve diversity to cope with complicated cases.

2.3. Ensemble-Based Methods

Due to the challenging problems stated earlier concerning histology images, re-
searchers proposed the adoption of the ensemble approach. This approach is based on
combining multiple DCNN models with different learning perspectives, which conse-
quently improves diagnosis accuracy.

Yang et al. [10] proposed a CNN ensemble model called Ensemble of Multi-Scale
Network (EMS-Net) to classify H&E stained breast histopathological images. EMS-Net
allows to extract features using multiple pre-trained CNN models at multi-scale and
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select the optimal subset of the fine-tuned deep models. Kassani et al. [34] introduced an
ensemble DL-based approach for automatic binary classification of breast histology images.
The proposed model utilizes three pre-trained CNNs (VGG19, MobileNet, DenseNet) for
feature extraction. The extracted features are then fed into a multi-layer perceptron classifier
to carry out the classification task. Marami et al. [35] proposed an automated classification
method for identifying micro-architecture of tissue structures in breast histology images.
Their proposed architecture is based on ensembling multiple Inception networks which
are trained using different data subset sampling and image perturbation. Their Inception
network is modified by using adaptive pooling which increases the practical utility of
their trained network, as it can be applied to images with minor scale changes from the
input training images. Nguyen et al. [36] introduced a feature concatenation and ensemble
method to combine several CNNs with different depths. The proposed model is made
up of three pre-trained transfer learning models (Inception-v3, ResNet152, and Inception-
ResNet-v2) and a fourth multi-feature-extractors model. The three feature maps collected
from the three base modes are concatenated into a longer feature vector. In the end, the
ensemble learning technique is used to ensemble the four feature maps (three from the
base models and one from the multi-feature descriptor).

Most recently, Hameed et al. [37] introduced an ensemble model for the classification
of non-carcinoma and carcinoma breast cancer histopathology images. They used different
models based on pre-trained VGG16 and VGG19 architectures. Then, they followed an
ensemble strategy by taking the average of predicted probabilities. Gifani et al. [38]
proposed an ensemble of deep transfer learning for automated detection of COVID-19
Computed tomography (CT) scans. They used a total number of 15 pre-trained CNNs
which are fine-tuned for the target task. Their ensemble method is based on the majority
voting of the best combination of CNN models’ outputs. Finally, the work introduced in [39]
proposed an ensemble of DCNNs for multi-class classification and textural segmentation
of histopathological colorectal cancer tissues.

All the mentioned work in this subsection has shown different methods to improve
the performance of diagnosis using the standard ensemble approach. However, they lack
(1) the measure of confidence in the automated grading and classification, as well as, (2)
the elastic ensemble of multiple DCNN models. These two components are of importance
to increase the trust in the model by (1) making sure that only models with a pre-defined
degree of confidence contribute to the prediction, and by (2) flagging out cases that are
hard to classify confidently by the model for further inspection.

3. Dataset

Breast carcinoma histological images [12] were used for this work. The dataset contains
cases of breast carcinoma histological specimens collected in the department of pathology,
“Agios Pavlos” General Hospital of Thessaloniki, Greece. The dataset is composed of 300
H&E stained breast histopathological microscopy sections with the size of 1280 × 960
pixels. The dataset is mainly categorized into three grades of invasive carcinoma: grade 1,
grade 2, and grade 3 (See Figure 1).

Figure 1. Three H&E stained breast histopathological microscopy images from different invasive
carcinoma grades.
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The categories are divided as 107 images for grade 1, 102 images for grade 2, and
91 images for grade 3. These images are associated with 21 different patients with invasive
ductal carcinoma of the breast. The image frames are from tumor regions taken by a
Nikon digital camera connected to a compound microscope with a 40× magnification
objective lens.

