
entropy

Article

SUPG-Stabilized Virtual Element Method for Optimal Control
Problem Governed by a Convection Dominated
Diffusion Equation

Qiming Wang and Zhaojie Zhou *

����������
�������

Citation: Wang, Q.; Zhou, Z.

SUPG-Stabilized Virtual Element

Method for Optimal Control Problem

Governed by a Convection

Dominated Diffusion Equation.

Entropy 2021, 23, 723. https://

doi.org/10.3390/e23060723

Academic Editors: Ravi P. Agarwal

and Maria Alessandra Ragusa

Received: 5 April 2021

Accepted: 30 May 2021

Published: 5 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mathematics and Statistics, Shandong Normal University, Jinan 250000, China;
wangqiming_sdnu@126.com
* Correspondence: zhouzhaojie@sdnu.edu.cn

Abstract: In this paper, the streamline upwind/Petrov Galerkin (SUPG) stabilized virtual element
method (VEM) for optimal control problem governed by a convection dominated diffusion equation
is investigated. The virtual element discrete scheme is constructed based on the first-optimize-then-
discretize strategy and SUPG stabilized virtual element approximation of the state equation and
adjoint state equation. An a priori error estimate is derived for both the state, adjoint state, and the
control. Numerical experiments are carried out to illustrate the theoretical findings.
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1. Introduction

In this paper, we aim to discuss a priori error analysis of SUPG stabilized virtual
element method (VEM) for the optimal control problem governed by the convection
dominated diffusion equation. We consider the following optimal control problem:

min
u∈Uad

J(y, u) :=
1
2
‖y− yd‖2 +

γ

2
‖u‖2 (1)

subject to {
−∇ · (ε∇y) + β(x) · ∇y + δy = f + u in Ω,

y = 0 on Γ,
(2)

where J(y, u) is the objective functional, yd ∈ L2(Ω) is the desired state, and γ > 0 is
the regularization parameter. 0 < ε � 1 represents constant diffusion coefficient and
β ∈ [W1,∞(Ω)]2 with ∇ · β = 0 is the transport advective field. δ > 0 is a constant.
f ∈ L2(Ω) is the volume source term. Ω ⊂ R2 is a bounded domain with Γ = ∂Ω.
The control constraint set is given by

Uad = {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub a.e. in Ω with ua, ub ∈ R and ua ≤ ub}.

Optimal control problems governed by the convection dominated diffusion equation
have many applications in real life, such as the air pollution problem ([1]) and waste water
treatment problem ([2]). It is well known that a characteristic of convection-dominated
equation is that the solutions may have the sharp boundary and interior layers when the
coefficient of the convection field is relatively large. Since numerical methods without any
treatment do not work well in this case, various robust schemes such as SUPG formulation,
residual-free bubbles methods, and discontinuous Galerkin methods for convective domi-
nance equations have been developed. For the numerical approximation of the convection
diffusion optimal control problem, we refer to [3–10].
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VEM can be regarded as a generalization of the finite element method (FEM) to general
polygonal and polyhedral meshes, and it is originally introduced in [11] as a C0-conforming
method for solving the two-dimensional Poisson equation. Thus far, VEM has been used
in a variety of problems, such as elliptic problem ([12–14]), parabolic problem ([15]), and
Stokes problem ([16,17]). The method performs well in geometrically complex domains [18]
and with badly shaped polygonal elements [19]. In fact, the underlying virtual element
space can be seen as the finite element space plus some suitable non-polynomial functions,
which are the solutions of PDE problems inside each element. Compared with SUPG-FEM,
SUPG-VEM provides great flexibility for us to use arbitrary polygonal meshes (even non-
convex). SUPG-VEM also has great advantages for adaptive refinement. For instance,
locally adapted meshes do not require any local post processing because polygonal meshes
are allowed, and any limitations caused by maximum angle conditions or mesh distortion
are eliminated. In addition, we do not need to add additional degrees of freedom for
hanging nodes during adaptive refinement, since we can just treat the hanging nodes as
new nodes. However, there are not many studies on SUPG-VEM of convection domi-
nant problems. Cangiani et al. first studied the non-consistent SUPG-VEM problem of
convection-dominated diffusion in [20]. Subsequently, SUPG-stabilized conforming and
non-conforming VEMs are presented in [21,22]. However, the stability and convergence
analysis in [21,22] is not uniform in the diffusion/convection parameters, and a small
enough mesh size is needed for analysis. Recently, Beirão da Veiga et al. discussed a robust-
ness analysis of SUPG-stabilized virtual elements for diffusion–convection problems in [23].
By slightly modifying the SUPG format of [21], they propose a new way to discretize the
convection term, which ultimately demonstrates the robustness of the parameters involved
in the convergence estimation without requiring sufficiently small mesh sizes.

