
entropy

Article

Meta-Tree Random Forest: Probabilistic Data-Generative Model
and Bayes Optimal Prediction

Nao Dobashi 1,†, Shota Saito 2,* , Yuta Nakahara 3 and Toshiyasu Matsushima 1

����������
�������

Citation: Dobashi, N.; Saito, S.;

Nakahara, Y.; Matsushima, T.

Meta-Tree Random Forest:

Probabilistic Data-Generative Model

and Bayes Optimal Prediction.

Entropy 2021, 23, 768. https://

doi.org/10.3390/e23060768

Academic Editor: Udo Von Toussaint

Received: 19 May 2021

Accepted: 8 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Okubo, Shinjuku-ku,
Tokyo 169-8555, Japan; nao-0846htt@toki.waseda.jp (N.D.); toshimat@waseda.jp (T.M.)

2 Faculty of Informatics, Gunma University, 4-2, Maebashi, Gunma 371-8510, Japan
3 Center for Data Science, Waseda University, 1-6-1 Nisniwaseda, Shinjuku-ku, Tokyo 169-8050, Japan;

yuta.nakahara@aoni.waseda.jp
* Correspondence: shota.s@gunma-u.ac.jp
† Current address: Digital Printing Business Operations, Canon Inc., Tokyo 146-8501, Japan.

Abstract: This paper deals with a prediction problem of a new targeting variable corresponding to a
new explanatory variable given a training dataset. To predict the targeting variable, we consider a
model tree, which is used to represent a conditional probabilistic structure of a targeting variable
given an explanatory variable, and discuss statistical optimality for prediction based on the Bayes
decision theory. The optimal prediction based on the Bayes decision theory is given by weighting
all the model trees in the model tree candidate set, where the model tree candidate set is a set of
model trees in which the true model tree is assumed to be included. Because the number of all the
model trees in the model tree candidate set increases exponentially according to the maximum depth
of model trees, the computational complexity of weighting them increases exponentially according
to the maximum depth of model trees. To solve this issue, we introduce a notion of meta-tree
and propose an algorithm called MTRF (Meta-Tree Random Forest) by using multiple meta-trees.
Theoretical and experimental analyses of the MTRF show the superiority of the MTRF to previous
decision tree-based algorithms.

Keywords: bayes decision theory; data-generative model; meta-tree; prediction; random forest

1. Introduction

Various studies in pattern recognition deal with a prediction problem of a targeting
variable yn+1 corresponding to an explanatory variable xn+1 given pairs of explanatory and
targeting variable {(xi, yi)}n

i=1. In many of them, the targeting variable yn+1 is predicted
with a tree T. One way to use a tree T is to represent a function yn+1 = f (xn+1; T) and
predict yn+1. A tree T used to represent the function yn+1 = f (xn+1; T) is called a decision
tree in the literature. In this paper, however, this tree is called a function tree. This is
because we distinguish a tree used to represent a function from a tree used to represent a
data-generative model (A tree used to represent a data-generative model will be explained
in the next paragraph.). In the previous studies, algorithms in which a single function
tree is used are discussed in, e.g., CART [1]; algorithms in which multiple function trees
are used are discussed, e.g., Random Forest [2] is an algorithm that constructs multiple
function trees from {(xi, yi)}n

i=1 and aggregates them to predict yn+1 from xn+1. There
are various extensions of Random Forest, e.g., Generalized Random Forest [3] generalizes
the splitting rule of a function tree. Boosting is an algorithm that constructs a function
tree sequentially from {(xi, yi)}n

i=1 and combines the constructed function trees to predict
yn+1 from xn+1. There are various Boosting methods, e.g., gradient boosting method
in Gradient Boost [4] and XGBoost [5]. Further, previous studies, such as Alternating
Decision Forest [6] and Boosted Random Forest [7], combine the ideas of Random Forest
and Boosting method. Moreover, combinations of the function trees and neural networks

Entropy 2021, 23, 768. https://doi.org/10.3390/e23060768 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2256-4598
https://orcid.org/0000-0002-0553-7910
https://doi.org/10.3390/e23060768
https://doi.org/10.3390/e23060768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060768
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060768?type=check_update&version=2

