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Abstract: We analytically and numerically show that the Hillery-Zubairy’s entanglement criterion is
satisfied both below and above the threshold of coupled non-degenerate optical parametric oscillators
(NOPOs) with strong nonlinear gain saturation and dissipative linear coupling. We investigated
two cases: for large pump mode dissipation, below-threshold entanglement is possible only when
the parametric interaction has an enough detuning among the signal, idler, and pump photon
modes. On the other hand, for a large dissipative coupling, below-threshold entanglement is possible
even when there is no detuning in the parametric interaction. In both cases, a non-Gaussian state
entanglement criterion is satisfied even at the threshold. Recent progress in nano-photonic devices
might make it possible to experimentally demonstrate this phase transition in a coherent XY machine
with quantum correlations.

Keywords: entanglement; quantum optics; laser

1. Introduction

Networks of degenerate optical parametric oscillators (DOPOs), called coherent Ising
machines (CIMs) [1–13], have been extensively studied from quantum optics and neural-
network perspectives (for a recent review, see Ref. [14]). A DOPO network is constructed
with a dissipative (Liouvillian) linear coupling rather than a conservative (Hamiltonian)
coupling using either optical delay lines [2,5,6] or homodyne measurement feedback cir-
cuits [7,8,12]. The fundamental topics in quantum optics that can be studied with CIMs
include Gaussian state entanglement [3,4], the Schrödinger cat state [10], and the entangled
cat state [15]. Applications cover a broad spectrum, including spin-glass solvers [16,17],
structure-based virtual screening for drug discovery [18], combinatorial optimization [12,19],
compressed sensing [20], and fair sampling for deep machine learning [21].

The fundamental quantum resources of CIMs come from the phase-sensitive am-
plification/deamplification of two quadrature amplitudes in the DOPO [22]. Quantum
correlation among DOPOs, evaluated by entanglement and quantum discord, reaches
a maximum at the DOPO threshold and decreases below and above the threshold [23].
This quantum resource comes at the cost of limiting the spin-like degrees of freedom for
computation and simulation. The in-phase quadrature amplitude (a canonical coordinate
of a harmonic oscillator) takes either one of the bi-stable values above the threshold. We
can relax this binary constraint using phase-insensitive oscillators such as lasers [24–26] or
exciton-polariton condensates [27,28], in which the optical or polaritonic field can take a
continuous phase above the threshold, so that an XY Hamiltonian (or Kuramoto model)
can be naturally implemented instead of the Ising Hamiltonian. We call such a network
as a coherent XY machine (CXM) in this paper. However, the bosonic fields in lasers and
polariton condensates are thermal statistical mixture states below the threshold, while they
approach coherent states far above the threshold [29]. The lack of non-classical states in
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lasers and polariton condensates seems to exclude the possibility of creating quantum
correlations in a CXM based on such classical oscillators.

Non-degenerate optical parametric oscillators (NOPOs) have recently been used to
construct a CXM [30]. One of the experimental advantages of an NOPO-based CXM is that
we can easily transform a CIM to a CXM by introducing the frequency non-degeneracy
between the signal and idler waves without changing the basic structure of the machine.
An NOPO is a phase insensitive oscillator with a continuous phase degree of freedom, but
its quantum statistical features are unique and distinct from standard lasers and polariton
condensates. An NOPO below the threshold has a stronger gain saturation than a standard
laser, so that a sub-Poissonian light or even a single photon state may be generated if
the system parameters are chosen appropriately. This non-classical behavior below the
threshold is analogous to those of a strongly coupled atom-cavity system [31,32] and
coherently excited Raman three-level system with a large coupling and detuning [33]. On
the other hand, an NOPO above the threshold can produce an amplitude squeezed state
with a reduced amplitude fluctuation due to the strong gain saturation and diverging phase
fluctuation due to a random walk diffusion process. This non-classical behavior above
the threshold is analogous to those of pump-noise-suppressed lasers [34–39]. When such
non-classical states of light are mixed by dissipative (Liouvillian) coupling, it is expected
that the quantum correlations will form among the two NOPOs, just as in the case of two
DOPOs in a CIM [3,4,23]. This would be another advantage of NOPO-based CXMs.

In this paper, we investigate the formation of entanglement in a CXM consisting of
two NOPOs with a large parametric gain and show that entanglement is achieved below,
above, and at the threshold. We use both analytical and numerical methods, although the
analytical one is used to calculate the entanglement characteristics only far below and
far above the threshold. Our analytical study on above-threshold CXMs, started with
c-number stochastic differential equations (cSDEs) in the positive-P representation [40,41].
The numerical simulations were performed using both the quantum master equation
(QME) in the photon number representation, and the wave function Monte Carlo (WFMC)
method [42]. The paper is organized as follows. We introduce the model of CXM consisting
of two NOPOs in Section 2. In Section 3, we investigate the case of a large dissipation in the
pump mode and find that a large detuning of the parametric interaction is required to satisfy
the entanglement criterion below the threshold. Next, in Section 4, we consider the case of
a large dissipative coupling. We find that, below the threshold, entanglement is obtained
even in the absence of detuning in the parametric interaction. Section 5 summarizes the paper.
Appendix A shows the Fokker-Planck equation of the positive-P quasi-distribution function
and derives the below-threshold characteristics of a single NOPO. Appendixs B and C provide
subsidiary information on the numerical and theoretical equations. Appendixs D and E provide
the detailed derivations of analytical results. Appendixs F and G show the supplementary
information about the entanglement criterion and the experimental NOPO [30].

2. Model

The density matrix equation of a single χ(2) NOPO is written as

∂ρ̂

∂t
= ∑

a=p,s,i
γa([âa, ρ̂â†

a ] + h.c.) + ε[â†
p − âp, ρ̂] + κ[â†

s â†
i âpe−i∆t − â†

p âi âse+i∆t, ρ̂]. (1)

Here, âp, âs, and âi are pump, signal, and idler modes, respectively. These three photon
modes have cavity frequencies ωa(a = p, s, i) and the linear dissipation rates γa(a = p, s, i).
∆ = (ωp −ωs)−ωi is the detuning of the parametric interaction. ε is the strength of the
coherent excitation of the pump mode. κ is the strength of the χ(2) parametric interaction. If
the idler mode has a much larger dissipation than the other two photon modes (γi � γp, γs),
the quantum master equation can be written as
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∂ρ̂

∂t

∣∣∣∣
NOPO

= ∑
a=p,s

γa([âa, ρ̂â†
a ] + h.c.) + ε[â†

p − âp, ρ̂] (2)

− iK[â†
p âp â†

s âs, ρ̂] + G([â†
s âp, ρ̂â†

p âs] + h.c.).

Here G is the coefficient of the effective Raman interaction in Ref. [43–45], and K is the
coefficient of the non-degenerate Kerr effect [46]. If ∆ = 0, the Kerr coefficient is K = 0 and
the signal mode has a parametric gain G = κ2/γi. We define the maximum parametric gain

as G0 := κ2/γi. For the detuned parametric interaction, the parametric gain is G = κ2γi
γ2

i +∆2 ,

and the Kerr coefficient is K = κ2∆
γ2

i +∆2 . We use the dimensionless detuning parameter

d = K2/G2 to represent the normalized detuning. We also introduce the normalized
excitation p = ε/εthr, where εthr := γp

√
γs/G is the strength of the excitation at the

oscillation threshold.
Let us consider a CXM consisting of two NOPOs (NOPO1 with âp1, âs1 and NOPO2

with âp2, âs2) coupled by a dissipative Liouvillian Lcρ̂ for two signal modes [3,4,47–49],

∂ρ̂

∂t
=

∂ρ̂

∂t

∣∣∣∣
NOPO1

+
∂ρ̂

∂t

∣∣∣∣
NOPO2

+ Lcρ̂, (3)

Lcρ̂ = J[âs1 − âs2, ρ̂(â†
s1 − â†

s2)] + h.c.. (4)

We will evaluate the entanglement between the two signal modes using one of the entan-
glement criteria in Ref. [50],

HZ1 = |〈â†
s1 âs2〉|2 − 〈â†

s1 âs1 â†
s2 âs2〉. (5)

If this value is larger than zero, the two signal modes are entangled. Above the threshold, we
assume the ferromagnetic configuration 〈âs1〉 = 〈âs2〉 is created by the coupling Liouvillian (4).
Using the fluctuation of positive-P amplitudes (introduced in Appendixes A and B), the
normalized HZ1 is written as HZ1

〈â†
s âs〉
∼ −2〈∆α†

s1∆αs1〉 − 2Re〈∆αs1∆αs2〉. Here, we assumed

〈∆α†
s1∆αs1〉 = 〈∆α†

s2∆αs2〉 and that 〈âs1〉 is real. Introducing the canonical coordinates and

canonical momenta as ∆Xsi =
∆αsi+∆α†

si√
2

and ∆Psi =
∆αsi−∆α†

si√
2i

(i = 1, 2), this normalized
entanglement criterion is written as

HZ1
〈â†

s âs〉
= −〈∆X2

s1〉 − 〈∆Xs1∆Xs2〉 − 〈∆P2
s1〉+ 〈∆Ps1∆Ps2〉. (6)

This criterion is equivalent to the Duan’s sufficient condition for entanglement (Theorem 1
of Ref. [51]). Moreover, HZ1 criterion can detect an entanglement in a non-Gaussian state,
for example, entanglement of a superposition of single photon states |ψ〉 = 1√

2
(|0, 1〉+

|1, 0〉) [52]. This criterion seems useful to detect non-Gaussian entanglement in the below-
threshold CXM, since the similar model [33] realizes a single photon state.

3. Large Pump Dissipation Limit
3.1. Quantum Master Equation after the Elimination of the Pump Mode

In this section, we consider the large pump mode dissipation limit, where G, K, γp � γs,
J. In this limit, the linear loss of the pump mode, due to the dissipation into the reservoir
and spontaneous emission into the signal mode, is much larger than the linear loss of
the signal mode. We will use the expansion of the density matrix with the complex-P
representation [53,54] for the pump mode and photon number state representation for the
signal mode:
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ρ̂ = ∑
Ns ,N′s

∫
PNs ,N′s(αp, α†

p)
|αp〉〈α†∗

p |
〈α†∗

p |αp〉
⊗ |Ns〉〈N′s|dαpdα†

p. (7)

Substituting this expansion into Equation (2), we can obtain a time development equation
for PNs ,N′s(αp, α†

p).