As we know the application of the virtual element method in the optimal control
problem was not reported up to now. Compared with FEM, the computability of the dis-
crete scheme is more important since the virtual element space contains non-polynominal
functions. By projection operators and the first-optimize-then-discretize strategy, we con-
struct a computable SUPG-stabilized VEM discrete scheme for the optimal control problem
governed by the convection dominated diffusion equation, where the control is implicitly
discretized. Moreover, inspired by [23], we use a novel discretization of the convection term
that allows us to develop error estimates that are fully robust in the convection dominated
cases. We derive an a priori error estimate for the optimal control problem by introducing
some auxiliary problems and present a projected gradient algorithm to solve the discrete
optimal control problem. Finally, we carry out some numerical examples to verify our
theoretical analysis.

The paper is organized as follows. In the next section, we give some preliminary
knowledge about virtual element space and the projection operators. In Section 3, the SUPG
stabilizing virtual element discrete scheme is constructed. In Section 4, a priori error
estimates are derived for the state, adjoint state, and control. In Section 5, we perform some
numerical experiments to verify the theoretical results.

Throughout the paper, the symbol . denotes a bound up to a generic positive constant,
independent of the mesh size h, of the SUPG parameter τE, of the diffusive coefficient ε
and of the transport advective field β. Moreover, the analysis of the three-dimensional case
could be developed with very similar arguments.

2. Preliminaries

In this section, we introduce the virtual element space and projection operators. Let Th
be a family of decompositions of the domain Ω into star-shaped polygonals E. hE denotes
the diameter of element E, i.e., the maximum distance between any two points on element
E and h = sup

E∈Th

hE. We further assume that ∂E denotes the edges of E ∈Th. nE and hs denote

the unit outward normal vector to ∂E and the length of edge s, respectively. The following
assumption about the mesh is necessary for the theoretical analysis.
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Assumption 1 ([12]). We assume the existence of a constant ρ > 0 such that, for all h > 0 and
for all E ∈ Th,

• Every element E of Th is star-shaped with respect to a ball of radius bigger or equal to ρhE;
• For every element E of Th and every edge s of E, hs ≥ ρhE.

For n = 0, 1, Pn(E) denotes the space of polynomials of degree ≤ n on E (with
P−∞(E) = {0}) and the following polynomial projections [12] are given:

• the L2 − projection Π0
n : L2(E)→ Pn(E), defined by

(q, v)0,E = (q, Π0
nv)0,E f or all v ∈ L2(E) and q ∈ Pn(E),

with an obvious extension for vector functions Π0
n : [L2(E)]2 → [Pn(E)]2;

• the H1 − projection Π1
n : H1(E)→ Pn(E), defined by

(∇q,∇v)0,E = (∇q,∇Π1
nv)0,E f or all v ∈ H1(E) and q ∈ Pn(E)

plus (to take care of the constant part of Π1
nv):∫

∂E
(v−Π1

nv)ds = 0.

Then, following [12], the global virtual element space is defined as

Vh := {vh ∈ H1
0(Ω) : vh|E ∈ VE

h , ∀E ∈ Th},

where

VE
h :=

{
vh ∈ H1(E) ∩ C0(∂E) : ∆vh |E∈ P1(E), vh|∂E ∈ P1(s) ∀ s∈∂E,

(vh, p)0,E = (Π1
1vh, p)0,E ∀ p ∈ P1(E)/P−∞(E)

}
,

where the spaceP1(E)/P−∞(E) denotes the polynomials inP1(E) that are L2(E)-orthogonal
to P−∞(E), i.e., the degree of the polynomials in this space are 1 and 0.

Following [12], for each element E ∈ Th, the local virtual element space VE
h contains

the space P1(E). The vertices of a polygonal element E with NE edges are denoted by υi for
i = 1, ..., NE. Because the polygonal element E has no internal degrees of freedom, we can
simply choose the υi for i = 1, ..., NE to be the degrees of freedom of polygonal element E.

Remark 1. Following [12], from the definition of the virtual element space and the two projection
operators, we have Π1

1 = Π0
1.

Lemma 1 ([23]). Under the Assumption 1, for any E ∈ Th and for any smooth enough function ϕ
defined on E, it holds

‖ϕ−Π0
n ϕ‖Wm

p (E) . hs−m
E |ϕ|Ws

p(E) s, m ∈ N, m ≤ s ≤ n + 1, p = 1, ..., ∞,

‖ϕ−Π1
n ϕ‖m,E . hs−m

E |ϕ|s,E s, m ∈ N, m ≤ s ≤ n + 1, s ≥ 1,

‖∇ϕ−Π0
n∇ϕ‖m,E . hs−1−m

E |ϕ|s,E s, m ∈ N, m ≤ s ≤ n + 2, s ≥ 1.
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3. SUPG Stabilizing Virtual Element Approximation for Optimal Control Problem

For all y, v ∈ H1
0(Ω), we set

a(y, v) :=
∫

Ω
ε∇y · ∇vdΩ,

b(y, v) :=
∫

Ω
β · ∇yvdΩ,

c(y, v) :=
∫

Ω
δyvdΩ.