Entropy 2021, 23, 768 2 of 19

have also been discussed. In Neural Decision Forest [8], inner nodes are replaced by
randomized multi-layer perceptrons. In Deep Neural Decision Forest [9], they are replaced
by deep convolutional neural networks (CNN). In Adaptive Neural Trees [10], not only
their nodes are replaced by CNNs but also their edges are replaced by nonlinear functions.
In Deep Forest [11], Random Forests are combined in a cascade structure like deep CNNs.
The function tree is also used to understand the deep neural network as an interpretable
input-output function in Reference [12]. In these algorithms, a function tree is used to
represent the function from xn+1 to yn+1. Although this function is trained for the data
{(xi, yi)}n

i=1 under a certain criterion, statistical optimality for prediction of yn+1 is not
necessarily discussed theoretically because these algorithms usually do not assume a
probabilistic data-generative structure of x and y. As we will describe later in detail, on the
other hand, we assume a probabilistic data-generative structure of x and y, and consider a
statistical optimal prediction of yn+1. This is the crucial difference between our study and
the related works.

To predict the targeting variable yn+1, another way to use a tree T is to represent
a data-generative model p(y|x, T) that represents a conditional probabilistic structure
of y given x. A tree T used to represent the data-generative model p(y|x, T) is called
a model tree throughout this paper. Although not so many studies have assumed the
model tree, Reference [13] has assumed it. Because Reference [13] assumed that a targeting
variable yn+1 is generated according to p(y|xn+1, T), statistical optimality for prediction of
yn+1 can be discussed theoretically. Specifically, based on the Bayes decision theory [14],
Reference [13] proposed the optimal prediction of yn+1.

In order to explain the optimal prediction based on the Bayes decision theory in more
detail, we introduce the terminology model tree candidate set. The model tree candidate
set is a set of model trees in which the true model tree (When the model tree T is used to
represent the true data-generative model p(y|x, T), we call it true model tree.) is assumed
to be included. One example of a model tree candidate set is a set of model trees whose
depth is up to d ∈ N. The optimal prediction based on the Bayes decision theory is given
by weighting all the model trees in the model tree candidate set and the optimal weight of
each model tree is given by the posterior probability p(T|{(xi, yi)}n

i=1) of the model tree T.
Because the number of all the model trees in the model tree candidate set increases

exponentially according to the maximum depth of model trees, the computational complexity
of weighting them increases exponentially according to the maximum depth of model trees.
One way to reduce the computational complexity is to restrict the model tree candidate set.
To represent a restricted model tree candidate set, Reference [13] proposed a notion of meta-
tree. The concept of a meta-tree was originally used for data compression in information
theory (see, e.g., Reference [15]) (Recently, the concept of a meta-tree was also used for
image compression [16].). As shown in Figure 1, a model tree candidate set is composed of
the model trees represented by the meta-tree.

A meta-tree is also used for the prediction of yn+1 in the algorithm proposed by
Reference [13]. In summary, a meta-tree has the following two roles: (i) it represents a
model tree candidate set; and (ii) it is used for the prediction algorithm. The characteristics
of a meta-tree are as follows:

• If the true model tree is in a model tree candidate set represented by a meta-tree,
the statistically optimal prediction—optimal prediction based on the Bayes decision
theory—can be calculated.

• The number of model trees in a model tree candidate set represented by a meta-tree
increases exponentially according to the depth of the meta-tree.

• The computational cost in learning processes of a single meta-tree has the same order
as that of a single function tree.

Under the assumption that the true model tree is in the restricted model tree candidate
set represented by a meta-tree, Reference [13] proposed the optimal prediction based on
the Bayes decision theory.

Entropy 2021, 23, 768 3 of 19

Figure 1. An example of a meta-tree and four model trees represented by it.