4. Proposed 3E-Net Model

In this section, we describe, in detail, our proposed 3E-Net model. Given a histopatho-
logical image section with a high resolution (1280 × 960 pixels) as an input, the main target
is to grade the image into one of three invasive grades of breast cancer: grade 1, grade 2,
or grade 3. As illustrated by Figure 2, our model consists of several DCNNs which are
designed and implemented based on the input size of the image and the number of patches
extracted from the image. First, the input image is divided into many smaller patches
which are then inserted into a pre-trained and fine-tuned DCNN which acts as patch-wise
feature extractor network. Second, the extracted feature maps are fed into image-wise
networks which encode different levels of contextual information. As a final and prominent
step, the final image predictions (i.e., grades) from image-wise models are then inserted
into an elastic ensemble stage which is mainly based on measuring the uncertainty of
predictions in each model. This uncertainty measure of predictions is designed using
the Shannon entropy [40] which measures the level of randomness in the model’s final
prediction. More precisely, Shannon entropy values of different models in our ensemble
architecture were used to select the most accurate/certain models (i.e., the models which
have a small entropy value) to improve the elasticity capability of 3E-Net in allocating
different classifiers and improving diversity. Using a pre-defined threshold, only models
with a high degree of certainty are included in the final elastic ensemble of the image.

4.1. Patch-Wise Feature Extraction

Due to the scarcity of annotated training data in the medical field, transfer learning [41]
has emerged as a prominent approach to cope with the problem. Transfer learning is a
mechanism that uses machine learning models (e.g., CNNs) which are pre-trained on large
datasets (e.g., large-scale images of ImageNet dataset) to be adapted and used in different
domain-specific tasks (e.g., breast cancer grading). In such mechanisms, the network
configuration is preserved, and the pre-trained weights are used to configure the network
for the new domain-specific task. During the fine-tuning stage, the initialized weights
are continuously updated, allowing the network to learn hierarchical features relevant
to the desired task. Fine-tuning is effective and robust for various tasks in the medical
domain [8,10,42].

As stated earlier, the patch-based paradigm proved to be effective when it comes
to high resolution histopathological images [7,8,10,42]. In this work, we utilize a pre-
trained and fine-tuned DenseNet-161 to act as feature extractor networks for image patches.
DenseNet-161 has demonstrated a superb performance for ILSVRC ImageNet classification
task [43]. Moreover, DenseNet-161 has shown a great success in several histopathological
image analysis pipelines [10,44–51]. In order to supply the patch-wise feature extractor
network with image patches, we extract a number of patches k based on the following
equation [7]:

k =

(
1 +

⌊
W − w

s

⌋)
×
(

1 +
⌊

H − h
s

⌋)
(1)

where W and H are width and height dimensions of the input image, respectively. While,
w and h are width and height dimensions for the image patch, respectively and s is the
stride used over the input image.
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Figure 2. Overview of 3E-Net. The model starts by taking a histopathological image section as input.
Several small patches are extracted from the image where Pi,j is one of the extracted patches. All
patches are then fed into a patch-wise CNN for feature extraction, where Fi,j is one of the extracted
feature maps. Feature maps are then inserted into N image-wise CNN models to learn multiple levels
of spatial dependencies information. Finally, Shannon entropy H is adopted in our uncertainty-aware
component to measure the sensitivity of the input image to the N image-wise models. According
to a pre-defined threshold β, the most certain models were selected for final grading prediction. In
case of having zero certain models, the input image is returned to medical professionals for manual
exploration and further investigation.

To improve variety (in the training data) and alleviate overfitting for the patch-wise
feature extractor network, we extracted and used partially overlapped patches. Further-
more, we applied data augmentation techniques by transforming each patch using rotation
and reflection operations. For example, random color alterations introduced by [52] has
been applied to each patch as it aids in minimizing the visual diversity of the patches. Our
model learns rotation, reflection, color invariant characteristics, and makes pre-processing
color normalization [53]. The patch-wise feature extractor network is then trained using
categorical cross-entropy loss based on image-wise labels. The loss equation is defined as:

L(y− ŷ) = −
c

∑
i=1

yi log ŷi (2)

where yi and ŷi represent the ground truth label and the prediction of each class i in c
classes, respectively.

4.2. Image-Wise Grading

Once the feature extraction is accomplished, feature maps are fed into multiple image-
wise networks to encode multi-level contextual information. The main purpose of the
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image-wise network is to grade images based on local and contextual features captured
from image and spatial dependencies information between different patches, respectively.