By a direct computation, being ∇ · β = 0, it is easy to see that the bilinear form b(·, ·)
is skew symmetric, i.e.,

b(y, v) = −b(v, y) f or ally, v ∈ H1
0(Ω).

Therefore, we can rewrite the bilinear form b(·, ·) as

b(y, v) =
1
2
(
b(y, v)− b(v, y)

)
.

Then, the weak form of optimal control Equations (1) and (2) is characterized by

min
u∈Uad

J(y, u) :=
1
2
‖y− yd‖2 +

γ

2
‖u‖2

subject to

A(y, v) = ( f + u, v) ∀v ∈ H1
0(Ω),

where

A(y, v) := a(y, v) + b(y, v) + c(y, v). (3)

Here, the convection term is rewritten in a skew symmetric form, which is a useful
step for the VEM to ensure that the discrete framework preserves the properties of the
symmetric and skew-symmetric parts of the bilinear form, see [14,23].

To derive the first order optimality system, we define the Lagrangian functional
as follows:

L(y, p, u) = J(y, u) + ( f + u, p)− A(y, p).

Taking the directional derivative for L(y, p, u) with respect to y, p, and u, we obtain
the continuous first order optimality system of Equations (1) and (2) as follows:

A(y, w) = ( f + u, w), ∀w ∈ H1
0(Ω),

B(p, w) = (y− yd, w), ∀w ∈ H1
0(Ω),

(γu + p, v− u) ≥ 0, ∀v ∈ Uad,

(4)

where B(p, w) := a(p, w)− b(p, w) + c(p, w).
Let

PUad(u) = max{ua, min{u, ub}}

denote the pointwise projection onto the admissible set Uad. The optimal inequality
is equivalent to u = PUad(−

1
γ p). We can derive that the adjoint state equation has the

strong form {
−∇ · (ε∇p)− β(x) · ∇p + δp = y− yd in Ω,

p = 0 on Γ.
(5)
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The virtual element discrete scheme of state equation with SUPG stabilization can be
defined as follows: find yh(u) ∈ Vh, such that

Asupg,h(yh(u), wh)= ∑
E∈Th

(Π0
1( f + u), wh + τE(β ·Π0

0∇wh))0,E, ∀wh ∈ Vh.

Here,

Asupg,h(vh, wh) := ∑
E∈Th

AE
supg,h(vh, wh) := ∑

E∈Th

(aE
h (vh, wh) + bE

h (vh, wh)

+ cE
h (vh, wh) +QE

h (vh, wh) + BE
h (vh, wh) +RE

h (vh, wh)),

where

aE
h (vh, wh) :=

∫
E

εΠ0
0∇vh ·Π0

0∇whdE + εSE((I −Π1
1)vh, (I −Π1

1)wh),

bE
h (vh, wh) :=

1
2

[ ∫
E

β · ∇Π0
1vhΠ0

1whdE−
∫

E
β · ∇Π0

1whΠ0
1vhdE

+
∫

∂E
(β · nE)(I −Π0

1)vhΠ0
1whds−

∫
∂E
(β · nE)(I −Π0

1)whΠ0
1vhds

]
,

cE
h (vh, wh) :=

∫
E

δΠ0
1vhΠ0

1whdE,

QE
h (vh, wh) := τE

∫
E
−ε∇ ·Π0

0∇vh(β ·Π0
0∇wh)dE,

BE
h (vh, wh) := τE

∫
E

β ·Π0
0∇vhβ ·Π0

0∇whdE + τEβ2
ESE((I −Π1

1)vh, (I −Π1
1)wh),

RE
h (vh, wh) := τE

∫
E

δΠ0
1vh(β ·Π0

0∇wh)dE,

τE > 0 is the SUPG parameter and βE = ‖β‖[L∞(E)]2 . Following [11], SE is any symmetric
positive definite bilinear form to be chosen to verify

α∗|wh|21,E ≤ SE(wh, wh) ≤ α∗|wh|21,E f or all wh ∈ Ker(Π1
1),

where α∗ and α∗ are two positive constants independent of E and hE.
There are many choices for SE, and, following [11], we take the simple choice

SE(yh, wh) =
NE

∑
r=1

dofr(yh)dofr(wh),

where dofr(yh) denotes the value of the rth local degree of freedom defining yh in VE
h .

Remark 2. Due to limited regularity of the control problem, we restrict k = 1 in the virtual element
space. In this case, we can observe that QE

h (·, ·) = 0 by the definition of the L2 projection operator.