As we have described above, if the true model tree is actually included in the model
tree candidate set, the optimal prediction based on the Bayes decision theory is calculated.
Hence, it is desirable that we construct the model tree candidate set that includes as many
model trees as possible within the allowed computational cost. Motivated by this fact,
this paper extends the model tree candidate set compared with Reference [13]. Instead
of considering a single meta-tree as in Reference [13], we consider multiple meta-trees.
By using the model tree candidate set represented by multiple meta-trees, we predict
yn+1 based on the Bayes decision theory. We call this proposed algorithm MTRF (Meta-
Tree Random Forest). The characteristics of MTRF are as follows:

• If the true model tree is in a model tree candidate set represented by any of the meta-
trees of MTRF, the statistically optimal prediction—optimal prediction based on the
Bayes decision theory—can be calculated.

• The number of model trees in the model tree candidate set represented by multiple
meta-trees is constant times larger than those contained in a single meta-tree.

• The computational cost in learning processes of meta-trees of MTRF is the same order
as that of multiple function trees of Random Forest.

Regarding a meta-tree in Reference [13] or multiple meta-trees of MTRF, how to
construct the meta-tree/multiple meta-trees is a problem. One way to solve this issue is
to use the function tree-based algorithms; for example, a meta-tree in Reference [13] can
be constructed by regarding a function tree in CART as a meta-tree; multiple meta-trees
of MTRF can be constructed by regarding function trees in Random Forest as meta-trees.
In this way, by regarding a function tree as a meta-tree, our proposed method can be
applied to any practical applications in which a function-tree based algorithm is used—
insurance claim task (e.g., Reference [5]), letter classification task (e.g., Reference [6]),
semantic segmentation (e.g., Reference [8]), face recognition (e.g., Reference [11]), music
classification (e.g., Reference [11]), etc.—and we can improve every previous function
tree-based algorithm. This is because we can perform a prediction of yn+1 by using more
model trees compared with the previous algorithms. More detailed discussion will be
given in Sections 3 and 4.

The rest of this paper is organized as follows. In Section 2, we state the preliminaries
of our study. Section 3 explains our proposed method—MTRF. In Section 4, we revisit the
previous studies, such as CART [1] and Random Forest [2], and compare them with MTRF.
Section 5 shows the results of experiments. Section 6 concludes this paper.

Entropy 2021, 23, 768 4 of 19

2. Preliminaries
2.1. Model Tree

Let K denote the dimension of explanatory variables. The space of feature val-
ues is denoted by X := {0, 1, . . . , |X | − 1}, and the explanatory variable is denoted by
x := (x1, . . . , xK)

> ∈ X K. In addition, the space of label values is denoted by
Y := {0, 1 . . . , |Y| − 1}, and the targeting variable is denoted by y ∈ Y .

In the field of pattern recognition, the probabilistic structure of x and y is not neces-
sarily assumed. In particular, it is not assumed in most of function tree-based algorithms.
In contrast, we consider a triplet of (T, k, θ) defined in Definition 1 below and assume the
probabilistic structure p(y|x, θ, T, k) as in Definition 2. We call (T, k) a model tree (In Section
1, we called T a model tree. More precisely speaking, however, a model tree is (T, k).) and
θ a tree parameter.

Definition 1. The notation T denotes the |X |-ary regular (Here, “regular” means that all inner
nodes have |X | child nodes.) tree whose depth is up to Dmax, and T denotes the set of T. Let
s be a node of a tree and S be a set of s. The set of the inner nodes of T is denoted by I(T),
and the set of the leaf nodes of T is denoted by L(T). Let ks ∈ {1, 2, . . . , K} be a component of
the feature assign vector of node s. The explanatory variable xks ∈ X is assigned to the inner
node s ∈ I(T). Let k := (ks)s∈S denote a feature assign vector, and K denote a set of k. Let
θs := (θ0|s, θ1|s, . . . , θ|Y|−1|s) ∈ (0, 1)|Y|, where ∑

|Y|−1
y=0 θy|s = 1, be a parameter assigned to

s ∈ S . We define θ := (θs)s∈S , and Θ is the set of θ.

Definition 2. Because the value of explanatory variable x corresponds to a path from the root node
to the leaf node of T whose feature assign vector is k, let s(x) ∈ L(T) denote the corresponding leaf
node. Then, for given x, θ, T, and k, the label variable y is generated according to

p(y|x, θ, T, k) := θy|s(x). (1)

Figure 2a shows two examples of (T, k, θ), and Figure 2b illustrates p(y|x, θ, T, k).