During the training stage of an image-wise network, we extract non-overlapping
patches from the input image, where they are used to form newly concatenated feature
maps that are designed based on neighboring feature maps only. This criterion helps in
building the intended contextual information. In our model, we build various image-wise
networks that are based on multi-levels of contextual information. Each patch in the
image has its own feature map. The number of image-wise network models depends on
the number of feature maps extracted from the image and the possible formed shapes
of neighbor feature maps. The contextual levels have low-level context which builds
contextual feature maps among 2 original neighboring feature maps only, and high-level
context builds contextual feature maps among all the original feature maps extracted from
the image. For instance, having q feature maps extracted from the input image helps
in generating image-wise models which learn contextual information among 2 feature
maps (low-level) to q feature maps (high-level). Furthermore, for each level of contextual
information (except for the highest level), a number of image-wise models can be generated
based on different shapes of the neighbor feature maps. The formation and concatenation
of any two or more feature maps can have different shapes. Likewise in the patch-wise
network, the data augmentation process is applied to dataset images by applying rotation,
reflection, and color alterations. In addition, categorical cross-entropy loss is used in the
training process against the corresponding image-level labels.

Image-wise CNN is composed of a series of 3 × 3 convolutional layers followed
by a 2 × 2 convolution with a stride of 2 for down-sampling. Batch normalization and
ReLU activation function were attached after each layer. A 1 × 1 convolutional layer is
used before the classifier to obtain the spatial average of feature maps. As a final block,
the network ends with 3 fully connected layers and a log softmax classifier. The softmax
activation function is defined as:

S(zi) =
ezi

∑c
j ezj

(3)

where zi represents output element i of the last fully connected layer.

4.3. Elastic Ensemble Using Uncertainty Quantification

In this section, we describe our elastic ensemble of the constructed image-wise models.
As a crucial step in this work, we transform the standard ensemble-based model into an
elastic ensemble model which dynamically selects models based on the uncertainty of
models as a measuring factor. In other words, for each image, a dynamic number of models
is selected and combined towards the final image prediction. To measure uncertainty
for our ensemble model, we adopted Shannon entropy for each image-wise model. The
formula for Shannon entropy is represented as:

H(X) = H(p1, . . . , pc) = −
c

∑
i=1

pi log2 pi (4)

where H(X) represents Shannon entropy for input image X and p1, . . . , pc is probability
distribution for image X on c class categories.

During the testing stage, the input image is graded using all the image-wise models
in an ensemble-based model. Each model generates the grading of the image in the form
of a probability distribution for c class categories. Then, these probability distributions
are evaluated using Shannon entropy (based on an uncertainty threshold value (β)) to
measure uncertainty. According to the calculated uncertainty measure, a dynamic number
of image-wise models will be selected for each image.

The selection process of image-wise models in the elastic ensemble process works
by comparing the Shannon entropy measure evaluated for a particular model against a
pre-defined threshold value β, as defined in the experimental study. If the entropy value
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is less than β, then the model will be chosen and included in a list of chosen models for a
particular image. In the end, each image in the dataset should have a dynamic number of
chosen models to produce the final prediction. In case of having images with zero chosen
models, we prioritize these images for pathology annotating by medical professionals.
After selecting the most certain image-wise models, the class predictions of these models
are aggregated to produce the final class prediction distribution.

Algorithm 1 provides a detailed description of 3E-Net model. The input image
is divided into smaller patches. Then, using patch-wise CNN, many feature maps are
extracted. These feature maps are then inserted into image-wise CNN models. Each
image-wise model produces a probability distribution of the input image. In the end,
the Uncertainty-aware component is utilized to measure the level of uncertainty for each
image-wise model’s prediction. The models with uncertainty values less than a threshold
β are chosen and their predictions are aggregated for final grading ŷ. If the input image
has no chosen models, medical professionals are involved in the final grading decision.