Similar to the state equation, we also use SUPG-stabilized VEM to discretize the
adjoint state equation. Then, we can define the discrete first order optimality system as
follows: find (uh, yh, ph) ∈ Uad ×Vh ×Vh, such that

Asupg,h(yh, wh) = ∑
E∈Th

(Π0
1( f + uh), wh + τE(β ·Π0

0∇wh))0,E, ∀wh ∈ Vh,

Bsupg,h(ph, wh) = ∑
E∈Th

(Π0
1(yh − yd), wh − τE(β ·Π0

0∇wh))0,E, ∀wh ∈ Vh,

∑
E∈Th

(γuh + Π0
1 ph, vh − uh)0,E ≥ 0, ∀vh ∈ Uad,

(6)
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where

Bsupg,h(ph, wh) := ∑
E∈Th

BE
supg,h(ph, wh) := ∑

E∈Th

(aE
h (ph, wh)− bE

h (ph, wh)

+ cE
h (ph, wh)−QE

h (ph, wh) + BE
h (ph, wh)−RE

h (ph, wh)).

4. A Priori Error Estimates

In this section, we first define the VEM SUPG norm and introduce the auxiliary
problems. Then, under certain data assumption, the error estimate of the auxiliary problem
and the optimal control problem in the VEM SUPG norm are given. Finally, we derive the
error estimate between Equations (4) and (6).

We first define the local VEM SUPG norm

‖wh‖2
supg,E := ε‖∇wh‖2

0,E + τE‖β ·Π0
0∇wh‖2

0,E + τEβ2
E‖∇(I −Π1

1)wh‖2
0,E

+ ‖
√

δ(I −Π1
1)wh‖2

0,E + ‖
√

δΠ1
1wh‖2

0,E

for all wh ∈ H1(E) and the global VEM SUPG norm ‖wh‖2
supg := ∑

E∈Th

‖wh‖2
supg,E for all

wh ∈ H1(Ω). Notice that the norm ‖ · ‖supg,E here is slightly different from the standard
SUPG norm ‖ · ‖SUPG,E introduced in standard SUPG theory, i.e.,

‖wh‖2
SUPG,E := ε‖∇wh‖2

0,E + τE‖β · ∇wh‖2
0,E + ‖

√
δwh‖2

0,E.

However, for all wh ∈ H1(E), using the fact that

‖∇ph −Π0
0∇ph‖0,E = ‖(I −Π0

0)(∇ph −∇Π1
1 ph)‖0,E ≤ ‖∇ph −∇Π1

1 ph‖0,E

we arrive at

‖β · ∇wh‖2
0,E = ‖β · (∇wh −Π0

0∇wh + Π0
0∇wh)‖2

0,E

≤ 2‖β ·Π0
0∇wh‖2

0,E + 2β2
E‖(I −Π0

0)∇wh‖2
0,E

≤ 2‖β ·Π0
0∇wh‖2

0,E + 2β2
E‖∇(I −Π1

1)wh‖2
0,E

and

‖
√

δwh‖2
0,E ≤ ‖

√
δ(wh −Π1

1wh + Π1
1wh)‖2

0,E ≤ 2‖
√

δΠ1
1wh‖2

0,E + 2‖
√

δ(I −Π1
1)wh‖2

0,E.

This implies that the standard SUPG norm can be controlled by the VEM SUPG norm.

Lemma 2 ([23]). Under the Assumption 1, if there exists a constant Cτ ∈ (0, 2) such that the
parameters τE satisfy τE ≤ Cτ

δ , ∀E ∈ Th, the bilinear form AE
supg,h(·, ·) and BE

supg,h(·, ·) satisfy
for all wh ∈ Vh(E) the coercivity inequality

‖wh‖2
supg,E . AE

supg,h(wh, wh), ‖wh‖2
supg,E . BE

supg,h(wh, wh). (7)

To derive an a priori error estimate, we need to introduce the following auxiliary problems:
A(y(uh), w) = ( f + uh, w), ∀w ∈ H1

0(Ω),

B(p(yh), w) = (yh − yd, w), ∀w ∈ H1
0(Ω),

B(p(uh), w) = (y(uh)− yd, w), ∀w ∈ H1
0(Ω)

(8)
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and

Asupg,h(yh(u), wh) = ∑
E∈Th

(Π0
1( f + u), wh + τE(β ·Π0

0∇wh))0,E, ∀wh ∈ Vh,

Bsupg,h(ph(u), wh) = ∑
E∈Th

(Π0
1(yh(u)− yd), wh − τE(β ·Π0

0∇wh))0,E, ∀wh ∈ Vh,

Bsupg,h(ph(y), wh) = ∑
E∈Th

(Π0
1(y− yd), wh − τE(β ·Π0

0∇wh))0,E, ∀wh ∈ Vh.

(9)

Assumption 2 (Data assumption). The solutions y, p, u of the optimal control problem and the
f , yd satisfy:

f , u, yd ∈ H1(Th), y, p ∈ H2(Th).

Note that (yh(u), ph(y)) are SUPG VEM approximation of (y, p). The following results
are not restrictive to βE > 0 since βE = 0 implies β|E = 0 and thus the corresponding
terms vanish.