∂PNs ,N′s
∂t

= γs[2
√
(1 + Ns)(1 + N′s)PNs+1,N′s+1 − (Ns + N′s)PNs ,N′s ]− ε

∂PNs ,N′s
∂αp

− ε
∂PNs ,N′s

∂α†
p

+
∂

∂αp
(γp + G(1 + Ns))αpPNs ,N′s + iK

∂

∂αp
NsαpPNs ,N′s

+
∂

∂α†
p
(γp + G(1 + N′s))α

†
pPNs ,N′s − iK

∂

∂α†
p

N′sα†
pPNs ,N′s (8)

− iKα†
pαp(Ns − N′s)PNs ,N′s + Gα†

pαp[2
√

Ns N′sPNs−1,N′s−1 − (2 + Ns + N′s)PNs ,N′s ].

Due to the linear dissipation of the signal mode (γs), components with photon number indices
(Ns, N′s) are excited by components with larger photon number indices (Ns + 1, N′s + 1).
The parametric gain (Gα†

pαp) introduces a contribution from components with smaller
photon number indices (Ns − 1, N′s − 1). Other processes do not affect the photon number
indices. Although the equation has drift terms for the pump amplitudes (αp, α†

p), the
signal photon number indices do not change when components are derived using αp or α†

p.
When γp + G is sufficiently large, the complex-P amplitude (αp) at photon number indices
(Ns, N′s) rapidly converge to the steady-state value of the time-development equation
dαp
dt = −(γp + G(1 + Ns) + iKNs)αp + ε. We can eliminate the pump mode amplitudes

by writing PNs ,N′s(αp, α†
p) = ρNs ,N′s δ

(
αp − ε

γp+G(1+Ns)+iKNs

)
δ
(

α†
p − ε

γp+G(1+N′s)−iKN′s

)
, and

integrating the complex-P amplitudes by
∫

dαpdα†
p. The density matrix components of the

signal mode ρNs ,N′s = 〈Ns|ρ̂|N′s〉 are,

∂ρNs ,N′s
∂t

= 2γs

√
(Ns + 1)(N′s + 1)ρNs+1,N′s+1 − γs(Ns + N′s)ρNs ,N′s

− iKe(Ns, N′s)(Ns − N′s)ρNs ,N′s (9)

+ 2Ge(Ns − 1, N′s − 1)
√

Ns N′sρNs−1,N′s−1 − Ge(Ns, N′s)(2 + Ns + N′s)ρNs ,N′s .

Here Ge(N, N′) = Gε2

[γp+G(1+N)+iKN][γp+G(1+N′)−iKN′ ] , and

Ke(N, N′) = Kε2

[γp+G(1+N)+iKN][γp+G(1+N′)−iKN′ ] . The denominators of these terms have
higher dependence on the signal photon number than in Scully–Lamb’s theory [55]. In
regard to the CXM consisting of two NOPOs, we can omit the subscript for the signal mode
s, after eliminating the pump mode. The density matrix components of the two signal
modes ρN1,N2,N′1,N′2

= 〈N1, N2|ρ̂|N′1, N′2〉 develop as,

∂ρN1 ,N2 ,N′1 ,N′2
∂t

= (γs + J)
[
2
√
(N1 + 1)(N′1 + 1)ρN1+1,N2 ,N′1+1,N′2

− (N1 + N′1)ρN1 ,N2 ,N′1 ,N′2

]
+ 2Ge(N1 − 1, N′1 − 1)

√
N1N′1ρN1−1,N2 ,N′1−1,N′2

− Ge(N1, N′1)(2 + N1 + N′1)ρN1 ,N2 ,N′1 ,N′2

+ (γs + J)
[
2
√
(N2 + 1)(N′2 + 1)ρN1 ,N2+1,N′1 ,N′2+1 − (N2 + N′2)ρN1 ,N2 ,N′1 ,N′2

]
+ 2Ge(N2 − 1, N′2 − 1)

√
N2N′2ρN1 ,N2−1,N′1 ,N′2−1 − Ge(N2, N′2)(2 + N2 + N′2)ρN1 ,N2 ,N′1 ,N′2

(10)

− iKe(N1, N′1)(N1 − N′1)ρN1 ,N2 ,N′1 ,N′2
− iKe(N2, N′2)(N2 − N′2)ρN1 ,N2 ,N′1 ,N′2

− J
[
2
√
(N1 + 1)(N′2 + 1)ρN1+1,N2 ,N′1 ,N′2+1 + 2

√
(N2 + 1)(N′1 + 1)ρN1 ,N2+1,N′1+1,N′2

−
√
(N1 + 1)N2ρN1+1,N2−1,N′1 ,N′2

−
√

N′1(N′2 + 1)ρN1 ,N2 ,N′1−1,N′2+1

−
√
(N2 + 1)N1ρN1−1,N2+1,N′1 ,N′2

−
√

N′2(N′1 + 1)ρN1 ,N2 ,N′1+1,N′2−1

]
.
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3.2. Far-Below-Threshold Entanglement

From the above Equation (10), we will analytically derive the photon anti-bunching
and entanglement characteristics far below the threshold (p� 1). In this limit, Ge(Ni, N′i )
and Ke(Ni, N′i )(i = 1, 2) are of order O(p2). Therefore, these contributions to ρN1,N2,N′1,N′2
on the right hand side of Equation (10) are much smaller than those of γs and J. However,
the Ge(Ni − 1, N′i − 1)(i = 1, 2) on the right hand side are not negligible. Although the
Ke(Ni, N′i )(i = 1, 2) on the right hand side do not contribute for small p, the non-degenerate
Kerr coefficient K in the denominators of Ge(Ni − 1, N′i − 1)(i = 1, 2) contributes to the
characteristics far below the threshold. The signal photon number of the CXM is obtained
from the equations of the two density-matrix components, ρ10,10, and ρ10,01.

∂ρ10,10

∂t
= −2(γs + J)ρ10,10 + 2Jρ10,01 + 2Ge(0, 0)ρ00,00, (11)

∂ρ10,01

∂t
= −2(γs + J)ρ10,01 + 2Jρ10,10. (12)

From these equations, the mean signal photon number is ρ10,10/ρ00,00. In the steady-state,
this becomes

〈â†
s1 âs1〉 =

γs + J
γs + 2J

γ2
p

(γp + G)2 p2. (13)

For a weak nonlinear gain saturation (G � γp), this value reaches one at p ∼ 1. However,
in general, p ∼ 1 + G/γp is required for achieving 〈â†

s1 âs1〉 = 1, where stimulated emis-
sion becomes dominant over spontaneous emission. ρ10,01/ρ00,00 provides an amplitude
correlation function between the two signal modes,

〈â†
s1 âs2〉 =

J
γs + 2J

γ2
p

(γp + G)2 p2. (14)

Next, we calculate the values of order O(p4) from the equations of four components,
ρ20,20, ρ11,11, ρ20,02 and ρ20,11.

∂ρ20,20

∂t
= −4(γs + J)ρ20,20 + 2

√
2JReρ20,11 + 4Ge(1, 1)ρ10,10, (15)

∂ρ11,11

∂t
= −4(γs + J)ρ11,11 + 4

√
2JReρ20,11 + 4Ge(0, 0)ρ10,10, (16)

∂ρ20,02

∂t
= −4(γs + J)ρ20,02 + 2

√
2JReρ20,11, (17)

∂ρ20,11

∂t
= −4(γs + J)ρ20,11 +

√
2J(ρ20,02 + ρ11,11 + ρ20,20) + 2

√
2Ge(1, 0)ρ10,01. (18)

The second-order correlation function g(2)s (0) =
〈â†2

s1 â2
s1〉

〈â†
s1 âs1〉2

is obtained as

g(2)s (0) = 2ρ20,20ρ00,00/ρ2
10,10. Its steady-state value is

g(2)s (0) =
4γs(γs + 2J)(γp + G)2 + J2[K2 + (2γp + 3G)2]

2(γs + J)2[(γp + 2G)2 + K2]
. (19)

When the parametric coefficients are sufficiently small (G, K � γp), the signal modes are

in blackbody radiation states with g(2)s (0) = 2 [29]. In the case of a large parametric gain
(G, K), however, the signal modes can have non-classical (photon anti-bunching) states with

g(2)s (0) < 1. In the single NOPO limit (J → 0), g(2)s (0) = 2(γp+G)2

(γp+2G)2+K2 is obtained. This is

identical to the γs → 0 limit of g(2)s (0) for a single NOPO, which is derived in Appendix A
and shown in Equation (A15). This expression converges to a completely anti-bunching
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state g(2)s (0) = 0 in the K → ∞ limit [33]. In the γs � J limit, g(2)s (0) is K2+(2γp+3G)2

2[K2+(γp+2G)2]
, and

it converges to 0.5 in the large-K limit. This is larger than the minimum value for a single
NOPO (g(2)s (0) = 0). Hillery-Zubairy’s entanglement criterion (Equation (5)) for the two
signal modes is obtained as HZ1/〈â†

s âs〉2 = ρ2
10,01/ρ2

10,10 − ρ11,11ρ00,00/ρ2
10,10, i.e.,

HZ1
〈â†

s âs〉2
=

J2[K2 − (2γ2
p + 4γpG + G2)]

2(γs + J)2[(γp + 2G)2 + K2]
− γs(γs + 2J)

(γs + J)2 . (20)

If this value is larger than zero, the two NOPOs are entangled far below the threshold. From
the equation, HZ1 is always negative if K ≤ G. To achieve entanglement, the detuning
of the parametric interaction must be larger than the idler linewidth (d > 1). For below-
threshold entanglement, a small γp/G ratio and large J are preferred.