(a) (b)

Figure 2. (a) Two examples of (T1, k1, θ1) and (T2, k2, θ2), where T1 and T2 are 2-ary regular trees, k1 = (ksλ , ks0) = (1, 2),
and k2 = (ksλ , ks0 , ks1) = (3, 4, 2). (b) p(y|x = (0, 1)>, θ1, T1, k1) = θy|s01

.

2.2. Problem Setup

In this subsection, we introduce our problem setup. Let xi := (xi1, . . . , xiK)
> ∈ X K(i =

1, . . . , n) denote the value of explanatory variable of the i-th data and xn := (x1, . . . , xn).
We assume that x1, . . . , xn are i.i.d. random variables drawn from a probability distribution.
Let yi ∈ Y(i = 1, . . . , n) denote the targeting variable of the i-th data and yn := (y1, . . . , yn).
We assume that y1, . . . , yn are generated according to p(y|x, θ, T, k) defined in Section 2.1.
In regard to this, we assume that the true model tree (T?, k?) and true tree parameter θ?

Entropy 2021, 23, 768 5 of 19

are unknown, but a model tree candidate setM⊂ T ×K is known. Note that, as we have
explained in Section 1, the model tree candidate setM is a set of model trees (T, k) in
which the true model tree is assumed to be included. Further, we assume that a class of
parametrized distribution {p(y|x, θ, T, k) : θ ∈ Θ, (T, k) ∈ M} is known.

The purpose of the prediction problem is to predict unknown targeting variable yn+1
corresponding to an explanatory variable xn+1 by using the given data xn, yn, xn+1.

2.3. Optimal Prediction Based on the Bayes Decision Theory

We introduce a statistically optimal prediction under the problem setup in Section 2.2.
From the viewpoint of the Bayes decision theory [14], we shall derive the optimal prediction
based on the Bayes decision theory. To this end, we assume priors p(θ), p(T), and p(k).

First, we define a decision function as

δ : X Kn ×Yn ×X K → Y ; (xn, yn, xn+1) 7→ δ(xn, yn, xn+1). (2)

Second, we define a 0–1 loss as follows:

l(yn+1, δ(xn, yn, xn+1)) :=

{
0 (yn+1 = δ(xn, yn, xn+1)),
1 (yn+1 6= δ(xn, yn, xn+1)).

(3)

Third, using the 0–1 loss, we define the loss function, which is the expectation of the
0–1 loss taken by new targeting variable yn+1:

L(δ(xn, yn, xn+1), θ, T, k) := ∑
yn+1∈Y

p(yn+1|xn+1, θ, T, k)l(yn+1, δ(xn, yn, xn+1)). (4)

Next, given the loss function, we define the risk function, which is the expectation of
the loss function taken by training data xn, yn, and xn+1:

R(δ(·, ·, ·), θ, T, k)
:= ∑

xn∈X Kn
∑

yn∈Yn
∑

xn+1∈X K

p(xn+1)p(xn)p(yn|xn, θ, T, k)L(δ(xn, ynxn+1), θ, T, k). (5)

Finally, the Bayes risk function, which is the expectation of the risk function taken by
θ, T, and k, is defined as

BR(δ(·, ·, ·)) := ∑
(T,k)∈M

p(k)p(T)
∫

Θ
p(θ)R(δ(·, ·, ·), θ, T, k)dθ. (6)

Then, we have the following theorem:

Theorem 1. Under the setup in Section 2.2, the decision function δ∗(xn, yn, xn+1) that minimizes
the Bayes risk function is given as

δ∗(xn, yn, xn+1) =

arg max
yn+1

∑
(T,k)∈M

p(k|xn, yn)p(T|xn, yn, k)
∫

Θ
p(θ|xn, yn, T, k)p(yn+1|xn+1, θ, T, k)dθ. (7)

The proof of Theorem 1 is in Appendix A. We call δ∗(xn, yn, xn+1) the Bayes decision.

2.4. Previous Study

In this subsection, we introduce how to calculate the Bayes decision in Reference [13].
Because the proof of Reference [13] lacks some explanation, we give more rigorous discus-
sion in comparison. This is one of the contributions in this paper.