Lemma 3 ([23]). Let (y, p) and (yh(u), ph(y)) be the solutions of (4) and (9), respectively. Then,
the following estimates hold under the Assumptions 1, 2 and, in the case of a convection dominated

regime, i.e., τE = min{ hE
βE

, h2
E
ε , Cτ

δ } =
hE
βE

‖y− yh(u)‖2
supg + ‖p− ph(y)‖2

supg . ∑
E∈Th

(h3
E(βE + β−1

E ) + εh2
E + β−1

E ε2hE + h4
E + β−1

E h5
E)

. ∑
E∈Th

(h3
E(βE + β−1

E + hE + β−1
E h2

E))

= O(h3).

Next, we derive a priori error estimates for SUPG VEM approximation of the optimal
control problem.

Theorem 1. Let (y, p, u) and (yh, ph, uh) be the solutions of (4) and (6), respectively. Then, we
have that

‖u− uh‖0,Ω . h2 + ‖ph − p(uh)‖0,Ω.

Proof. Define
Ĵ′(u)(v− u) =

∫
Ω
(γu + p(u))(v− u)dx.

Note that

Ĵ′(u)(u− uh)− Ĵ′(uh)(u− uh) = γ
∫

Ω
(u− uh)

2dx +
∫

Ω
(p(u)− p(uh))(u− uh)dx.

By the auxiliary Equation (8), we deduce∫
Ω
(p(u)− p(uh))(u− uh)dx = A(y(u)− y(uh), p(u)− p(uh))

= B(p(u)− p(uh), y(u)− y(uh))

= (y(u)− y(uh), y(u)− y(uh))0,Ω ≥ 0.

Then, we have
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γ‖u− uh‖2
0,Ω ≤ Ĵ′(u)(u− uh)− Ĵ′(uh)(u− uh) =

∫
Ω
(γu + p− γuh − p(uh))(u− uh)dx

= (γu + p, u− uh)0,Ω + ∑
E∈Th

(γuh + Π0
1 ph, uh − u)0,E

+ ∑
E∈Th

(Π0
1 ph − p(uh), u− uh)0,E

≤ 0 + 0 + ∑
E∈Th

(Π0
1 ph − p(uh), u− uh)0,E.

This shows

‖u− uh‖0,Ω .
(

∑
E∈Th

‖Π0
1 ph − p(uh)‖2

0,E

) 1
2
.

Note that

‖Π0
1 ph − p(uh)‖0,E ≤ ‖Π0

1 ph −Π0
1 p(uh)‖0,E + ‖Π0

1 p(uh)− p(uh)‖0,E

≤ ‖ph − p(uh)‖0,E + ‖Π0
1 p(uh)− p(uh)‖0,E.

Then, by Lemma 1, we have

‖u− uh‖0,Ω . h2 + ‖ph − p(uh)‖0,Ω.

Theorem 2. Under the Assumptions 1 and 2 and, in case of a convection dominated regime,
let (y, p, u) and (yh, ph, uh) be the solutions of Equations (4) and (6), respectively. Then, we have
following estimate:

‖y− yh‖supg + ‖p− ph‖supg + ‖u− uh‖0,Ω . h3/2.

Proof. We decompose the errors y− yh and p− ph into

y− yh = y− yh(u) + yh(u)− yh, p− ph = p− ph(u) + ph(u)− ph.

By the Lemma 3, we have

‖y− yh(u)‖supg . h3/2.

Moreover, by the governing equation of yh, yh(u) in (6) and (9), respectively, we have

Asupg,h(yh(u)− yh, wh) = ∑
E∈Th

(Π0
1(u− uh), wh + τEβ ·Π0

0∇wh)0,E.

Let wh = yh(u)− yh. Recalling the coercivity of Asupg,h in (7), Π0
1 = Π1

1 and the fact
that τE ≤ Cτ

δ we can get
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‖yh(u)− yh‖2
supg . Asupg,h(yh(u)− yh, yh(u)− yh)

= ∑
E∈Th

(Π0
1(u− uh), yh(u)− yh + τEβ ·Π0

0∇(yh(u)− yh))0,E

≤ ‖u− uh‖0,Ω( ∑
E∈Th

‖Π0
1(yh(u)− yh)‖2

0,E)
1/2

+ ‖u− uh‖0,Ω( ∑
E∈Th

‖τEβ ·Π0
0∇(yh(u)− yh)‖2

0,E)
1/2

. ‖u− uh‖0,Ω‖yh(u)− yh‖supg + ‖u− uh‖0,Ω( ∑
E∈Th

τE‖yh(u)− yh‖2
supg,E)

1/2

. ‖u− uh‖0,Ω‖yh(u)− yh‖supg + ‖u− uh‖0,Ω( ∑
E∈Th

Cτ

δ
‖yh(u)− yh‖2

supg,E)
1/2

. ‖u− uh‖0,Ω‖yh(u)− yh‖supg.

(10)

This implies
‖yh(u)− yh‖supg . ‖u− uh‖0,Ω.

Combining the above inequalities gives

‖y− yh‖supg . h3/2 + ‖u− uh‖0,Ω.

By Lemma 3, we also have

‖p− ph(y)‖supg . h3/2.