The following is an example of a parameter set for below-threshold entanglement,
J/γs = 12, G = 8γp, and d = 5. These parameters give g(2)s (0) ∼ 0.7361 and HZ1/〈â†

s âs〉2 ∼
0.0074. Therefore, the two NOPOs have anti-bunching states and are entangled. Figure 1a,b
compares the analytically and numerically calculated g(2)s (0) and HZ1/〈â†

s âs〉2. The nu-
merical results are obtained by time developing the quantum master Equation (3) from the
vacuum state ρ̂ = |0〉〈0| in accordance with the pump schedule p(t) = 0.01 min(1,

√
tγs/2).

The values at tγs = 10 are used as the approximate steady-state results for p = 0.01, and
are plotted for various γp/γs ratio. When γp/γs becomes larger than J/γs = 12 by two

orders of magnitude, g(2)s (0) and the below-threshold entanglement criterion converge to
the analytical results that assume infinite γp/γs.

Figure 1. Below- and above-threshold characteristics of CXM with large pump dissipation for d = 5,
J/γs = 12. (a,b) Comparison of far-below-threshold theory (γp/γs → ∞) and quantum master
equation with p = 0.01 for G/γp = 8. (c,d) Comparison of far-above-threshold theory (γp/γs → ∞)
and positive-P numerical calculation with γp/γs = 50 and G/γs = 10−7.

3.3. Far-Above-Threshold Entanglement

Next, we analytically derive the above-threshold characteristics of the CXM by assum-
ing a large pump dissipation γp � γs and small parametric gain G � γs. We derive an
analytical expression for the above-threshold fluctuations from the equations of positive-P
representation [40,41]. For a single NOPO, the Fokker-Planck equation of the positive-P
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quasi-distribution function P(αp, α†
p, αs, α†

s ) is derived in Appendix A. Here, αp, α†
p(αs, α†

s )
are positive-P amplitudes for the pump (signal) mode. Using the Ito rule, the equivalent
c-number stochastic differential equations are expressed as:

dαp

dt
= −(γp + G)αp + ε− (G + iK)α†

s αsαp −
√

G + iK
2

αpξC, (21)

dα†
p

dt
= −(γp + G)α†

p + ε− (G− iK)α†
s αsα†

p −
√

G− iK
2

α†
pξ†

C, (22)

dαs

dt
= −γsαs + (G− iK)α†

pαpαs +

√
G + iK

2
αsξ∗C +

√
Gαpξ

‡
C, (23)

dα†
s

dt
= −γsα†

s + (G + iK)α†
pαpα†

s +

√
G− iK

2
α†

s ξ†∗
C +

√
Gα†

pξ
‡∗
C . (24)

Here ξC, ξ†
C and ξ

‡
C are independent complex Gaussian random numbers satisfying correla-

tion functions, such as 〈ξ∗C(t)ξC(t′)〉 = 2δ(t− t′). ξ
‡
C reflects random spontaneous emission

of signal photons. ξC and ξ†
C contribute to the correlation between the pump and signal

amplitudes. From Equations (23) and (24), the above-threshold pump photon number is
identical to that of an NOPO without a Kerr term K [39]:

〈α†
pαp〉 = γs/G. (25)

The above-threshold signal photon number is obtained from γs/G ∼ |〈αp〉|2 and

〈αp〉 ∼
ε

γp + (G + iK)〈α†
s αs〉

, (26)

which is the steady-state mean of Equation (21), d〈αp〉
dt ∼ ε− γp〈αp〉 − (G + iK)〈αp〉〈α†

s αs〉.
Here, we have assumed that G � γp and 〈αpα†

s αs〉 ∼ 〈αp〉〈α†
s αs〉. Using d = K2/G2 and

ε = γp p
√

γs/G, the steady-state signal photon number is obtained as

〈α†
s αs〉 =

γp

G
π − 1
1 + d

. (27)

Here, π =
√

p2(1 + d)− d is the normalized excitation modified by the detuning parameter
d = K2/G2 in the parametric interaction. The steady-state pump amplitude is written as

〈αp〉 =
√

γs

G
p

1− i
√

d
π − i

√
d

. (28)

By introducing the phase factor

tan φ =

√
d(π − 1)
π + d

, (29)

the mean pump amplitude becomes 〈αp〉 =
√

γs
G e−iφ.

Now let us introduce the small amplitude fluctuations in the pump and signal modes,
∆αp and ∆αs. The pump amplitude fluctuation is defined as the fluctuation after removing
the phase factor denoted by φ.

αp ∼ e−iφ
(√γs

G
+ ∆αp

)
. (30)
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The mean signal amplitude rotates with the frequency K〈α†
pαp〉 ∼

√
dγs due to Kerr-

nonlinearity. The signal amplitude fluctuation is defined as the fluctuation after removing
this time-dependent phase factor,

αs ∼ e−i
√

dγst
(√γp

G
π − 1
1 + d

+ ∆αs

)
. (31)

These phase factors do not affect the products, α†
pαp and α†

s αs, appearing in the positive-P
equations. The equations for small amplitude fluctuations are

d∆αp

dt
= −rp2 1 + i

√
d

π + i
√

d
∆αp − (1 + i

√
d)

√
r(π − 1)

1 + d
(∆α†

s + ∆αs)−

√
1 + i
√

d
2

ξC, (32)

d∆α†
p

dt
= −rp2 1− i

√
d

π − i
√

d
∆α†

p − (1− i
√

d)

√
r(π − 1)

1 + d
(∆α†

s + ∆αs)−

√
1− i
√

d
2

ξ†
C, (33)

d∆αs

dt
= +(1− i

√
d)

√
r(π − 1)

1 + d
(∆αp + ∆α†

p) +

√
1 + i
√

d
2

r(π − 1)
1 + d

ξ∗C + ξ
‡′

C , (34)

d∆α†
s

dt
= +(1 + i

√
d)

√
r(π − 1)

1 + d
(∆αp + ∆α†

p) +

√
1− i
√

d
2

r(π − 1)
1 + d

ξ†∗
C + ξ

‡′∗
C . (35)

Here, r = γp/γs and ξ
‡′

C = ξ
‡
Ce−iφei

√
dγst. The time t is normalized so that 1/γs is the

unit time. The equivalent equations written with canonical coordinates and momenta are
shown in Appendix C.

From these equations in the limit of r � 1, we can calculate the steady-state value of

Mandel’s Q parameter [56] for a signal mode. It is defined as QM,s := 〈∆n̂2
s 〉−〈n̂s〉
〈n̂s〉 , where

n̂s = â†
s âs and ∆n̂s = n̂s − 〈n̂s〉. When QM,s is smaller than zero, the signal mode is in an

amplitude squeezed state. From the calculation shown in the Appendix D,

QM,s = −
4 + j

4(2 + j)
+

1 + d
4(π − 1)

− d
4π

+
(1 + j)(π + d)

(2 + j)[(2 + j)π2 − 2π + dj]
(36)

is obtained. In the large excitation limit (π → ∞), QM,s converges to a negative value
− 4+j

4(2+j) . Therefore, an amplitude squeezed state is obtained even in a small-G NOPO.

In the single NOPO limit (j → 0), QM,s = − 1
2 + 1+d

2(π−1) −
d

2π . This value converges to

QM,s → − 1
2 for a large pump excitation, which is identical to the value obtained in Ref. [35].

In terms of the order O(d), Mandel’s Q parameter is written as QM,s = − 1
2 + 1

2(p−1) −
d

4p .
Therefore, for the same p, detuning in the parametric interaction increases the amplitude
squeezing. In the strong dissipative coupling limit, i.e., j→ ∞, the Mandel’s Q parameter
is halved from that of the single NOPO limit.

The steady-state value of HZ1 entanglement criterion is also obtained for large r, as

HZ1
〈â†

s âs〉
=

j− 2
4j
− π + d

4π(π − 1)
− d(π − 1)

j(π2 + d)

[
1 +

(d + 1)π
(j + 1)π2 − π + dj

+
π(π2 − 2π − d)

(j + 2)π2 − 2π + dj

]
. (37)

The detailed derivation is provided in Appendix D. Here, in the large excitation limit

(π → ∞), HZ1 converges as HZ1/〈â†
s âs〉 → j2−4(1+d)

4j(j+2) . The coupling coefficient j must

satisfy j > 2
√

1 + d for entanglement far above the threshold. Therefore, detuning d is not
preferred for satisfying above-threshold entanglement criterion, although d > 1 must be
satisfied for below-threshold entanglement.

The analytical and numerical Mandel’s Q parameter and HZ1 entanglement criterion
are compared in Figure 1c,d. Both results are obtained for J/γs = 12 and d = 5 and
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plotted as the function of normalized excitation p. The analytical results assume that
γp/γs → ∞ and G/γs → 0. The numerical results were obtained by integrating the
positive-P c-number SDEs in Appendix B, for γp/γs = 50 and G/γs = 10−7. To obtain
steady-state statistics from the positive-P calculation, we calculated a single trajectory,
starting from αpi = α†

pi = αsi = α†
si = 0(i = 1, 2) with excitation depending on time as

p(t) = p min(1,
√

tγs/105), and took the time average from tγs = 105 to tγs = 106. The
theoretical Mandel’s QM,s parameter from Equation (36) becomes negative at p ∼ 1.7. The
numerical QM,s values were slightly larger than the theoretical values due to the finite
γp/γs ratio. When d = 0, Equation (36) always gave QM,s = 0 at p = 2. Therefore, the non-
degenerate Kerr effect causes amplitude squeezing for smaller p. Moreover, the theoretical
HZ1 from Equation (37) becomes positive for p ∼ 2.1. The numerical values are slightly
smaller than the analytical results due to the finite γp/γs ratio. Above the threshold,
the use of a small γp/γs ratio helps to decrease the degrees of both amplitude squeezing
and entanglement. This differs from the below threshold case, where using small γp/γs
ratio improves the anti-bunching and entanglement.