As we have explained in Section 1, Reference [13] introduced the concept of a “meta-
tree” to represent a restricted model tree candidate set. For T and k, a meta-tree—denoted

Entropy 2021, 23, 768 6 of 19

by MT,k—represents a model tree candidate set that is composed of model trees (T′, k′)
where T′ is a sub-tree of T and k′ = k. An example of MT,k is shown in Figure 3, where
T is a complete tree with Dmax = 2 and k = (3, 4, 2). In this example, a meta-tree MT,k
represents a model tree candidate set which is composed of four model trees. A meta-tree
is also used for the prediction of yn+1 in the algorithm proposed by Reference [13]. In short,
a meta-tree has the two roles: first, it represents a model tree candidate set, and, second, it
is used for the prediction algorithm.

Figure 3. An example of a meta-tree MT,k, where T is a complete tree with Dmax = 2 and k = (3, 4, 2).

Let TMT,k denote a set of T represented by a meta-tree MT,k and letM = TMT,k × {k}.
Under the assumption that the true model tree is included inM, the Bayes decision in
Theorem 1 is expressed as

δ∗(xn, yn, xn+1)

= arg max
yn+1

∑
T′∈TMT,k

p(T′|xn, yn, k)
∫

Θ
p(θ|xn, yn, T′, k)p(yn+1|xn+1, θ, T′, k)dθ. (8)

Now, (8) can be decomposed into two parts:

1. q(yn+1|xn+1, xn, yn, T, k) :=
∫

Θ
p(θ|xn, yn, T, k)p(yn+1|xn+1, θ, T, k)dθ. (9)

2. q̃(yn+1|xn+1, xn, yn, k) := ∑
T′∈TMT,k

p(T′|xn, yn, k)q(yn+1|xn+1, xn, yn, T′, k). (10)

Reference [13] exactly calculates (9) and (10) under some assumptions. We describe
them in Sections 2.4.1 and 2.4.2, respectively.

2.4.1. Expectation over the Parameters

In this subsection, we explain how to calculate (9). To calculate (9) analytically, a con-
jugate prior of θs given T and k, is assumed.

Assumption 1. We assume p(θs|T, k) = Dirichlet(θs|αs) for s ∈ L(T), where αs denotes the
hyper-parameter of the Dirichlet distribution.

Under this assumption, q(yn+1|xn+1, xn, yn, T, k) has a closed form expression and (9)
can be calculated exactly. In addition, q(yn+1|xn+1, xn, yn, T, k) has an important property.
We describe this in the next lemma as a preparation of Section 2.4.2.

Entropy 2021, 23, 768 7 of 19

Lemma 1. For any T, T′ ∈ T , xn ∈ X Kn, yn ∈ Yn, and xn+1 ∈ X K, if s(xn+1) ∈ L(T) ∩ L(T′),
then

q(yn+1|xn+1, xn, yn, T, k) = q(yn+1|xn+1, xn, yn, T′, k). (11)

The proof of Lemma 1 is in Appendix B. From this lemma, the right- and left-hand
sides of (11) are denoted by qs(xn+1)

(yn+1|xn+1, xn, yn, k) because they depend on not T and
T′ but s(xn+1).

2.4.2. Summation over All Model Trees Represented by a Meta-Tree

In this subsection, we explain how to calculate (10). The exact calculation of (10)
needs to take summation over all model trees represented by a single meta-tree. However,
the computational complexity of this calculation is huge because the number of model
trees increases exponentially according to the depth of meta-tree. Reference [13] solved this
problem. The advantages of using the method proposed in Reference [13] are as follows:

• This method calculates (10) exactly.
• The computational complexity of calculating (10) in learning parameters is O(nDmax),

which is the same as that of building a single function tree.

To execute this method, an assumption about the prior probability distribution of T—
Assumption 2—is required. It should be noted that p(T) is different from the construction
method of function trees, given xn and yn.

Assumption 2. Let gs ∈ [0, 1] denote a hyper-parameter assigned to any node s ∈ S . Then, we
assume the prior of T′ ∈ TMT,k as

p(T′) = ∏
s∈I(T′)

gs ∏
s′∈L(T′)

(1− gs′), (12)

where gs = 0 for a leaf node s of a meta-tree MT,k.

