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Abstract: In the present Reply we restrict our focus only onto the main erroneous claims by Pessoa
and Costa in their recent Comment (Entropy 2020, 22, 1110).
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1. Relevant Misunderstanding

A severe misunderstanding is present already in the first sentence of the Abstract of
the Comment [1]. This also emerges in the Introduction and elsewhere. More precisely, we
read in the Abstract: “In a recent paper (Entropy 2020, 22, 17), Tsallis states that entropy—as
in Shannon or Kullback–Leiber’s definitions—is inadequate to interpret black hole entropy and
suggests that a new non-additive functional should take the role of entropy.”

Quite regretfully, the authors paid no attention at all to a most relevant if. Indeed,
as emphasized in [2], and explicitly written in [3], my claim is that “In what concerns
thermodynamics, the spatial dimensionality of a (3 + 1) black hole depends on whether its bulk
(inside its event horizon or boundary) has or not non negligible amount of matter or analogous
physical information. If that matter or information is non negligible, the thermodynamical entropy
of the black hole must scale as Ld with d = 3, where L stands for its linear size. If that matter
or information is negligible, the thermodynamic entropy of the black hole must scale as Ld with
d = 2”. Neither in [2] nor in [3] is a specific position taken for black holes being d = 2 + 1
or d = 3 + 1 physical objects, or even (multi)fractal objects with nonintenger d (which,
to the best of our knowledge, may not be excluded). At the present stage, it seems
appropriate to analyze this nontrivial and delicate issue within the specialized realm of
cosmological and black-hole physics [4–48]. However, it is seemingly undeniable that the
sort of perplexity expressed in [49–52], and elsewhere, emerges because, if black holes are
thought to be d = 3 objects, their thermodynamical entropy should be proportional to
the cube of the radius, and not to its square, as it happens with Boltzmann–Gibbs-based
Bekenstein–Hawking entropy. This entropy can be shown to yield SBG

k = 1
4

AH
L2

P
, where

LP ≡
√

hG
c3 ≡ Planck length. What is basically argued in [2,3] is that the dominant term

of the thermodynamical entropy S of a d-dimensional black hole whose event horizon

area is AH is expected to satisfy S
k ∝

(√
AH

LP

)d
. Therefore, if d = 2, we recover the

Bekenstein–Hawking entropy, but, if d 6= 2, a non-BG entropic functional must be used for
thermodynamical purposes. The functional Sq,δ with specific d-dependent values of (q, δ)
emerges as a plausible candidate for such a non-BG functional.

Before ending this Section let us emphasize what we precisely mean by “thermody-
namical purposes”. We focus here on two specific aspects of this issue, which play the most
central role in the present Reply.

(i) Let us assume that a system can be modelled by a long-ranged-interacting many-
body problem (e.g., classical models such as the d-dimensional α-XY ferromagnet [53,54],
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α-Heisenberg ferromagnet [55–59], α-Fermi–Pasta–Ulam model [60–68], α-Lennard–Jones
gas [69–72]), N basically being the number of particles. The notation, including α in
all of them, comes from the fact that a two-body attractive interaction is assumed in
all of them, which asymptotically decays as 1/rα (with α ≥ 0), r being the distance.
In all such cases, the corresponding Gibbs free energy is given by G(N) = U(N) −
TS(N) + pV(N) − µN − HM(N) − . . . . We now divide by NÑ where Ñ ≡ N1−α/d−1