3.4. Numerical Results

Here, we give the numerical simulation results as a function of normalized excitation p.
The mean signal photon number 〈â†

s âs〉 and HZ1 entanglement criterion are presented in
Figure 2a,b for γp/γs = 50, G/γs = 400, d = 5, and J/γs = 12. For a small excitation p,
we numerically calculated the quantum master equation (QME) in Equation (3) with a
photon number space expansion. When the maximum pump photon number is Mp − 1
and maximum signal photon number is Ms − 1 in the expansion, the size of the density
matrix and the calculation time are of order O(M4

p M4
s ). This means that the calculation time

increases rapidly for large p, where the mean signal photon number 〈â†
s âs〉 increases and

we have to prepare a sufficiently larger Ms satisfying Ms � 〈â†
s âs〉. The maximum value of

p calculated by QME was p = 10, where the mean signal photon number is 〈â†
s âs〉 ∼ 0.42,

and we have used Mp = 4 and Ms = 7. The method of the QME calculation is the same as
for Figure 1a,b.

For a larger excitation p, we used Mølmer’s wave-function Monte Carlo (WFMC)
calculation [42], whose calculation time is O(M2

p M2
s ). In the WFMC calculation, time

development started from the vacuum state with the excitation p(t) = p min(1,
√

tγs/102).
A time average was taken from tγs = 102 to tγs = 103 − 2.5× 104, depending on the
values of normalized excitation p. The calculation for small p with 〈â†

s âs〉 < 1 required
more samples (longer period for time averaging) due to the slow convergence, although
the size of the Hilbert space is smaller than that of the case of large p. The maximum
p value calculated by WFMC was p ∼ 178, where the mean signal photon number was
〈â†

s âs〉 ∼ 10, where we set Mp = 4 and Ms = 36. The blue dashed line shows the results
of the density matrix calculation with the pump mode eliminated in Equation (10). The
calculation time of this method is O(M4

s ), so we could use it to calculate even the above-
threshold characteristics. We calculated the characteristics at p ∼ 316 with Ms = 46, where
〈â†

s âs〉 ∼ 17.
The numerical simulation indicated that the mean signal photon number does not

show a rapid increase at the threshold. This behavior is known as a thresholdless lasing [57]
and is obtained for a large nonlinear saturation coefficient. For an NOPO, different from
a Scully–Lamb laser [55], the dependence of the signal photon number on p becomes
smaller above the threshold. The below-threshold signal photon number is proportional
to p2 (Equation (13)), and the above-threshold signal photon number is proportional to
p (Equation (27)). As a consequence of this behavior, a small stimulated emission below
the threshold helps to reduce the signal photon number below the O(p2) line. The Hillery-
Zubairy’s entanglement criterion is satisfied far-below and far-above the threshold. This is
an expected from the analytical results (K is much larger than G below the threshold, while
above the threshold j > 2

√
1 + d is satisfied). However, the small stimulated emission below

the threshold gives a negative correction to HZ1/〈â†
s âs〉2. HZ1 turned negative and reached
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a minimum value near the threshold (p ∼ 19), where the signal photon number 〈â†
s âs〉

exceeds one. Far above the threshold HZ1/〈â†
s âs〉2 converges to the theoretical values (purple

dash line) obtained from dividing Equation (37) by Equation (27). Figure 2c,d presents the
numerical simulation results for larger coupling coefficient J/γs = 120 (other parameters
are the same as in Figure 2a,b). Equation (20) leads us to expected that a larger coupling
coefficient increases the normalized HZ1 value far below the threshold. Although a
stimulated emission contributes negatively to the entanglement criterion, in a similar way
to Figure 2b, HZ1 always has a positive value even at the threshold. We thus obtained
entanglement in below, above and at the threshold of the CXM, starting from a large pump
mode dissipation.

Figure 2. Numerically calculated steady-state of CXM with large pump dissipation, for γp/γs = 50,
G/γs = 400, d = 5. (a,b) Excitation dependent signal photon number and entanglement criterion for
J/γs = 12. (c,d) The same results for J/γs = 120.

4. Large Dissipative Coupling Limit

In the previous section, we showed that achieving entanglement at the threshold is
not straightforward. The correction of the small stimulated emission to normalized HZ1 is
negative, and the entanglement criterion at the threshold can only be satisfied by increasing
J/γs to the same order of G/γs. In Figure 1a,b, it can be seen that a large linewidth ratio
(γp/γs) reduces the anti-bunching and entanglement. The theory for a large pump mode
dissipation assumes the coupling coefficient J is much smaller than γp, G, K, which keeps J
small and prevents quantum correlation between the two signal modes. Here, we consider
another limit where J is sufficiently larger than the other parameters (γp, γs, G, K).

4.1. Far-Below-Threshold Entanglement

First, we will consider the quantum statistics far below the threshold. Appendix A
describes the procedure for deriving quantum statistics for a single NOPO far below
the threshold. Briefly, this procedure starts from the truncated Fokker-Planck equation
(Equation (A3)) in the positive-P representation, after the stimulated emission and Kerr
non-linearity terms removed (which we write as ∂P

∂t |NOPO,ε→0). We integrate the Fokker-
Planck equation to obtain the time development equations of mean amplitude products
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and use them to derive the steady-state photon number and correlation functions. For a
CXM, we start from the following Fokker-Planck equation,

∂P
∂t

=
∂P
∂t

∣∣∣∣
NOPO1,ε→0

+ J
∂

∂αs1
(αs1 − αs2)P + J

∂

∂α†
s1
(α†

s1 − α†
s2)P

+
∂P
∂t

∣∣∣∣
NOPO2,ε→0

+ J
∂

∂αs2
(αs2 − αs1)P + J

∂

∂α†
s2
(α†

s2 − α†
s1)P. (38)

Some of the steady-state results obtained from this Fokker-Planck equation are similar to, or
even identical to the results for a single NOPO in Appendix A. Even with the large coupling

of a signal mode, the pump amplitudes satisfy 〈α†i
p α

j
p〉 = (

γp p
γp+G

√
γs
G )i+j, which is identical

to those of a single NOPO. However, as J → ∞, the signal photon number becomes one

half of that of a single NOPO 〈α†
s1αs1〉 ∼

γ2
p p2

2(γp+G)2 . This is the same as the J → ∞ limit of

Equation (13) obtained for large pump mode dissipation, and is also identical to the same
limit of the two signal amplitudes’ correlation 〈α†

s1αs2〉 in Equation (14). We assume that such

amplitude products connected by J, i.e., 〈α†i
p1α

j
p1α†k

s1 αl
s1〉, to any replacement of α†

s1 → α†
s2

and αs1 → αs2, have the same value in the zeroth order of 1/J.
The details of the derivation of g(2)s (0) are shown in Appendix E. In the large-J limit,

the below-threshold second-order correlation function g(2)s (0) can be written as,

g(2)s (0) = 4
γs + 2(γp + G)Re γp+2γs+G

2γp+4γs+3G+iK

2γp + 2γs + 3G
. (39)

In the limit γs → 0, this value converges to g(2)s (0) =
8(γp+G)2

(2γp+3G)2+K2 . This is different

from the J → ∞ limit of Equation (19). If we start from large dissipative coupling J → ∞,
the anti-bunching state g(2)s (0)→ 0 is obtained with large non-degenerate Kerr coefficient K.
From Equation (39), the below-threshold entanglement criterion obeys as HZ1/〈â†

s âs〉2 =

1− g(2)s (0). The normalized HZ1 with no detuning in the parametric interaction (K = 0) is

HZ1
〈â†

s âs〉2
=

G2 − 2G(2γp + 5γs)− 4(γp + γs)(γp + 2γs)

(2γp + 2γs + 3G)(2γp + 4γs + 3G)
. (40)

This equation shows that the far-below-threshold entanglement criterion is satisfied even
with K = 0. When γp = γs, it is satisfied for G/γs > 15.6.

Figure 3a compares the normalized entanglement criterion HZ1/〈â†
s âs〉2 obtained from

the quantum master Equation (3) and the theory in the J → ∞ limit (1 − g(2)s (0) with
Equation (39)). We set the linewidth ratio γp/γs to 4 and the maximum parametric gain
G0/γs = κ2/(γiγs) to 40 and investigate the impact of normalized detuning d in the paramet-
ric interaction. With detuning, the parametric gain becomes G = G0

1+d and the non-degenerate

Kerr effect is K = G0
√

d
1+d . The numerical methods are the same as in Figure 1b. The nu-

merical results with the largest j (j = 3240) have almost the same values as those in the
theory assuming J → ∞. Even in the J → ∞ limit, normalized HZ1 slightly increases
for a small detuning d. As d increases, K decreases as ∝ 1√

d
and gets closer to γs, where

below-threshold entanglement is impossible. When J/γs = 360, entanglement criterion is
satisfied for d = 0. However, when J/γs = 120, the entanglement criterion is not satisfied
with zero detuning, although HZ1 becomes positive with a non-zero detuning parameter.
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Figure 3. Far-below and far-above threshold characteristics of CXM with large dissipative coupling
(j := J/γs � 1), for γp/γs = 4. (a) Comparison of far-below threshold theory (J/γs → ∞) and
quantum master equation with p = 0.01, for G0/γs = 40. (b) Comparison of far-above threshold
theory (J/γs → ∞) and positive-P calculation with G/γs = 10−7.