Algorithm 1: 3E-Net Model
Input: Histopathological Input Image X
Output: Image Label ŷ or Uncertainty Decision
/* Image X is inserted into a function to extract smaller patches represented as Pm,n where m and n are the patch

row and column index in the image X, respectively. */
1 Pm,n = PatchExtraction(X)

/* Extract feature maps from image patches */
2 for i ∈ m do
3 for j ∈ n do
4 Fi,j = PatchWiseFeatureExtraction(Pi,j)

5 V = [ ] // Empty List to store models’ predictions
/* Insert Feature maps Fm,n into N Image-wise Models */

6 for i ∈ N do
/* Image-wise Models learn different levels of contextual information */

7 Predi = ImageWiseModeli(Fm,n)
8 V.append(Predi)

/* Elastic Ensemble using Shannon Entropy */
9 selectedModels = [ ] // Empty list to store the most certain models’ predictions

10 for i ∈ N do
11 UncertaintyValue = −∑c

i=1 Vi log2 Vi // where c is the number of classes
/* Check if Uncertainty measure is less than a pre-defined threshold β */

12 if UncertaintyValue < β then
/* Append prediction of the model which has small uncertainty */

13 selectedModels.append(Vi)

/* Check if a dynamic number of models are chosen for final prediction */
14 if selectedModels 6= 0 then

/* Aggregate the probability distributions of selected models and produce the final image grade label */
15 G = Aggregate(selectedModels)
16 ŷ = arg max G

/* If no models are chosen, this means all models in the ensemble architecture are uncertain about the final grade
of the input image */

17 else
/* Uncertainty decision */

18 Exclude image from grading
19 Return image to medical pathologists
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5. Experimental Study

We evaluated the performance of our work on the Invasive Breast Carcinoma dataset.
As aforementioned, the dataset has 300 images which all are used for training the ensemble
model using 5-fold cross-validation. Cross-validation enables us to overcome the limited
availability of annotated images, making sure that the model is well-trained. For training
patch-wise networks, we used microscopy patches extracted from training images. These
patches are augmented using rotation, flipping, and colorization methods. Similarly, in
image-wise networks, the same training process is conducted, but using the image-level
dataset instead of patches. In the experimental study, we designed and implemented two
standard ensemble models. First, the baseline ensemble model which has DenseNet-161
as the patch-wise feature extractor CNN will be denoted by Standard Ensemble Model
(Version A). Second, we applied a modification by using the patch-wise CNN introduced
in [7] as the feature extractor of the ensemble model. The modified ensemble model will
be denoted by Standard Ensemble Model (Version B). Finally, our contribution has two
3E-Net models: 3E-Net Version A & 3E-Net Version B, where we apply elastic ensemble
approach to the standard ensemble models.

5.1. Hyperparameter Settings

As we have DenseNet-161 as the patch-wise feature extractor of the baseline ensemble
model (Standard Ensemble Model (Version A)), we extracted patches of size 224× 224 from
the input image. Consequently, a number of 20 non-overlapped patches can be generated
(where the original size of the input image is 1280 × 960) to extract high-level contextual
information. However, due to the limited GPU memory, we down-sampled the input
images to a smaller scale of 896 × 672.

For training data extraction, we set the stride to s = 112 to extract partially overlapped
patches for both versions (A & B). This stride value helps in increasing the training patch
samples for patch-wise CNN and prevents the network from overfitting. We applied data
augmentation by rotating the training patches by 90 degrees with horizontal and vertical
flipping. To fine-tune the patch-wise CNN for Standard Ensemble Model (Version A) to
our grading task, we modified the number of output neurons from 1000 to only 3 (as we
have three grades). We used Adam optimizer [54] for minimizing the cost function and we
set the learning rate to 0.0001 for 5 training epochs and batch size to 32 for both patch-wise
CNNs in versions A & B.