1−α/d ;
Ñ behaves, for large values of N, as N1−α/d/(1 − α/d) for 0 ≤ α/d < 1 (long-range
interactions), as 1/(α/d− 1) for α/d > 1 (short-range interactions), and as ln N for α/d =
1(marginally-ranged interactions). We then obtain g = u − T̃s − + p̃v − µ̃ − H̃m − . . . ,
where g ≡ limN→∞ G(N)/NÑ, u ≡ limN→∞ U(N)/NÑ, s ≡ limN→∞ S(N)/N, v ≡
limN→∞ V(N)/N, m ≡ limN→∞ M(N)/N, T̃ ≡ limN→∞ T/Ñ, p̃ ≡ limN→∞ p/Ñ, µ̃ ≡
limN→∞ µ/Ñ, H̃ ≡ limN→∞ H/Ñ, . . . . It should be very clear at this point that all these
quantities must be finite if we wish to preserve the entire Legendre structure of thermodynamics.
These specific scalings have already been checked and found to be correct, very particularly
in order to have finite equations of states, for diverse physical systems, such as a ferrofluid-
like model [73], Lennard–Jones-like fluids [69–72], magnetic systems [74–79], anomalous
diffusion [80], and percolation [81,82], among others. An immediate corollary is that
quantities such as entropy S, d-dimensional volume V, number of particles N, and total
magnetization M, belong to the same thermodynamic class, and are extensive independently
from the interactions being short- or long-ranged. This is in remarkable contrast with quantities
such as G and U, which are extensive for short-ranged interactions (implicit assumption in
nearly all textbooks of thermodynamics, although not necessarily emphasizing it, quite
regretfully) but super-extensive (∝ N2−α/d) for long-ranged ones. In particular, U(N) scales as
N2 for all mean-field models (i.e., α = 0), which is the reason for nearly all authors dividing
by N the coupling constant of the many-body Hamiltonian. Consistently, quantities such
as T̃, p̃, µ̃, H̃ are intensive, ∀ α/d > 0.

(ii) We provide a brief reminder of the Large Deviation Theory (LDT). If we throw
N (say even) independent coins, the probability of having n 6= N/2 heads is given by
P(N; n/N < x) ' e−r1(x) N , where the rate function r1(x) is the relative BG entropy per
particle and satisfies r1(1/2) = 0. In other words, r1(x)N corresponds to the total entropy,
which is therefore extensive, as is well known for this simple case. This property mirrors the
fact that, within BG statistical mechanics, the thermal equilibrium probability associated
with Hamiltonian HN is given by p ' e−βHN = e−[βHN /N] N , where we can see that
[βHN/N] is an intensive quantity which plays the role of r1(x). For usual systems, more
specifically for those for which the Central Limit Theorem legitimately applies, both
expressions, P(N; n/N < x) ' e−r1(x) N and p ' e−βHN , still apply. However, if we have
relevant nonlocal features, the CLT and the LDT need to be generalized. For nonlocally
correlated elements (e.g., for classical many-body systems with 0 ≤ α/d < 1) the usual CLT
and the LDT are not expected to apply. It has been verified in many of such systems that
the CLT Gaussian attractor is replaced by a q-Gaussian one with q > 1 (see, for instance,
Refs. [83,84] to have a first approach to such anomalies). The corresponding stationary-state
distribution optimizing, under appropriate simple constraints, the nonadditive entropy Sq

becomes p ' e
−βqHN
q = e

−[(βq Ñ)(HN /NÑ)] N
q , where [(βqÑ)(HN/NÑ)] = (1/T̃)(HN/NÑ)

is intensive, as shown in point (i) above. For a similar probabilistic system with strongly
correlated coins (within a wide class of correlations), it is allowed to expect P(N; n/N <

x) ' e
−rq(x) N
q with the q-rate function rq(x) being of the order of some appropriate q-relative

entropy per particle, and satisfying rq(1/2) = 0. As we see, if this conjecture is correct,
the total entropy corresponds to rq(x)N and is, once again, extensive. This conjecture
has been numerically verified with high-precision calculations in at least one non-trivial
example [85–87]; more are coming.



Entropy 2021, 23, 630 3 of 8

2. About Entropic Additivity and Extensivity

The authors of the Comment write next, in the Abstract: “Here we counterargue by
explaining the important distinction between the properties of extensivity and additivity; the latter
is fundamental for entropy, while the former is a property of particular thermodynamical systems
that is not expected for black holes.”