4.2. Far-Above-Threshold Entanglement

Next, we derive the far-above-threshold entanglement in the limit J → ∞. First of all,
we will consider a single NOPO. From the cSDEs in Equations (32) and (33), we obtain

the equations of the pump amplitude fluctuations, ∆Xp =
∆αp+∆α†

p√
2

and ∆Pp =
∆αp−∆α†

p√
2i

.
The equations in this representation are shown in Appendix C. The mean fluctuation
products are

d〈∆X2
p〉

dt
= −2rp cos φ〈∆X2

p〉+ 2rp sin φ〈∆Xp∆Pp〉 − 4

√
r(π − 1)

1 + d
〈∆Xp∆Xs〉, (41)

d〈∆P2
p〉

dt
= −2rp cos φ〈∆P2

p〉 − 2rp sin φ〈∆Xp∆Pp〉 − 4

√
rd(π − 1)

1 + d
〈∆Pp∆Xs〉, (42)

d〈∆Xp∆Pp〉
dt

= −2rp cos φ〈∆Xp∆Pp〉 − rp sin φ〈∆X2
p〉+ rp sin φ〈∆P2

p〉

− 2

√
r(π − 1)

1 + d
〈∆Pp∆Xs〉 − 2

√
rd(π − 1)

1 + d
〈∆Xp∆Xs〉. (43)

These pump amplitude fluctuations are excited by two fluctuation correlations, 〈∆Xp∆Xs〉,
and 〈∆Pp∆Xs〉, where ∆Xs is the amplitude fluctuation of the signal mode. We introduce
the normalized amplitude correlations,

B = −2

√
r(π − 1)

1 + d
〈∆Xp∆Xs〉, (44)

A = −2

√
r(π − 1)

1 + d
〈∆Pp∆Xs〉. (45)

The steady-state pump amplitude fluctuations in terms of A and B are

〈∆X2
p〉 =

1 + d
2r(π + d)

(B +
√

dA) +
πB−

√
dA

2rp2 , (46)

〈∆P2
p〉 =

1 + d
2r(π + d)

(B +
√

dA)− πB−
√

dA
2rp2 , (47)
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2〈∆Xp∆Pp〉 =
πA +

√
dB

rp2 . (48)

Next, we obtain the time development equations of 〈∆Xp∆Xs〉, 〈∆Pp∆Xs〉 and 〈∆X2
s 〉.

d〈∆Xp∆Xs〉
dt

= −rp cos φ〈∆Xp∆Xs〉+ rp sin φ〈∆Pp∆Xs〉

+ 2

√
r(π − 1)

1 + d
〈∆X2

p〉 −

√
r(π − 1)

1 + d
(2〈∆X2

s 〉+ 1), (49)

d〈∆Pp∆Xs〉
dt

= −rp cos φ〈∆Pp∆Xs〉 − rp sin φ〈∆Xp∆Xs〉

+ 2

√
r(π − 1)

1 + d
〈∆Xp∆Pp〉 −

√
rd(π − 1)

1 + d
(2〈∆X2

s 〉+ 1), (50)

d〈∆X2
s 〉

dt
= 4

√
r(π − 1)

1 + d
〈∆Xp∆Xs〉+ 2. (51)

B = 1 is obtained from the steady state of Equation (51). Substituting Equations (46) and (48)
into Equations (49) and (50), we obtain the steady-state signal amplitude fluctuation,

〈∆X2
s 〉 = −

1
4
+

1 + d
4(π − 1)

− A
√

d
4

+ 〈∆X2
p〉. (52)

Here,

A =

√
d

π

r
2(π−1) +

1
π+d + π−1

π2+d
r

2(π−1) +
1

π+d −
π−1
π2+d

. (53)

This fluctuation theory for a single NOPO is sufficient for calculating the normalized
HZ1 in a CXM in the j� 1 limit. HZ1 above the threshold obeys Equation (6) and includes
a contributions from canonical momenta. However, for canonical momenta of signal modes,
the fluctuation products of the CXM obey

d〈∆P2
s1〉

dt
= −4

√
rd(π − 1)

1 + d
〈∆Xp1∆Ps1〉 − 2(j + δ)〈∆P2

s1〉+ 2j〈∆Ps1∆Ps2〉+ 2, (54)

d〈∆Ps1∆Ps2〉
dt

= −4

√
rd(π − 1)

1 + d
〈∆Xp1∆Ps2〉 − 2(j + δ)〈∆Ps1∆Ps2〉+ 2j〈∆P2

s1〉. (55)

The steady-state difference of these two fluctuation values is

〈∆P2
s1〉 − 〈∆Ps1∆Ps2〉 =

1
2j
− 1

j

√
rd(π − 1)

1 + d
(〈∆Xp1∆Ps1〉 − 〈∆Xp1∆Ps2〉), (56)

which converges to zero in the large j limit. The sum 〈∆X2
s1〉+ 〈∆Xs1∆Xs2〉 appearing in the

HZ1 is the same as 〈∆X2
s 〉 of a single NOPO shown in Equation (52). Finally, the normalized

HZ1 in the J → ∞ limit is

HZ1
〈â†

s âs〉
=

1
4
− 1 + d

4(π − 1)
+

√
dA
4
− (1 + d)(1 +

√
dA)

2r(π + d)
− π −

√
dA

2rp2 . (57)

Mandel’s Q parameter for the signal mode QM,s = 2〈∆X2
s1〉 is the same as −HZ1/〈â†

s âs〉 ∼
〈∆X2

s1〉 + 〈∆Xs1∆Xs2〉 in the J → ∞ limit. If we take the r → ∞ limit in Equation (57),
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the normalized entanglement criterion converges to HZ1
〈â†

s âs〉
= 1

4 −
π+d

4π(π−1) , which is the
same as the j → ∞ limit of the theory with a large pump dissipation (Equation (37)).
This independence of the order of taking limits does not apply below the threshold. The
O(1/r) correction to HZ1/〈â†

s âs〉 is negative: − 1
rπ −

2d(π−1)
rπ(π2+d) . Therefore, above-threshold

entanglement is more easily obtained with large r (see Figure 1d).
We performed a numerical simulation using a positive-P equations in Appendix B.

From Figure 3a with γp/γs = 4, we chose two sets of parameters: (d = 0, j = 360) and
(d = 1, j = 120). Below-threshold entanglement was achieved with these parameters,
when we set a large parametric gain G0/γs = 40. Here, to check the far-above threshold
entanglement, we performed the positive-P calculation for G/γs = 10−7, with the same
method as Figure 1d. The results are shown in Figure 3b. The numerical results fit the
analytical ones (Equation (57)), which assume the J → ∞ limit. For d = 1, j = 120,
the numerical HZ1 values are slightly smaller than the theoretical values, because the
correction of O(1/j) reduces HZ1, as shown in Equation (37). Nevertheless, the values
of normalized HZ1 for d = 1 are larger than for d = 0, because, as discussed in relation
to Figure 1c, the O(d) correction makes it easier for an above-threshold NOPO to have a
non-classical state.

4.3. Numerical Results

Here, we present the numerical simulation results as a function of normalized excitation
p, for γp/γs = 4, G0/γs = 40, d = 0, and j = 360. The mean signal photon number and
normalized HZ1 are shown in Figure 4a,b. The numerical results are obtained by solving the
QME (3) for small-p, and by performing a WFMC calculation [42] for large-p. The Methods
are the same as those used to calculate the results shown in Figure 2, but for WFMC, the time
average was taken from tγs = 102 to tγs = 104 − 105 depending on the excitation p. For the
smallest p (∼5.6), time average was taken from tγs = 102 to tγs = 105 because of the slow
convergence. For the maximum p ∼ 56 for WFMC, where the mean signal photon number is
〈â†

s âs〉 ∼ 5.0, we used a photon number space with Mp = 5 and Ms = 21 and took the time
average from tγs = 102 to tγs = 104. The purple dashed lines far-above the threshold are plots
of Equation (27), or Equation (57) divided by Equation (27). The numerical results converge
to the theoretical values far-above the threshold. The entanglement criterion is satisfied below
and above the threshold, although the nonlinear Kerr effect is absent (K = 0). In contrast
to Figure 2b,d, a small stimulated emission gave a positive correction to the normalized
entanglement criterion HZ1/〈â†

s âs〉2. Because of this correction, the entanglement criterion
is satisfied, even at the threshold. Next, we present the numerical simulation results for
γp/γs = 4, G0/γs = 40, d = 1, j = 120. As shown in Figure 4c,d, for the maximum p value
(∼32) the mean signal photon number was 〈â†

s âs〉 ∼ 4.3. We used Mp = 6 and Ms = 21 for
calculating this value. As with Figure 4b, stimulated emission gives a positive correction
to the normalized HZ1 value, which also results in entanglement at the threshold. As
expected from Figure 3b, the peak value of the normalized HZ1 is slightly larger than
in Figure 4b.
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Figure 4. Numerical steady state of CXM with large dissipative coupling (J/γs � 1), for G0/γs = 40,
γp/γs = 4. (a,b) Excitation-dependent signal photon number and entanglement criterion for
d = 0, J/γs = 360. (c,d) The same results for d = 1, J/γs = 120.

5. Summary

We showed that Hillery-Zubairy’s entanglement criterion is satisfied in coherent XY
machines, below, above, and even at the threshold of a CXM consisting of two highly non-
Gaussian χ(2)-NOPOs. We investigated two limits: (1) the pump mode has much larger
dissipation than the signal mode, and (2) the dissipative coupling coefficient is much larger
than the other parameters. In the first limit, below-threshold entanglement is possible only
when the parametric coupling is detuned. In the second limit, below-threshold entangle-
ment was obtained even when the parametric coupling is not detuned. In the first limit,
although detuning of the parametric interaction is necessary to achieve below-threshold
entanglement, it prevents above-threshold entanglement if J is comparable to γs. Moreover,
the normalized entanglement criterion HZ1/〈â†

s âs〉2 is decreased by a small stimulated
emission, while in the second limit, the same value increased. The experimentally required
G/γs for at-threshold entanglement is smaller for the second limit than the first. From these
considerations, the second case with large dissipative coupling seems to be a more effective
way to achieve entanglement at the threshold. For a more detailed study, other entangle-
ment criteria should be discussed (In Appendix F, we discussed the Simon’s necessary and
sufficient criterion for Gaussian state entanglement [58]). For obtaining entanglement at
the threshold, the small stimulated emission correction to below-threshold HZ1/〈â†

s âs〉2,
would be important. By further increasing G and K from the values we used in this paper,
quantum state production in quantum spin model [59] would be possible in a CXM.