Similar to the estimate (10), by the definition of ph(y), ph(u) in (9), we also derive

‖ph(y)− ph(u)‖supg . ‖y− yh(u)‖supg . h3/2

and

‖ph(u)− ph‖supg . ‖yh(u)− yh‖supg . ‖u− uh‖0,Ω.

This implies

‖p− ph‖supg . h3/2 + ‖u− uh‖0,Ω.

From the coercivity of B and definition of p(yh), p(uh) in (8), we can deduce

‖p(yh)− p(uh)‖2
0,Ω . B(p(yh)− p(uh), p(yh)− p(uh))

= (yh − y(uh), p(yh)− p(uh))0,Ω

≤ ‖yh − y(uh)‖0,Ω‖p(yh)− p(uh)‖0,Ω.

Thus, we can get ‖p(yh) − p(uh)‖0,Ω ≤ ‖yh − y(uh)‖0,Ω. Using the results of [23],
we obtain

‖ph − p(yh)‖supg . h3/2, ‖yh − y(uh)‖supg . h3/2.

By the triangle inequality and the relationship between ‖ · ‖SUPG and ‖ · ‖supg, we arrive at

‖ph − p(uh)‖0,Ω ≤ ‖ph − p(yh)‖0,Ω + ‖p(yh)− p(uh)‖0,Ω

. ‖ph − p(yh)‖SUPG + ‖yh − y(uh)‖SUPG

. ‖ph − p(yh)‖supg + ‖yh − y(uh)‖supg . h3/2.

(11)



Entropy 2021, 23, 723 10 of 17

From Theorem 1 and Equation (11), we have the following estimate:

‖u− uh‖0,Ω . h3/2 + h2.

Inserting the above estimate into the estimates of state and adjoint state yields the
final result.

5. Numerical Results

In this section, we give the mesh types of our numerical experiments and introduce a
projected gradient algorithm based on the SUPG stabilized discrete first order optimality
system (6) to verify our a priori analysis. Since the VEM solutions yh and ph are not
explicitly known inside the elements, we use ey,0, ey,1, cy to represent the L2 norm, H1 norm,
and standard SUPG norm between y and Π1

1yh. Similarly, ep,0, ep,1, cp denote the L2 norm,
H1 norm and standard SUPG norm between p and Π1

1 ph, and eu,0 denotes the L2 norm
between u and uh.

For the mesh types, we consider distorted square, hexagonal, and Lloyd mesh ([24]),
which are shown as Figure 1a, Figure 1b, Figure 1c in Figure 1, respectively.

(a) (b) (c)

Figure 1. Three mesh types. (a) Hexagonal mesh; (b) Distorted square mesh; (c) Lloyd mesh.

The projected gradient algorithm is given below (Algorithm 1):

Algorithm 1 Projected gradient algorithm.
Require:

Regularization parameter γ and tolerance error η.
Ensure:
1. Choose the initial value uh. Set error = 1.
2. While error > η do
3. Solving the state equation in the discrete first order optimality system (6) to get state variable yh;
4. Solving the adjoint state equation in the discrete first order optimality system (6) to obtain adjoint state variable ph;
5. Control variable uhnew are obtained by using the projection PUad ;

uhnew|E = PUad(−
1
γ

Π0
1(ph|E)), ∀E ∈ Th.

6. Calculate the error:
error = ‖uh − uhnew‖L2 .

7. Update control variable uh = uhnew;
8. end while
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For the detailed calculation process of the projection and the influence of projection
on the convergence rate, we can refer to the literature [14].

Example 1. Consider the optimal control Equations (1) and (2) on the unit square Ω = [0, 1]× [0, 1].
Let ua = −0.3, ub = 0, γ = 1, and

ε = 10−10, β =

[ 1
3 + 10y(x + y2)4

− 1
2 − 5(x + y2)4

]
, δ = 1.

The exact solutions are chosen to be

y(x1, x2) = 200x1x2(1− x1)(1− x2)(x1 − 3/5)(x2 − 3/5),

p(x1, x2) = 80x1x2(1− x1)(1− x2)(x1 − 3/5)(x2 − 3/5),

u(x1, x2) = PUad(−p).

f and yd can be determined from the exact solutions y, p, u.

We choose Cτ = 0.8 and let r1 = max
E∈Th

hE
βE

, r2 = min
E∈Th

h2
E
ε , r3 = Cτ

δ under a fixed mesh.

In order to ensure the dominance of the convection term, i.e., the choice of parameter
τE is hE

βE
, numerical comparisons of r1, r2, and r3 are shown in Tables 1 and 2 for each

type of grid subdivision with ε = 10−10. We can see that the convection term is always
dominant. We also give the convergence rates of the above norms for distorted square,
hexagonal, and Lloyd mesh with the SUPG term. We can observe that the convergence
orders of L2 errors, H1 errors, and standard convective norm errors approximate 2, 1, and
1.5, respectively, which are the optimal convergence rates. The experimental data verify
our theoretical analysis.