Remark 1. It should be noted that (12) is a probability distribution, i.e., ∑T′∈TMT,k
p(T′) = 1. See

Lemma A1 in Appendix C.

As we have described in Section 1, a meta-tree is used for the prediction of yn+1 in the
algorithm proposed by Reference [13]. By using a meta-tree MT,k, the recursive function to
calculate the Bayes decision (10) is defined as follows.

Definition 3. We define the following recursive function q̃s(yn+1|xn+1, xn, yn, MT,k) for any
node s on the path in MT,k corresponding to xn+1.

q̃s(yn+1|xn+1, xn, yn, MT,k) :=
qs(yn+1|xn+1, xn, yn, k), (if s is the leaf node of MT,k),
(1− gs|xn ,yn)qs(yn+1|xn+1, xn, yn, k)
+gs|xn ,yn q̃schild(yn+1|xn+1, xn, yn, MT,k), (otherwise),

(13)

where schild is the child node of s on the path corresponding to xn+1 in MT,k, and gs|xn ,yn is also
recursively updated as follows:

gs|xi ,yi :=

gs, (if i = 0),
gs|xi−1,yi−1 q̃schild (yi |xi ,xi−1,yi−1,MT,k)

q̃s(yi |xi ,xi−1,yi−1,MT,k)
, (otherwise).

(14)

Now, (10) can be calculated as shown in the following theorem.

Entropy 2021, 23, 768 8 of 19

Theorem 2. q̃(yn+1|xn+1, xn, yn, k) can be calculated by

q̃(yn+1|xn+1, xn, yn, k) = q̃sλ
(yn+1|xn+1, xn, yn, MT,k), (15)

where sλ is the root node of MT,k. In addition, p(T|xn+1, yn+1, k) can be calculated as

p(T|xn+1, yn+1, k) = ∏
s∈I(T)

gs|xn+1,yn+1 ∏
s′∈L(T)

(1− gs′ |xn+1,yn+1). (16)

The proof of Theorem 2 is in Appendix C. Surprisingly, the computational complexity
of calculating (10) is O(nDmax) by using this theorem.

3. Proposed Method

In this section, we introduce our proposed method. Here, we reconsider the general
setup whereM = T ×K. Recall that the Bayes decision (7) is

δ∗(xn, yn, xn+1) = arg max
yn+1

∑
k∈K

p(k|xn, yn)q̃(yn+1|xn+1, xn, yn, k), (17)

where q̃(yn+1|xn+1, xn, yn, k) is defined as in (10). In (17), q̃(yn+1|xn+1, xn, yn, k) can be
calculated in the same way as in Section 2.4. However, regarding the calculation of (17),
we need to calculate q̃(yn+1|xn+1, xn, yn, k) for all k that satisfies p(k) > 0. Because this
computational cost increases exponentially depending to Dmax, it is hard to calculate all of
them in general. To reduce the computational complexity of (17), we restrict the model tree
candidate set to the set represented by multiple meta-trees. The advantages of building
multiple meta-trees are as follows:

• As we have explained in Section 2.4.2, the number of model trees represented by each
of the meta-trees increases exponentially according to the depth of meta-trees. In
addition, the number of model trees in multiple meta-trees is constant times larger
than those contained in a single meta-tree.

• If the true model tree is a sub-tree of any of the meta-trees, the statistically optimal
prediction—optimal prediction based on the Bayes decision theory—can be calculated.

• If we build B meta-trees, the computational cost of it in learning parameters is
O(nBDmax), which is the same as that of building B function trees.

Now, we introduce the next assumption.

Assumption 3. For B meta-trees MT1,k1 , . . . , MTB ,kB , we define K′ := {k1, . . . , kB}. Then, we
assume a uniform distribution on K′ as a prior probability distribution of k ∈ K.

An example of K′ is shown in Figure 4.
Next, we prove the following lemma about computing a posterior probability distri-

bution of k. In fact, the recursive function we have defined in Definition 3 is also useful to
calculate a posterior probability distribution on K′ sequentially. The proof of Lemma 2 is
in Appendix D.