A large parametric interaction, κ/γs ∼ 10−2, has been experimentally confirmed
in a second-order nonlinear (χ(2)) rib-waveguide-based microring resonator [60]. The
theoretical model studied in this paper could be realized by stimulated Raman scatter-
ing of traveling-wave modes in a silicon rib-waveguide [61], or standing-wave modes
in silicon photonic crystal nanocavities [62,63], coupled via low-Q cavity mode [64]. For
traveling wave model, the pulse period must be longer than the phonon lifetime to avoid
unintentional correlation. In the standing-wave model, the parametric gain normalized

by linear dissipation is calculated as G
γs
∼ h̄c2gRQcs

εrVcav
∼ 9× 10−10Qcs [62]. Here, c is the speed

of light in vaccum, Qcs is the quality factor of the signal cavity mode, gR is the coefficient of
Raman amplification, εr is the relative dielectric coefficient of the material, and Vcav is the



Entropy 2021, 23, 624 16 of 26

volume of the cavity (we used gR ∼ 57 cm/GW [65], εr = 12 and Vcav ∼ 0.5 µm3 [62] for
silicon photonic crystal nanocavity). The cavity quality factor must be as large as Qcs ∼ 1010

to achieve below-threshold entanglement. This is only an order of magnitude larger than
the numerically achieved Q factor [66]. The hyper-parametric oscillation which enabled the
CXM with third-order (χ(3)) nonlinearity [30] can have similar characteristics in terms of
below-threshold anti-bunching or above-threshold amplitude squeezing (Appendix G). The
CXMs of χ(3) NOPOs seem to realize entanglement due to these non-classical characteristics.
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the published version of the manuscript.
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Appendix A. Fokker-Planck Equation and Far-Below Threshold Characteristics of
Single NOPO

Here, we derive the below-threshold characteristics of a single NOPO using the
positive-P Fokker-Planck equation. The positive-P distribution function P(α, α†) is defined
for a bosonic mode â as [40,41],

ρ̂ =
∫

P(α, α†)
|α〉〈α†∗|
〈α†∗|α〉 d2αd2α†. (A1)

For a single NOPO obeying Equation (2), the motion of the positive-P amplitudes, for
the pump mode (αp, α†

p) and for the signal mode (αs, α†
s ), depends on the Fokker-Planck

equation of the quasi-distribution function P(αp, α†
p, αs, α†

s ).

∂P
∂t

=
∂

∂αp
(γp + G(1 + α†

s αs) + iKα†
s αs)αpP +

∂

∂α†
p
(γp + G(1 + α†

s αs)− iKα†
s αs)α

†
pP

+
∂

∂αs
(γs − (G− iK)α†

pαp)αsP +
∂

∂α†
s
(γs − (G + iK)α†

pαp)α
†
s P− ε

∂P
∂αp
− ε

∂P
∂α†

p
(A2)

+ 2G
∂2

∂α†
s ∂αs

(α†
pαpP)− (G + iK)

∂2

∂αp∂αs
(αpαsP)− (G− iK)

∂2

∂α†
p∂α†

s
(α†

pα†
s P).

Next, we derive the far below-threshold characteristics (ε → 0). Assuming small
signal photon number (α†

s αs � 1), we remove terms representing stimulated emission from
the pump mode to the signal mode, and terms representing Kerr nonlinearity. After these
terms have been removed, the Fokker-Planck equation of P(αp, α†

p, αs, α†
s ) becomes

∂P
∂t

∣∣∣∣
NOPO,ε→0

= (γp + G)
∂

∂αp
(αpP) + (γp + G)

∂

∂α†
p
(α†

pP)

+ γs
∂

∂αs
(αsP) + γs

∂

∂α†
s
(α†

s P)− ε
∂P
∂αp
− ε

∂P
∂α†

p
+ 2G

∂2

∂α†
s ∂αs

(α†
pαpP) (A3)

− (G + iK)
∂2

∂αp∂αs
(αpαsP)− (G− iK)

∂2

∂α†
p∂α†

s
(α†

pα†
s P).

From this truncated Fokker-Planck equation, the mean of pump amplitude 〈αp〉
(=
∫

αpPd2αpd2α†
pd2αsd2α†

s ) develops as

d〈αp〉
dt

= −(γp + G)〈αp〉+ ε. (A4)
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The steady-state mean pump amplitude is written as

〈αp〉 =
γp p

γp + G

√
γs

G
. (A5)

The time-development of higher order moments for the pump mode 〈α†i
p α

j
p〉 is obtained as,

d〈α†i
p α

j
p〉

dt
= −(i + j)(γp + G)〈α†i

p α
j
p〉+ iε〈α†i−1

p α
j
p〉+ jε〈α†i

p α
j−1
p 〉. (A6)

Here, we neglect terms with a negative exponent in the right hand side. Far below the
threshold, these moments in the steady state can be simply written as a product of steady-
state mean pump amplitudes 〈α†i

p α
j
p〉 = 〈αp〉i+j.

Next, the mean signal photon number develops as

d〈α†
s αs〉

dt
= −2γs〈α†

s αs〉+ 2G〈α†
pαp〉. (A7)

The steady-state signal photon number is written as

〈α†
s αs〉 =

γ2
p p2

(γp + G)2 . (A8)

Next, we consider higher-order moments containing signal mode amplitudes. To ob-
tain the second-order correlation function of the signal mode g(2)s (0), we derive the time
development of 〈α†2

s α2
s 〉 from Equation (A3),

d〈α†2
s α2

s 〉
dt

= −4γs〈α†2
s α2

s 〉+ 8G〈α†
pαpα†

s αs〉. (A9)

In the steady-state, the second order correlation function is

g(2)s (0) =
〈α†2

s α2
s 〉

〈α†
s αs〉2

= 2
G〈α†

pαpα†
s αs〉

γs〈α†
s αs〉2

= 2gX , (A10)

Here, gX :=
〈α†

pαpα†
s αs〉

〈α†
pαp〉〈α†

s αs〉
is the correlation between the pump photon number and signal

photon number. This photon number correlation develops as

d〈α†
pαpα†

s αs〉
dt

= −2(γp + γs + 2G)〈α†
pαpα†

s αs〉+ 2εRe〈αpα†
s αs〉+ 2G〈α†2

p α2
p〉. (A11)

The steady-state correlation function is

gX =
γs + (γp + G)Reg′X

γp + γs + 2G
. (A12)

Here, g′X := 〈αpα†
s αs〉

〈αp〉〈α†
s αs〉

is the correlation function between pump amplitude and signal

photon number. This correlation is written as,

d〈αpα†
s αs〉

dt
= −(γp + 2γs + 2G + iK)〈αpα†

s αs〉+ ε〈α†
s αs〉+ 2G〈α†

pα2
p〉. (A13)

In the steady-state, we achieve.

g′X =
γs + 2γs + G

γp + 2γs + 2G + iK
. (A14)
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The second-order correlation function of the signal mode of a below-threshold single NOPO
is written as

g(2)s (0) = 2
γs + (γp + G)Re γp+2γs+G

γp+2γs+2G+iK

γp + γs + 2G
. (A15)

This value is 2 for small G, K [29], and it converges to zero in the large-K limit [33]. Even
when K = 0 (no detuning in the parametric interaction), a single NOPO can have an
anti-bunching state (g(2)s (0) < 1) for large G. However, the minimum value is 0.5, instead
of zero as obtained from the detuned parametric interaction.

Appendix B. Positive-P Equations for Numerical Calculation

The Fokker-Planck equation of the positive-P distribution function (Equation (A2))
has only first- and second-order derivatives of the positive-P amplitudes. Therefore,
the Fokker-Planck equation of P(αp, α†

p, αs, α†
s ) is rewritten as c-number stochastic differ-

ential equations (cSDEs) of the complex amplitudes (αp, α†
p, αs, α†

s ). For one Fokker-Planck
equation, there can be multiple cSDEs with different coefficients of random numbers [41].
We used Equations (21)–(24) to derive the above-threshold fluctuation characteristics. In
the numerical calculations to test the above-threshold characteritics, instead, we used the
following equations of positive-P amplitudes,

dαp

dt
= −(γp + G)αp + ε− (G + iK)α†

s αsαp −
√

G + iK
2

αsξC, (A16)

dα†
p

dt
= −(γp + G)α†

p + ε− (G− iK)α†
s αsα†

p −
√

G− iK
2

α†
s ξ†

C, (A17)

dαs

dt
= −γsαs + (G− iK)α†

pαpαs +

√
G + iK

2
αpξ∗C +

√
G− iK

2
αpξ†

C, (A18)

dα†
s

dt
= −γsα†

s + (G + iK)α†
pαpα†

s +

√
G− iK

2
α†

pξ†∗
C +

√
G + iK

2
α†

pξC. (A19)

These equations have two complex random numbers (ξC, ξ†
C) per NOPO, instead of three

complex random numbers in Equations (21)–(24). In the CXM consisting of two NOPOs
(Equation (3)), the equations of the signal amplitudes have additional terms due to the

dissipative coupling Liouvillian, i.e., dαs1
dt = dαs1

dt |NOPO1− J(αs1− αs2),
dα†

s1
dt =

dα†
s1

dt |NOPO1−
J(α†

s1 − α†
s2),

dαs2
dt = dαs2

dt |NOPO2 − J(αs2 − αs1), and dα†
s2

dt =
dα†

s2
dt |NOPO2 − J(α†

s2 − α†
s1). The

numerical results of the positive-P calculations are shown in Figures 1c,d and 3b. These
results are calculated for a small G/γs ratio. However, the positive-P calculation becomes
unstable for a large G/γs ratio as shown in Figures 2 and 4, although a large G/γs is
essential for obtaining below-threshold entanglement. We used QME or WFMC to calculate
the characteritics for a large parametric gain.