The extracted feature maps from patch-wise CNN are then inserted into image-wise
models. For training image-wise model, we extracted non-overlapped patches from the
new image scale giving us 12 patches by using s = 224. This means that we have a total
number of 12 feature maps represented as a matrix of size (3× 4) (as shown in Figure 2)
to be used for the training process of image-wise models. Different levels of contextual
information have been learned by combining all the original feature maps to form multi-
level contextual feature maps. For example, the lowest-level contextual feature maps are
generated by combining 2 neighboring feature maps while the highest-level contextual
feature maps are generated by combining the 12 feature maps of the image. As mentioned
earlier, different shapes of neighbor feature maps can be generated from each contextual
level (except for the high-level as we combine all the 12 feature maps). Once the different
levels of contextual feature maps are constructed, a number of DCNNs will be set up to
learn the multi-level contextual information. This results in an arbitrarily chosen number
of 17 image-wise models to form our ensemble architecture. Image-wise CNNs are trained
on augmented image-level samples by applying rotation of 180 degrees with flipping. The
remaining settings are the same as patch-wise CNN except that each image-wise CNN is
trained for 10 training epochs and a batch size of 8.

Finally, we design and implement an elastic ensemble approach (3E-Net Versions
A & B) for the standard ensemble models. This is accomplished using Shannon entropy
to measure the uncertainty of the 17 image-wise models. Each input image can have a
dynamic number of models less than 17 based on the pre-defined β which excludes the
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models with high uncertainty values. We used a wide range of β values from 10−8 to 2 to
demonstrate the capability of 3E-Net versions to provide high performance.

5.2. Quantitative Evaluation

We adopted accuracy, precision, recall, and F1-score metrics to evaluate the perfor-
mance of our model. Precision is the classifier’s capability to not mark a result as positive
if it is negative, the classifier’s recall is its ability to locate all positive samples, and F1-score
can be expressed as the harmonic mean of the precision and recall. The accuracy, precision,
recall, and F1-score were determined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1-score = 2 · Precision× Recall
Precision + Recall

(8)

where TP and TN represent the correct predictions by our elastic ensemble models for the
occurrence of a certain grade or not, respectively, while FP and FN are the incorrect model
predictions for all cases.

5.2.1. Performance of Standard Ensemble-Based Models

Tables 1 and 2 illustrate precision, recall, F1-score and grading accuracy of standard
ensemble of DCNNs (i.e., ensemble of the total 17 models) for Version A and Version B,
respectively. Tables 1 and 2 show that both ensemble models can effectively differentiate
grade 2 from the two other grades (grade 1 and grade 3). Moreover, Version A and Version B
have achieved an average precision of 93.04% and 90.98%, respectively, while they achieved
average grading accuracy of 93% and 90.68%, respectively.

Table 1. Grading performance (mean) of standard ensemble model (Version A) on Invasive Breast
Carcinoma dataset using 5-fold cross validation.

Grade Precision Recall F1-Score Accuracy

Grade 1 89.86% 90.65% 90.25% 93.00%
Grade 2 99.05% 99.05% 99.02% 99.33%
Grade 3 90.05% 89.00% 89.51% 93.67%

Total 93.04% 93.00% 93.01% 93.00%

Table 2. Grading performance (mean) of standard ensemble model (Version B) on Invasive Breast
Carcinoma dataset using 5-fold cross validation.

Grade Precision Recall F1-Score Accuracy

Grade 1 85.83% 88.83% 87.21% 90.68%
Grade 2 98.09% 95.14% 96.48% 97.68%
Grade 3 89.04% 87.89% 88.39% 93.00%

Total 90.98% 90.68% 90.72% 90.68%

5.2.2. Performance of 3E-Net Models

To evaluate the performance of the uncertainty-aware component, we further investi-
gate the grading accuracy of the elastic ensemble approach. Moreover, for a fair comparison
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with the standard ensemble-based models, we introduced two new metrics: (1) Weighted
Average Accuracy (WAA), which measures the average of grading accuracies for the 5 folds
in the dataset weighted by the number of the included images in each fold; and (2) Abstain
percentage (AP): measures the percentage of the excluded images to the total number of
images in the dataset. The formulation of the two metrics are determined as follows:

WAA =
1

∑t
i=1 di

t

∑
i=1

Accuracyi ∗ di (9)

AP =

(
∑t

i=1 Ri

DS

)
× 100 (10)

where di and Accuracyi represent the number of included images and grading accuracy in
fold i over a total number of t folds, respectively, Ri is the count of the excluded images in
fold i, and DS is the total number of images in the dataset

Table 3 demonstrates the capability of our elastic ensemble approach in providing
higher grading accuracies for both 3E-Net model variations (Version A & B) when compared
to the standard ensemble models. Moreover, such improvement in the grading accuracies
indicates that the excluded images are difficult to classify by the DCNN models, where
a manual investigation is required for such images. It can be noticed that 3E-Net models
achieve the highest accuracies of 96.15% (β = 5× 10−7) and 99.50% (β = 5× 10−6) for
Version A and Version B, respectively. As illustrated by Table 3, the other threshold β
values yield grading accuracy of ∼95% for Version A and ∼99.40% for Version B.