Lemma 2. By decomposing xn and yn into the set of i-th data (xi, yi)(i = 1, . . . , n) and performing
the recursive calculation of q̃s(yi|xi, xi−1, yi−1, MT,k) as in (13), a posterior probability distribution
of k ∈ K′ is expressed as follows:

p(k|xn, yn) ∝
n

∏
i=1

q̃sλ
(yi|xi, xi−1, yi−1, MT,k). (18)

From Theorem 2 and Lemma 2, we immediately obtain the next theorem.

Entropy 2021, 23, 768 9 of 19

Theorem 3. Let us consider the model tree candidate set represented by B meta-trees, i.e.,

B⋃
b=1

(
TMTb ,kb

× {kb}
)

. (19)

Then, if the true model tree is included in (19), the Bayes decision δ∗(xn, yn, xn+1) can be
calculated as

δ∗(xn, yn, xn+1) = arg max
yn+1

∑
k∈K′

p(k|xn, yn)q̃(yn+1|xn+1, xn, yn, k) (20)

= arg max
yn+1

∑
k∈K′

q̃sλ
(yn+1|xn+1, xn, yn, MT,k)

n

∏
i=1

q̃sλ
(yi|xi, xi−1, yi−1, MT,k). (21)

If the true model tree is not included in (19), the right-hand side of (21) is a sub-optimal prediction
of the Bayes decision.

Figure 4. An example of K = {k1, k2, k3} and K′ = {k1, k2}. In this example, the prior probability
p(k1) = p(k2) = 1/2 and p(k3) = 0.

By using Theorem 3, we can calculate the optimal (possibly sub-optimal) prediction of
the Bayes decision effectively. We name this algorithm Meta-Tree Random Forest (MTRF).
We summarize MTRF in Algorithm 1.

Algorithm 1 MTRF

Input: xn+1, xn, yn, B, gs, αs
Output: δ∗(xn, yn, xn+1)
Initialize parameters gs.
Construct B meta-trees MT1,k1 , . . . , MTB ,kB and K′ := {k1, . . . , kB}.
for all k ∈ K′ do

for i = 1, . . . , n, n + 1 do
Calculate q̃sλ

(yi|xi, xi−1, yi−1, MT,k) with (13).
if i 6= n + 1 then

Renew parameters gs|xi ,yi with (14).
end if

end for
end for
Calculate δ∗(xn, yn, xn+1) with (21).

Entropy 2021, 23, 768 10 of 19

Remark 2. One way to construct multiple meta-trees is to use the ideas of Random Forest. Random
Forest builds function trees FT with the impurity (e.g., the entropy and the Gini coefficient) from
the training data xn and yn. By regarding (T1, k1) . . . (TB, kB) that are built by Random Forest as
meta-trees MT1,k1 . . . MTB ,kB , we can construct B meta-trees. In our experiments in Section 5, we
adopt this method. The computational complexity of MTRF is O(nBDmax) in learning processes,
which is the same as that of Random Forest. This is computable unless n, B, or Dmax are not
extremely huge. In addition, we can parallelize the procedure on each meta-tree.

4. CART and Random Forest Revisited and Comparison with MTRF
4.1. CART and Random Forest Revisited

Although CART [1] and Random Forest [2] do not assume the model tree and they use
trees to express a function y = f (x; T) (i.e., function tree), they can be regarded as methods
of constructing a model tree candidate set.

First, we consider algorithms that use a single function tree, such as CART [1]. Such
algorithms can be regarded as selecting a single model tree and predicting yn+1 by using the
single function tree that corresponds to the single model tree. For example, the prediction
of CART—denoted by δCART(xn, yn, xn+1)—is given by

δCART(xn, yn, xn+1) = arg max
yn+1

p(yn+1|xn+1, θ̂(xn, yn), T̂, k̂), (22)

where (T̂, k̂) and θ̂(xn, yn) denote an estimated model tree and tree parameter, respectively.
Second, as another example, let us consider Random Forest [2]. Random Forest can be

regarded as selecting multiple model trees and predicting yn+1 by weighting the multiple
function trees that correspond to the multiple model trees. It should be noted that the
number of function trees is equal to the number of model trees in Random Forest. The
prediction of Random Forest—denoted by δRF(xn, yn, xn+1)—is given by

δRF(xn, yn, xn+1) = arg max
yn+1

∑
(T,k)∈M̂

1

|M̂|
p(yn+1|xn+1, θ̂(xn, yn), T, k), (23)

where M̂ = {(T̂1, k̂1), . . . , (T̂B, k̂B)} ⊂ M denotes the set of model trees that are con-
structed by Random Forest.