Appendix C. On the Fluctuations of Above-Threshold NOPO

Here, we summarize the different representation of above-threshold fluctuations of a
single NOPO. After removing the phase factors from Equations (30) and (31), the equations
of positive-P amplitudes ∆αk, ∆α†

k(k = p, s) become Equations (32)–(35). Here, we rewrite

these equations with ∆Xk =
∆αk+∆α†

k√
2

(k = p, s), and ∆Pk =
∆αk−∆α†

k√
2i

(k = p, s),

d∆Xp

dt
= −rp cos φ∆Xp + rp sin φ∆Pp − 2

√
r(π − 1)

1 + d
∆Xs −

√
1 + i
√

d
4

ξC −

√
1− i
√

d
4

ξ†
C, (A20)
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d∆Pp

dt
= −rp cos φ∆Pp− rp sin φ∆Xp− 2

√
rd(π − 1)

1 + d
∆Xs + i

√
1 + i
√

d
4

ξC− i

√
1− i
√

d
4

ξ†
C, (A21)

d∆Xs

dt
= 2

√
r(π − 1)

1 + d
∆Xp +

√
1 + i
√

d
4

r(π − 1)
1 + d

ξ∗C +

√
1− i
√

d
4

r(π − 1)
1 + d

ξ†∗
C +

√
2ξR1, (A22)

d∆Ps

dt
= −2

√
rd(π − 1)

1 + d
∆Xp − i

√
1 + i
√

d
4

r(π − 1)
1 + d

ξ∗C + i

√
1− i
√

d
4

r(π − 1)
1 + d

ξ†∗
C +

√
2ξR2. (A23)

Here, ξC is a complex random number satisfying 〈ξ∗C(t)ξC(t′)〉 = 2δ(t− t′). ξRi(i = 1, 2)
are real random numbers satisfying 〈ξRi(t)ξRj(t′)〉 = δijδ(t− t′). φ is the phase factor of the

pump mode defined in Equation (29). It satisfies p cos φ = π+d
1+d , and p sin φ =

√
d(π−1)
1+d . These

equations can also be written as p(cos φ +
√

d sin φ) = π, and p(
√

d cos φ− sin φ) =
√

d.

Appendix D. Details of Above-Threshold Theory in the Large Pump Mode
Dissipation Limit

In this appendix, we derive the above-threshold theory of CXM in the large pump
mode dissipation limit. Assuming large r(� 1), we can eliminate the pump mode and
obtain the equations of signal-mode amplitude fluctuations from Equations (32)–(35), as

d∆αs

dt
= −2(1− i

√
d)

π(π − 1)
p2(1 + d)

(∆αs + ∆α†
s ) +

√
π

p2 ξC + i

√
2(π − 1)(π + i

√
d)

p2(1 + i
√

d)
ξR, (A24)

d∆α†
s

dt
= −2(1 + i

√
d)

π(π − 1)
p2(1 + d)

(∆αs + ∆α†
s ) +

√
π

p2 ξ∗C − i

√
2(π − 1)(π − i

√
d)

p2(1− i
√

d)
ξ†

R. (A25)

Here, ξR and ξ†
R are independent real Gaussian noise satisfying 〈ξR(t)ξR(t′)〉 = δ(t− t′)

and 〈ξ†
R(t)ξ

†
R(t
′)〉 = δ(t− t′).

Using these equations, we will consider an CXM consisting of two NOPOs. Defin-

ing the coefficients, A := 2(1 − i
√

d) π(π−1)
p2(1+d) , B := 2π

p2 , and D := − 2(π−1)(π+i
√

d)
p2(1+i

√
d)

, the

fluctuations of the canonical coordinates obey,

d〈∆X2
s1〉

dt
= −2(2ReA + j)〈∆X2

s1〉+ 2j〈∆Xs1∆Xs2〉+ ReD + B, (A26)

d〈∆Xs1∆Xs2〉
dt

= −2(2ReA + j)〈∆Xs1∆Xs2〉+ 2j〈∆X2
s1〉, (A27)

where j = J/γs. Assuming a Gaussian state, the Mandel’s Q parameter is obtained as
QM,s = 2〈∆X2

s1〉 =
ReD+B

4 ( 1
ReA + 1

ReA+j ) (shown in Equation (36)).
Next, we calculate the above-threshold values of Hillery-Zubairy’s entanglement

criterion following Equation (6). The first two terms related to ∆Xs are obtained as 〈∆X2
s1〉+

〈∆Xs1∆Xs2〉 = ReD+B
4ReA = − 1

4 + 1+d
4(π−1) −

d
4π . The mean fluctuation of ∆Ps diverges above

the threshold of the NOPO. We can use a small lasing linewidth parameter δ � 1 to
produce a finite fluctuation,

d〈∆P2
s1〉

dt
= −4ImA〈∆Xs1∆Ps1〉 − 2(j + δ)〈∆P2

s1〉+ 2j〈∆Ps1∆Ps2〉 − ReD + B, (A28)

d〈∆Ps1∆Ps2〉
dt

= −4ImA〈∆Xs1∆Ps2〉 − 2(j + δ)〈∆Ps1∆Ps2〉+ 2j〈∆P2
s1〉. (A29)
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The HZ1 contains the difference of these values, which is independent of small δ,

〈∆P2
s1〉 − 〈∆Ps1∆Ps2〉 =

B− ReD− 4ImA(〈∆Xs1∆Ps1〉 − 〈∆Xs1∆Ps2〉)
4j

. (A30)

Next, we consider the mean products of the ∆Xs and ∆Ps amplitudes, appearing in
Equation (A30):

d〈∆Xs1∆Ps1〉
dt

= −2(ReA + j)〈∆Xs1∆Ps1〉 − 2ImA〈∆X2
s1〉+ 2j〈∆Xs1∆Ps2〉+ ImD, (A31)

d〈∆Xs1∆Ps2〉
dt

= −2(ReA + j)〈∆Xs1∆Ps2〉 − 2ImA〈∆Xs1∆Xs2〉+ 2j〈∆Xs1∆Ps1〉. (A32)

Since 〈∆X2
s1〉 − 〈∆Xs1∆Xs2〉 = ReD+B

4(ReA+j) , the steady-state difference of these values is

〈∆Xs1∆Ps1〉 − 〈∆Xs1∆Ps2〉 =
ImD− 2ImA ReD+B

4(j+ReA)

2(ReA + 2j)
. (A33)

Finally, the normalized HZ1 criterion is obtained as Equation (37).

Appendix E. Details of Below-Threshold Theory in the Large Dissipative
Coupling Limit

In this Appendix, we derive the second order correlation function g(2)s (0) for below-
threshold CXM in the large dissipative coupling limit, using the assumption that values
coupled by J have the same value in the large J limit. 〈α†2

s1 α2
s1〉 and the three values coupled

to it via J obey,

d〈α†2
s1 α2

s1〉
dt

= −4(γs + J)〈α†2
s1 α2

s1〉+ 4JRe〈α†2
s1 αs1αs2〉+ 8G〈α†

p1αp1α†
s1αs1〉, (A34)

d〈α†2
s1 αs1αs2〉

dt
= −4(γs + J)〈α†2

s1 αs1αs2〉+ 2J〈α†
s1αs1α†

s2αs2〉+ J〈α†2
s1 α2

s1〉+ J〈α†2
s1 α2

s2〉

+ 4G〈α†
p1αp1α†

s1αs2〉, (A35)

d〈α†2
s1 α2

s2〉
dt

= −4(γs + J)〈α†2
s1 α2

s2〉+ 4J〈α†2
s1 αs1αs2〉, (A36)

d〈α†
s1αs1α†

s2αs2〉
dt

= −4(γs + J)〈α†
s1αs1α†

s2αs2〉+ 4JRe〈α†2
s1 αs1αs2〉+ 4G〈α†

p1αp1α†
s2αs2〉. (A37)

There is no coupling coefficient J in the time-development equation of
〈α†2

s1 α2
s1〉+2〈α†

s1αs1α†
s2αs2〉+Re〈α†2

s1 α2
s2〉+4Re〈α†2

s1 αs1αs2〉
8 . Assuming that this weighted average is identi-

cal to 〈α†2
s1 α2

s1〉 in the zeroth order of 1/J, we obtain

d〈α†2
s1 α2

s1〉
dt

∼ −4γs〈α†2
s1 α2

s1〉+ 4G〈α†
p1αp1α†

s1αs1〉. (A38)

From 〈α†
s1αs1〉 = G

2γs
〈α†

p1αp1〉, the steady-state value of the second-order correlation func-

tion can be written as g(2)s (0) = 2gX . Here, gX =
〈α†

p1αp1α†
s1αs1〉

〈α†
p1αp1〉〈α†

s1αs1〉
is the correlation function

between the pump photon number and signal photon number.
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Next, we calculate the correlation gX between the pump and signal photon numbers
from the three following equations:

d〈α†
p1αp1α†

s1αs1〉
dt

= −2(γp + γs + 2G + J)〈α†
p1αp1α†

s1αs1〉+ 2JRe〈α†
p1αp1α†

s1αs2〉

+ 2G〈α†2
p1α2

p1〉+ 2εRe〈αp1α†
s1αs1〉, (A39)

d〈α†
p1αp1α†

s1αs2〉
dt

= −2
(

γp + γs +
3
2

G + J
)
〈α†

p1αp1α†
s1αs2〉+ J〈α†

p1αp1α†
s1αs1〉

+ J〈α†
p1αp1α†

s2αs2〉+ ε〈αp1(α
†
s1αs2 + α†

s2αs1)〉, (A40)

d〈α†
p1αp1α†

s2αs2〉
dt

= −2(γp + γs + G + J)〈α†
p1αp1α†

s2αs2〉+ 2JRe〈α†
p1αp1α†

s1αs2〉

+ 2G〈α†
p1αp1α†

p2αp2〉+ 2εRe〈αp1α†
s2αs2〉. (A41)

Moreover, there is no coupling coefficient J in the equation of
〈α†

p1αp1α†
s1αs1〉+2Re〈α†

p1αp1α†
s1αs2〉+〈α†

p1αp1α†
s2αs2〉

4 . Assuming that this equation is identical to
〈α†

p1αp1α†
s1αs1〉 in the zeroth order of inverse coupling coefficient 1/J, the mean photon

number product is,

d〈α†
p1αp1α†

s1αs1〉
dt

∼ −2
(

γp + γs +
3
2

G
)
〈α†

p1αp1α†
s1αs1〉+ G〈α†2

p1α2
p1〉+ 2εRe〈αp1α†

s1αs1〉. (A42)

From this equation, the steady-state pump-signal photon number correlation can be writ-
ten as,

gX = 2
γs + (γp + G)Reg′X

2γp + 2γs + 3G
. (A43)