I could not agree more with Pessoa and Costa about the importance of the distinction
between extensivity and additivity, very particularly when entropy is focused on. But their
use of the verb ”explaining” appears to differ from that of others. The distinction additivity
versus extensivity has been addressed in very many occasions in the context of nonexten-
sive statistical mechanics (q-statistics for short) and nonadditive entropies, e.g., in [88,89]
(a wide Bibliography is available at [90]). As transparently defined by Penrose [91], the
additivity of an entropic functional S({pi}) is based on the simple mathematical property
S({pi pj}) = S({pi}) + S({pj}), ∀{(pi, pj)}, i.e., S(A + B) = S(A) + S(B), A and B be-
ing probabilistically independent systems. Consequently, it is trivially verified that the
Boltzmann–Gibbs–von Neumann–Shannon (noted SBG here) and the Renyi entropic func-
tionals are additive, whereas all the others available in the literature are nonadditive, among
them Sq, Sδ and Sq,δ [2]. At this point, it is worth stressing that the Sq functional has been the
object of uniqueness theorems in what concerns (i) the axiomatic formulations by Santos and
by Abe [92,93], respectively, generalizing those of Shannon and of Khinchin; (ii) the Topsoe-
factorizability [94] in game theory; (iii) the Amari–Ohara–Matsuzoe conformally invariant
geometry [95]; (iv) the Biro–Barnafoldi–Van thermostat universal independence [96–100];
(v) the Enciso–Tempesta uniqueness of composable trace-form functionals [101], thus
leading to the likelihood factorization required by Einstein [102].

In strong contrast with additivity, the extensivity of an entropy (i.e.,
0 < limL→∞ S(L)/Ld < ∞, where L is the linear size of the d-dimensional system) depends
not only on the specific entropic functional but also—and very much so—on the specific
system that is being focused on. What Pessoa and Costa definitively appear to miss in
their Comment is that entropic additivity is physically subordinated to entropic extensivity,
and not the other way around. To better understand in what sense we are using the word
”subordinated” we may refer to an analogous situation, namely the Galilean additivity of
velocities (v13 = v12 + v23). This additivity is ”subordinated” to the Lorentz invariance
imposed by Einstein in order to unify mechanics with Maxwell equations, which eventually
generalized the Galilean additivity into the Einstein composition of velocities involving the
vacuum speed of light c (v13 = (v12 + v23)/(1+ v12 v23/c2)). As is well known, the Einstein
composition of velocities recovers the Galilean additivity in the limit 1/c→ 0, fairly simi-
larly to how the nonadditivity of Sq recovers the BG additivity in the limit (1− q)/k→ 0 (let
us remind the reader that Sq(A+ B)/k = Sq(A)/k+ Sq(B)/k+(1− q)[Sq(A)/k][Sq(B)/k],
hence Sq(A + B) = Sq(A) + Sq(B) + [(1− q)/k]Sq(a)Sq(B). The loss of the Galilean addi-
tivity is then a small price to pay for making mechanics and Maxwell electromagnetism
simultaneously Lorentz-invariant. In analogy, the loss of the BG entropic additivity is,
whenever necessary (i.e., whenever there is strong space–time entanglement in the system),
a small price to pay for satisfying thermodynamics.

No general physical reason is known to necessarily lead to additive entropies for
thermodynamical purposes, whereas entropic extensivity is generically mandated by the
Legendre structure of thermodynamics (see [2] and many other references therein). (We
read in [1] “even if the entropy were proportional to the total energy, it could still fail to be
proportional to the “volume” of the black hole.” Such a sentence jeopardizes the Legendre
structure of classical thermodynamics, which obviously imposes that all of its terms scale
with size in exactly the same manner. Therefore, the quantities to be legitimately compared
are U, TS, pV, µN, HM, etc. The assumption in [1] about the possibility of the entropy
being proportional to the total energy is equivalent to a priori assuming that T is intensive, a
hypothesis which rather naively disregards that this issue is a very delicate one, given that,
in black holes, we definitively deal with long-range interactions.) The entropic extensivity
is presently verified numerically by the possible extension of the Large Deviation Theory to
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wide classes of strongly correlated systems [85–87], apparently also in [103]. The obvious
mathematical convenience of using the celebrated additive entropic functional SBG comes
from the fact that systems with local or no correlations naturally yield an extensive SBG. In
contrast, nonlocal correlations, such as those definitively existing in black holes and in many
other systems, lead to a nonextensive entropy SBG. Consequently, its use simply becomes
thermodynamically inadmissible. In other words, the total entropy, the total volume, the
total number of particles, the total magnetization, always belong to the same class of
thermodynamical variables, sharing the property of scaling as Ld (under the assumption
that d is an integer number). This is in notorious contrast with the total internal and free
energies which, as mentioned above, are thermodynamically extensive variables only
when, say, long-range interactions are not involved. In this matter, it certainly is historically
impressive to verify that Gibbs himself dismissed his own thermostatistical theory in those
cases where the partition function diverges (e.g., gravitation) [104]. More details on the
failure of BG entropy and corresponding statistical mechanics for gravitational systems
can be found in [105–107].