Table 1. Example 1: Errors and convergence rates of y and p in standard convective norm on three meshes with ε = 10−10.

Mesh h r1 r2 r3 cy Rate cp Rate

Distorted square mesh

0.131 0.193 6.225× 107 0.800 3.097× 10−1 1.237× 10−1

0.098 0.153 3.412× 107 0.800 2.049× 10−1 1.44 8.197× 10−2 1.43
0.049 0.081 8.531× 106 0.800 7.737× 10−2 1.41 3.088× 10−2 1.41
0.033 0.054 3.892× 106 0.800 4.114× 10−2 1.56 1.641× 10−2 1.56
0.022 0.036 1.729× 106 0.800 2.119× 10−2 1.64 8.424× 10−3 1.64

Hexagonal mesh

0.125 0.208 6.406× 107 0.800 3.852× 10−1 1.522× 10−1

0.063 0.104 1.602× 107 0.800 1.533× 10−1 1.33 6.200× 10−2 1.30
0.042 0.069 7.118× 106 0.800 8.804× 10−2 1.37 3.557× 10−2 1.37
0.036 0.059 5.230× 106 0.800 7.107× 10−2 1.40 2.864× 10−2 1.40
0.031 0.052 3.996× 106 0.800 5.894× 10−2 1.41 2.375× 10−2 1.41

Lloyd mesh

0.201 0.274 2.136× 108 0.800 7.215× 10−1 2.954× 10−1

0.097 0.158 5.442× 107 0.800 2.539× 10−1 1.44 1.005× 10−1 1.49
0.070 0.116 2.603× 107 0.800 1.507× 10−1 1.55 6.047× 10−2 1.51
0.049 0.073 1.274× 107 0.800 9.224× 10−2 1.41 3.691× 10−2 1.42
0.035 0.052 6.429× 106 0.800 5.382× 10−2 1.66 2.145× 10−2 1.67

In Figure 2a–c, we plot the profiles of the exact solutions of state, adjoint state, and
control with ε = 10−10, respectively. Figure 2 shows an intuitive comparison between
the unstabilized numerically computed state, adjoint state, control and the numerically
computed solutions obtained using the SUPG stabilization on Lloyd mesh with ε = 10−10.
By comparison, we can find that the numerical solutions Figure 2d–f show a very good
agreement with the exact solutions and show a good stability as ε → 0 when the SUPG
term exists. The quality of the discrete solutions deteriorates obviously when there is no
SUPG term (Figure 2g–i).
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Table 2. Example 1: Errors and convergence rates of y, p and u in L2, H1 norms and L2 norm, respectively, on three meshes
with ε = 10−10.

Mesh ey,0 Rate ey,1 Rate ep,1 Rate ep,0 Rate eu,0 Rate

Distorted square mesh

3.425× 10−2 5.752× 10−1 2.277× 10−1 1.355× 10−2 8.982× 10−3

1.952× 10−2 1.95 4.289× 10−1 1.02 1.670× 10−1 1.08 7.238× 10−3 2.18 4.787× 10−3 2.19
4.374× 10−3 2.16 2.039× 10−1 1.07 8.044× 10−2 1.05 1.548× 10−3 2.23 1.016× 10−3 2.24
1.783× 10−3 2.21 1.321× 10−1 1.07 5.259× 10−2 1.05 6.499× 10−4 2.14 4.235× 10−4 2.16
7.613× 10−4 2.10 8.287× 10−2 1.15 3.304× 10−2 1.15 2.679× 10−4 2.18 1.715× 10−4 2.23

Hexagonal mesh

3.910× 10−2 7.071× 10−1 2.869× 10−1 1.780× 10−2 1.247× 10−2

7.108× 10−3 2.46 3.388× 10−1 1.06 1.368× 10−1 1.07 3.470× 10−3 2.36 2.213× 10−3 2.49
2.851× 10−3 2.25 2.268× 10−1 0.99 9.127× 10−2 1.00 1.427× 10−3 2.19 9.084× 10−4 2.20
2.146× 10−3 1.84 1.949× 10−1 0.98 7.840× 10−2 0.99 1.042× 10−3 2.04 6.621× 10−4 2.05
1.678× 10−3 1.86 1.710× 10−1 0.99 6.870× 10−2 1.00 7.992× 10−4 2.00 5.072× 10−4 2.01