Here, we have used ε〈αp1〉 ∼ (γp +G)〈α†
p1αp1〉. g′X =

〈αp1α†
s1αs1〉

〈αp1〉〈α†
s1αs1〉

is the correlation between

the pump amplitude and the signal photon number.
To obtain the steady-state correlation function g′X between the pump amplitude and

the signal photon number, we derived the time development equations of four mean
amplitude products,

d〈αp1α†
s1αs1〉

dt
= −(γp + 2γs + 2G + iK + 2J)〈αp1α†

s1αs1〉+ J〈αp1α†
s1αs2〉+ J〈αp1α†

s2αs1〉

+ 2G〈α†
p1α2

p1〉+ ε〈α†
s1αs1〉, (A44)

d〈αp1α†
s2αs2〉

dt
= −(γp + 2γs + G + 2J)〈αp1α†

s2αs2〉+ J〈αp1α†
s1αs2〉+ J〈αp1α†

s2αs1〉

+ 2G〈αp1α†
p2αp2〉+ ε〈α†

s2αs2〉, (A45)

d〈αp1α†
s1αs2〉

dt
= −(γp + 2γs + G + 2J)〈αp1α†

s1αs2〉+ J〈αp1α†
s1αs1〉+ J〈αp1α†

s2αs2〉+ ε〈α†
s1αs2〉, (A46)

d〈αp1α†
s2αs1〉

dt
= −(γp + 2γs + 2G + iK + 2J)〈αp1α†

s2αs1〉+ J〈αp1α†
s1αs1〉+ J〈αp1α†

s2αs2〉

+ ε〈α†
s2αs1〉. (A47)
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The average of these four mean amplitude products obeys the equation without the cou-
pling coefficient J. If we assume this average is identical to 〈αp1α†

s1αs1〉 in the zeroth order
of 1/J, we obtain

d〈αp1α†
s1αs1〉

dt
∼ −

(
γp + 2γs +

3
2

G + i
K
2

)
〈αp1α†

s1αs1〉+ G〈α†
p1α2

p1〉+ ε〈α†
s1αs1〉. (A48)

From this equation, the steady-state correlation g′X between the pump amplitude and the
signal photon number is

g′X = 2
γp + 2γs + G

2γp + 4γs + 3G + iK
. (A49)

The second order correlation function g(2)s (0) of the far below-threshold large-J CXM is
obtained in the form of Equation (39).

Appendix F. Simon’s Criterion for Above-Threshold Entanglement

For entanglement above the threshold, we can use Simon’s criterion [58], which is nec-
essary and sufficient condition for entanglement when the states are Gaussian. When the
above-threshold states of CXMs are treated as the Gaussian states with infinite fluctuations
of canonical momenta, we can use this criterion. This criterion is described by a covariance
matrix of two signal modes σij = 〈RiRj〉 − 〈Ri〉〈Rj〉+ δij, where

−→
R =

√
2[Xs1, Ps1, Xs2, Ps2]

(Xsi and Psi(i = 1, 2) are defined for positive-P amplitudes). If the minimum eigen-
value of iΩ(ΛσΛT) (which we call ν̃−) is smaller than 1, for a partial-transposition matrix

Λ = diag(1, 1, 1,−1), and Ω =

[
0 1
−1 0

]
⊕
[

0 1
−1 0

]
, the two signal modes are entan-

gled [67].
From the equations in Appendix C (for d∆Ps/dt, we add −δ∆Ps to the right hand side

to avoid divergence), we obtain the steady-state values of 20 fluctuation products, 〈∆X2
p1〉,

〈∆P2
p1〉, 〈∆X2

s1〉, 〈∆P2
s1〉, 〈∆Xp1∆Pp1〉, 〈∆Xp1∆Xs1〉, 〈∆Xp1∆Ps1〉, 〈∆Pp1∆Xs1〉, 〈∆Pp1∆Ps1〉,

〈∆Xs1∆Ps1〉, and these between different NOPOs. From six values 〈∆X2
s1〉, 〈∆P2

s1〉, 〈∆Xs1∆Ps1〉,
〈∆Xs1∆Xs2〉, 〈∆Ps1∆Ps2〉, and 〈∆Xs1∆Ps2〉, we calculated the minimum symplectic eigen-
value ν̃− of a partially transposed covariance matrix.

First, we study the limit of large pump mode dissipation. For γp/γs = 103, d = 5,
j = 12, and δ = 10−10, we plot the ν̃−− 1 as a function of excitation p. The comparison with
HZ1 criterion is shown in Figure A1a. The entanglement criterion is satisfied for smaller
p(∼1.99) than the HZ1 criterion (p ∼ 2.11). In the special case of d = 0, the Simon’s
criterion is calculated as ν̃2

− = 1− (j−1)p−2j
2j(p−1) . Therefore, we need j > 1 for entanglement in

the p→ ∞ limit, instead of larger j(>2) for HZ1. When γp/γs = 103, p = 100 and d = 100,
we show the j dependency of ν̃− − 1 and the normalized HZ1 in Figure A1b. The required
j for above-threshold entanglement was also by a factor of 2 smaller for Simon’s criterion.
Next, we show the results for large dissipative coupling. For γp/γs = 4, d = 1, j = 103,
and δ = 10−10, we plot the ν̃− − 1 in Figure A1c. The Simon’s entanglement criterion is
satisfied at the same p(∼2.46) as the HZ1 criterion.
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Figure A1. Comparison between Simon’s criterion (ν̃− − 1) and HZ1/〈â†
s âs〉 for above-threshold

CXM. (a,b) The case of large pump mode dissipation as a function of p or j. (c) The case of large
dissipative coupling as a function of p.

Appendix G. Quantum Characteristics of Hyper-Parametric Oscillation

In this Appendix, we discuss the steady-state quantum statistics of hyper-parametric
oscillation [30] in the limit of large idler mode dissipation and large parametric interaction.
In this system, two degenerate pump photons are converted to a signal photon and an
idler photon via a χ(3) interaction. We use the Liouvillian derived for hyper-Raman scat-
tering [68] with zero-temperature phonons. In this model of hyper-parametric oscillation,
the density operator ρ̂ follows:

∂ρ̂

∂t
= ∑

a=p,s
γa([âa, ρ̂â†

a ] + h.c.) + ε[â†
p − âp, ρ̂] + G([â†

s â2
p, ρ̂â†2

p âs] + h.c.). (A50)

Here, the last term of Equation (2) are modified and K = 0 was assumed. The excitation at
the threshold of a hyper-parametric oscillation is written as p = ε/εthr, εthr = γp(γs/G)1/4.
As done in Equation (7), we expand the density operator with the complex-P representation
for the pump mode and the photon number states representation for the signal mode:

ρ̂ = ∑∞
Ns=0

∫
PNs(αp, α†

p)
|αp〉〈α†∗

p |
〈α†∗

p |αp〉
⊗ |Ns〉〈Ns|dαpdα†

p. We can obtain the time development

equation for PNs(αp, α†
p),

∂PNs

∂t
= 2γs((1 + Ns)PNs+1 − NsPNs)− ε

∂PNs

∂αp
− ε

∂PNs

∂α†
p

+ γp
∂

∂αp
αpPNs + 2G(1 + Ns)

∂

∂αp
α†

pα2
pPNs − G(1 + Ns)

∂2

∂α2
p

α2
pPNs (A51)

+ γp
∂

∂α†
p

α†
pPNs + 2G(1 + Ns)

∂

∂α†
p

α†2
p αpPNs − G(1 + Ns)

∂2

∂α†2
p

α†2
p PNs

+ 2Gα†2
p α2

p(NsPNs−1 − (1 + Ns)PNs).

When the signal photon number is fixed to Ns, the pump mode has a coherent exci-
tation, linear dissipation depending on γp, and two photon absorption depending on
2G(1 + Ns). When G, γp � γs, the pump mode at each Ns converges to a steady-state
of the system of coherent excitation, linear dissipation, and two-photon absorption. The
steady-state complex-P distribution function of such a system was derived in Ref. [40],

Pss(αp, α†
p, Ns) ∼ (α†

pαp)c−2e
2α†

pαp+
x

αp +
x

α†
p . Here, x = ε

G(1+Ns)
and c =

γp
G(1+Ns)

. We write

the distribution function as PNs(αp, α†
p) = ρNs Pss(αp, α†

p, Ns). The hopping rate from Ns

to Ns + 1 is proportional to 〈α†2
p α2

p〉(Ns) =
∫

α†2
p α2

pPss(αp, α†
p, Ns)dαpdα†

p, which is written
as [40]

〈α†2
p α2

p〉(Ns) = x4 Γ(c)2

Γ(c + 2)2
0F2(c + 2, c + 2, 2x2)

0F2(c, c, 2x2)
. (A52)
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From the recursion relation of ρNs , the distribution of signal photon number ρNs is obtained as

ρNs+1

ρNs

=
G
γs
〈α†2

p α2
p〉(Ns). (A53)

For G = γp, and G/γs = 100, we show the comparison between numerical results of
QME (calculated in the same methods as the main text) and the analytical results obtained
by Equations (A52) and (A53). In Figure A2, two methods produced the same mean signal
photon number, and the similar behavior of second order correlation function g(2)s (0) and
Mandel’s Q parameter QM,s. Both methods show that the signal mode has a photon anti-
bunching state below the threshold and an amplitude squeezed state above the threshold.

In this special limit, g(2)s (0) ∼ 2(γp+G)2

(γp+2G)2 is obtained far below the threshold, which is the

same as χ(2)-NOPO with K = 0, γs → 0 (Equation (A15)). For the direct calculation of
QME (Equation (A50)), the signal mode has a slightly smaller g(2)s (0) and QM,s, due to the
finite γp/γs and G/γs.

Figure A2. Comparison between QME and analytical results for a hyper-parametric oscillator with
G/γs = γp/γs = 100. (a) Mean signal photon number. (b) The second order correlation function of

the signal mode, g(2)s (0). (c) Mandel’s Q parameter of the signal mode.
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