3. Other Debatable Statements

Finally, the authors of the Comment conclude their Abstract by writing: “We also point
out other debatable statements in his analysis of black hole entropy.”

In this context, several points can be raised, but I will restrict the focus on their state-
ment “we want to refer the reader to authors who have reported that (i) substituting entropy by
a non-additive functional leads to inconsistent statistics [12–15] . . . ” (their references [12–14]
are references [108–110] of the present Reply). Pessoa and Costa apparently base their
conviction on the Pressé et al. interpretation of the Shore and Johnson axioms for statistical
inference. It happens, however, that they are seemingly unaware that such an interpreta-
tion is deeply erroneous. Indeed, this has been discussed more than once in the literature
and it has been definitively settled out by Jizba and Korbel [111], who transparently and
specifically show, among others, that Sq does satisfy the Shore and Johnson axioms. The
authors of [1] include, as basic support of their statement about ’inconsistent statistics’,
the paper [110] by Pressé et al., but no reference is made to the critical paper [112] (The
title of [112] contains an unfortunate inadvertence. A more precise title would have been
Conceptual Inadequacy of the Pressé et al. Version of the Shore and Johnson Axioms for Wide
Classes of Complex Systems), where physical misconceptions and even a severe mathematical
error are revealed in detail. Let us be precise about that. We straightforwardly verify
Sq({ui ⊗2−q vj}) = −k ∑ij(ui ⊗2−q vj) ln2−q(ui ⊗2−q vj) = −k ∑ij(ui ⊗2−q vj)(ln2−q ui +

ln2−q vj) 6= −k ∑ij uivj(ln2−q ui + ln2−q vj) = −k ∑W
i=1 ui ln2−q ui − k ∑W

j=1 vj ln2−q vj =

Sq({ui}) + Sq({vj}). The crucial inequality that is present along these lines is, quite inex-
plicably, violated in [108].

To be more explicit, Pessoa and Costa [1] adopt the following design criteria (DC):
DC1—subdomain independence (local information should have only local effects); DC2—
subsystem independence (a priori independent subsystems should remain independent,
unless the constraints explicitly require otherwise). As they argue, the unique functional
that fits these criteria is SBG (and, consistently, the corresponding Kullback–Leibler rel-
ative entropy or divergence). It happens, however, that, as it becomes clear within the
discussion by Jizba and Korbel in [111], DC1 and DC2 are sufficient but not necessary criteria
for the general Shore and Johnson axioms for statistical inference. For a system with
very strong space–time entanglement, such as a black-hole, hypotheses DC1–DC2 are
unnecessarily restrictive.

Various other issues concerning black holes surely deserve deeper analysis, including
the possibility of unification with the so-called ”area law” for strongly quantum-entangled
systems, through a (conjectural) expression, such as SBG(L) ∝ Ld−1−1

d−1 (L → ∞), which
yields SBG(L) ∝ ln L for d→ 1 and SBG(L) ∝ Ld−1 for d > 1 (see [113,114] and references
therein). However, such challenging open problems are out of the scope of the present
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Reply. (Finally, a misprint appears above Equation (1) in [1], which reads ”maximization”,
but should read ”minimization”.)
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