Lloyd mesh

9.223× 10−2 1.084× 10−0 4.440× 10−1 3.715× 10−2 2.365× 10−2

1.853× 10−2 2.21 4.744× 10−1 1.14 1.900× 10−1 1.17 7.854× 10−3 2.14 4.781× 10−3 2.20
8.421× 10−3 2.35 3.303× 10−1 1.08 1.325× 10−1 1.07 3.661× 10−3 2.27 2.227× 10−3 2.28
4.151× 10−3 2.03 2.328× 10−1 1.01 9.237× 10−2 1.04 1.772× 10−3 2.09 1.139× 10−2 1.93
2.130× 10−3 2.06 1.729× 10−1 0.92 6.821× 10−2 0.93 9.518× 10−4 1.92 6.057× 10−4 1.95
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Figure 2. The profiles of the exact solutions of state (a), adjoint state (b), control (c), SUPG-stabilized discretized optimal
state yh (d), adjoint state ph (e), and control uh (f). (g–i) are the profiles of the unstabilized numerically computed state,
adjoint state, and control for Example 1 on Lloyd mesh with ε = 10−10.
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Example 2. We consider the Equations (1) and (2) with a modified objective functional

J(y, u) :=
1
2
‖y− yd‖2 +

γ

2
‖u− u0‖2

and ε = 10−4, β = (1, 0), δ = 1, γ = 1 on the unit square Ω = [0, 1]× [0, 1]. The exact solution
of the optimal control problem is as follows:

y = 4e(−((x1−0.7)2+(x2−0.7)2)/
√

ε)sin(πx1)sin(πx2),

p = e(−((x1−0.7)2+(x2−0.7)2)/
√

ε)sin(πx1)sin(πx2),

u = max{0, cos(πx1)cos(πx2)− 1}.

These functions are inserted into the equations and the corresponding source terms f , y0, and
u0 are computed.

We also choose Cτ = 0.8 and let r1 = max
E∈Th

hE
βE

, r2 = min
E∈Th

h2
E
ε , r3 = Cτ

δ under a fixed

mesh. In Figure 3, we show the convergence graphs for three meshes with an SUPG term
under the above norms and the intuitive comparison of r1, r2 and r3, respectively. We can
observe that the convergence orders of L2 errors, H1 errors and standard SUPG norm
errors are approximately parallel to the lines with slopes 2, 1, and 1.5 in the convection
dominated regime. We can observe that the convergence rates are in agreement with the
theoretical prediction.
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Figure 3. The convergence history of the L2 errors, H1 errors, standard SUPG norm errors, and the
choice of parameter τE on distorted square meshes (a), hexagonal meshes (b), and Lloyd meshes
(c) with SUPG term for Example 2.

The contour-lines and profiles of the stabilized numerically computed state, control,
and the profiles of the numerically computed state and control without SUPG term on
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Lloyd mesh are shown in Figure 4, respectively. We can observe that the quality of the
numerical solutions are good when the SUPG term is present; otherwise, the numerical
solutions are obviously destroyed, which implies that the SUPG term has a good effect.
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Figure 4. The contour-lines and profiles of the SUPG-stabilized VEM discretized optimal state yh,
control uh, and unstabilized state yh, control uh for Example 2 on Lloyd mesh. (a) The contour-line of
stabilised state; (b) The profile of stabilised state; (c) The profile of unstabilised state; (d) The contour-
line of stabilised control; (e) The profile of stabilised control; (f) The profile of unstabilised control.

Example 3. In this example, we set Ω = [0, 1]2, β = (2, 3)T , δ = 1, γ = 1, and ε = 10−4.
The exact solutions are given by

y =
1

1 + e−
√

(x1−1)2+(x2−1)2−0.7
√

ε

,

p =
1

1 + e−
√

x2
1+x2

2−0.5
√

ε

,

u = max{−0.8,−p}.
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The right-hand term f and the desired state yd can be calculated by the exact solutions and
governing equations.

In this example, the state y and adjoint state p have sharp interior layers along the
circles (x1 − 1)2 + (x2 − 1)2 = 0.72 and x2

1 + x2
2 = 0.52, respectively. Figure 5 shows

the contour-lines and profiles of stabilized numerical solutions on the distorted square
mesh and the quality of the numerical solutions are not destroyed by the numerical
oscillation. We can see that our method represents and processes the interior layers well.
The corresponding convergence rates are given in Figure 6, which are also consistent with
our theoretical analysis.
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Figure 5. The contour-lines and profiles of the SUPG-stabilized VEM discretized optimal state yh,
adjoint state ph, and control uh for Example 3 on distorted square mesh. (a) The contour-line of
stabilised state; (b) The contour-line of stabilised adjoint state; (c) The contour-line of stabilised
control; (d) The profile of stabilised state; (e) The profile of stabilised adjoint state; (f) The profile of
stabilised control.
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Figure 6. The convergence history of the L2 errors, H1 errors, standard SUPG norm errors, and the
choice of parameter τE on distorted square meshes (a), hexagonal meshes (b), and Lloyd meshes (c)
with the SUPG term for Example 3.

6. Conclusions

In this paper, we attempt to apply SUPG-stabilized VEM to approximate an optimal
control problem governed by a convection dominated diffusion equation with pointwise
control constraint. A priori error estimates are derived. The theoretical findings are verified
by numerical examples.

Since the VEM has great flexibility in the mesh partition, in our future work, we
are going to investigate VEM approximation of an optimal control problem governed by
fractional advection-diffusion–reaction equations ([25–27]).
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