Table 3. WAA of 3E-Net Model variations (Version A & Version B) on different β values.

Model β Accuracy

3E-Net (Version A)

5× 10−7 96.15%
9× 10−7 95.82%
5× 10−6 94.86%

10−5 94.56 %

3E-Net (Version B)

5× 10−6 99.50%
10−6 99.43%

9× 10−7 99.42%
5× 10−7 99.38 %

Figure 3 depicts AP of the excluded images from the dataset over different values of
β for 3E-Net models (Version A & Version B). The curves show that AP decreases when
we increase β. In addition, starting from β = 0.75, the number of excluded images reaches
zero for both models. Figure 4 depicts the ROC curves for both model versions using
the standard and elastic ensemble-based approaches, see also Figure 5 for the confusion
matrices obtained by our models.

Figures 6 and 7 demonstrate the output visualizations of multiple filters applied
to the first and last convolutional layers of the patch-wise network of the standard en-
semble model (version B). Note how the feature maps are distinctive in terms of their
morphological structures.
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Figure 3. AP of excluded images for 3E-Net Version A (Blue) and 3E-Net Version B (red) over a range
of threshold β values using elastic ensemble on Invasive Breast Carcinoma Dataset.
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Figure 5. Confusion matrices for our proposed models.
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Figure 6. Examples of feature maps obtained by multiple filters learned within the first convolutional
layer of the patch-wise network of standard ensemble (version B). The colored image is the original,
while the gray-scale images are the output maps.
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Figure 7. Examples of feature maps obtained by multiple filters learned within the last convolutional
layer of the patch-wise network of standard ensemble (version B). The colored image is the original,
while the gray-scale images are the output maps.

5.2.3. Comparison with Different Methods

To demonstrate the effectiveness of our solution, we applied ablation study by com-
paring the performance of a state-of-the-art single DCNN model, standard ensemble-based
models, and our elastic ensemble approach. In Table 4, we compare our 3E-Net models
with the state-of-the-art models in digital breast pathology, namely DCNN+SVM model [8],
deep spatial fusion CNN model [9], two-stage CNN model [7], and ensemble of multi-scale
networks (EMS-Net) [10]. As demonstrated by Table 4, our 3E-Net model outperformed
both the recent models in the literature and the standard ensemble models.
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Table 4. Comparison between different methods on Invasive Breast Carcinoma Dataset using 5 fold
cross-validation.

Method Precision Recall F1-Score Accuracy

DCNN + SVM [8] 87.64% 87.38% 87.38% 87.38%
Deep Spatial Fusion CNN [9] 92.67% 92.65% 92.62% 92.65%

Two-stage CNN [7] 93.07% 92.69% 92.70% 92.69%
EMS-Net [10] 93.04% 93.00% 93.00% 93.00%

Standard Ensemble Model (Version A) 93.04% 93.00% 93.01% 93.00%
Standard Ensemble Model (Version B) 90.98% 90.68% 90.72% 90.68%

3E-Net (Version A) (β = 5× 10−7) 96.23% 96.15% 96.16% 96.15%
3E-Net (Version B) (β = 5× 10−6) 99.54% 99.50% 99.50% 99.50%

5.2.4. Performance of 3E-Net on BreakHis Dataset

To confirm the effectiveness of 3E-Net model, we applied 3E-Net model (version A)
on the Breast Cancer Histopathological Database (BreakHis) [55]. BreakHis has a total
number of 7909 breast cancer histopathology images taken from 82 patients using different
magnifying factors (40×, 100×, 200×, and 400×). The dataset is divided into 2480 benign
and 5429 malignant microscopic images with a resolution of 700 × 460 pixels. We use 40×
magnification images which has 625 benign and 1370 malignant samples.

Here, we down-sampled the images to around 80% of the original scale (448 × 336).
This image scale produces 6 image-wise CNNs to be used in the ensemble process. We
also used the same hyperparameter settings except for patch-stride values, where we used
s = 28 for training the backbone network (DenseNet-161) and s = 112 for training the 6
image-wise CNNs. Finally, as the BreakHis dataset contains only two classes (benign or
malignant), we fine-tuned DenseNet-161 by updating the number of neurons from 1000 to
only 2 neurons in the last fully connected layer. As shown in Table 5, our model has proved
to be effective on both standard and elastic ensemble. We applied 5-fold cross validation
and achieved a classification accuracy of 99.80% using standard ensemble technique. In
addition, the results show the validity of our novel elastic method of 3E-Net on different
beta values by improving the performance, where an accuracy of 99.95% has been achieved
on (β = 9× 10−6).

Table 5. Performance (mean) of standard and elastic ensemble models (Version A) on BreakHis
dataset using 5-fold cross validation.

Model β Accuracy
Standard Ensemble Model NA 99.80%

3E-Net Model

9× 10−6 99.95%
5× 10−4 99.90%
3× 10−2 99.85%

5.3. Qualitative Evaluation

To quantitatively evaluate the performance of our model on the excluded images,
we set β to a high value to find images that are less sensitive and highly uncertain to the
17 image-wise models in the ensemble of DCNN models. Figure 8 shows the images, for
which all the image-wise models in the ensemble agree on the uncertainty decision based
on the high uncertainty values resulted from these models. Figure 8c shows two images
from the selected excluded images which are agreed on their uncertainty by both 3E-Net
model variations (Version A and Version B). Moreover, it can be noticed that the highly
uncertain images come from grade 1 or grade 3, which proves trustworthy of our results in
Tables 1 and 2 to show how it is slightly hard to differentiate between grade 1 and grade 3.

Based on the sample of the excluded images shown in Figure 8, we returned to a
domain expert to further investigate the possible reason behind the high uncertainty of the
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excluded images. The uncertainty may be due to usage of datasets from heterogeneous
populations [56], or reduced sample size used in the study [57]. In this regard, additional
information depending on the staining of specific biomarkers for breast cancer grading
such as Ki67 [58] could be used to resolve the diagnostic uncertainty in CNN.

Figure 8. Highly uncertain excluded images from the grading process of our dynamic ensemble-
based models. The excluded images come from three perspectives: (a) 3E-Net Model (Version A), (b)
3E-Net Model (Version B), and (c) Versions A & B combined. Each image in the figure has a caption
that presents the ground truth label (G1: grade 1 and G3: grade 3).

6. Conclusions and Future Work

In this paper, we proposed 3E-Net model to grade invasive breast carcinoma using
histopathological images into three grades: grade 1, grade 2 and grade 3. Our model has
the capability to learn multi-levels of contextual information using image patches through
various image-wise CNN models. Moreover, our ensemble model has been designed in a
way to measure the level of randomness (using a novel entropy-based formula) in the input
images and quantify the challenges in grading images. We evaluated our proposed grading
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system on Invasive Breast Carcinoma Dataset from ‘Agios Pavlos’ General Hospital of
Thessaloniki, Greece. Our elastic ensemble model has two variations that achieved grading
accuracy of 96.15% and 99.50% in the five-fold cross-validation on training images and
outperformed standard ensemble-based models and a state-of-the-art method. 3E-Net
proved its effectiveness in excluding the uncertain microscopy images to be investigated
and explored by medical professionals.

As a future development, our work can be extended by introducing different patch-
wise CNNs and applying different learning perspectives while building the ensemble of
DCNN models. This is by learning and integrating different kinds of features including
global, local, and contextual information to improve the robustness and diversity of the en-
semble model. Moreover, our solution can be adapted to other applications (e.g., diagnosis)
and cope with different histopathological tissues such as prostate and colorectal cancer.
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