4.2. Comparison of Random Forest with MTRF

Let us consider the situation where the trees that represent the function trees con-
structed by Random Forest are meta-trees of MTRF. Then, the size of model tree candidate
set is far larger in MTRF than in Random Forest.

Random Forest can be regarded as approximating (9), (10) and (17) as in (23). Further,
the approximation of the weight p(T, k|xn, yn) ≈ 1/|M̂| is not accurate and the optimality
of each function tree’s weight for predicting yn+1 has not usually been discussed. In
contrast, MTRF calculates the Bayes decision in (9) and (10) exactly and approximates (17)
as in (21). Moreover, the optimal weights of T and k are given by (16) and (18), respectively.

5. Experiments

Most machine learning algorithms require rich numerical experiments to confirm
the improvement independent of a specific dataset. However, in our paper, such an
improvement is theoretically explained in Sections 3 and 4. If we redefine all the function
trees constructed by any existing method as meta-trees, we can necessarily improve it in a
sense of the Bayes risk function since our model tree candidate set contains all the model
trees that correspond to the original function trees. This improvement is independent of
both datasets and the original methods. Therefore, we perform our experiment only on
three types of datasets and compare with the Random Forest. Similar results should be
given in any other situation.

Entropy 2021, 23, 768 11 of 19

5.1. Experiment 1

Although the theoretical superiority of MTRF to Random Forest has been explained in
Sections 3 and 4, we performed Experiment 1 to make sure their performance on synthetic
data. The procedure of Experiment 1 is the following:

1. We initialize the hyper-parameter αs = (1/|X |, . . . , 1/|X |), which is assigned on each
node s.

2. To make true model trees diverse, we determinate an index of a true feature assign
vector k and the true model trees as below:

• In the true model tree (A), we assign xj to the node whose depth is j.

– true model tree (A-1): the complete 2-ary model tree with depth 4.
– true model tree (A-2): the regular 2-ary model tree with depth 4. This model

tree holds the structure that only left nodes have child nodes and right
nodes does not.

• In the true model tree (B), we assign all different variables to the node.

– true model tree (B-1): the complete 2-ary model tree with depth 4.

3. We determine parameters θs according to the Dirichlet distribution.
4. We generate K-dimensional n training data from the true model tree and generate

K-dimensional 100 test data from the true model tree. From (7), Bayes decision takes
the same value for any distribution p(xn). Therefore, in our experiments, we set a
probability distribution of x as follows: Let U({0, 1}) denote the uniform distribution
on {0, 1}. Then, a probability distribution of x is expressed as

p(xij)
i.i.d.∼ U({0, 1})(i = 1, . . . , n, j = 1, . . . , K). (24)

5. We perform Random Forest that utilizes B function trees (T1, k1), . . . , (TB, kB). We set
its impurity as the entropy and max-depth as Dmax. Afterward, we make B meta-trees
MT1,k1 , . . . , MTB ,kB . (Of course, their max-depth are Dmax, too.) Then, we calculate
the average prediction error rate of Random Forest and MTRF, where we set the
hyper-parameter gs as gs = 1/2 in MTRF.

6. We repeat Steps 3∼5 Q times.

Figure 5 shows an example of these model trees (note that, for simplicity, we illustrate
the model trees with depth 2).

(a) (b)

(c)

Figure 5. An example of true model tree (A-1) (a), model tree (A-2) (b), and model tree (B-1) (c).

We set |X | = |Y| = 2, n = 100, 200, . . . , 1000, K = 500, B = 10, Dmax = 2, 4, 6,
and Q = 5000. The result is shown in Figure 6.

From Figure 6, when we compare the performance of Random Forest with that of
MTRF, we can confirm that MTRF outperforms Random Forest in all conditions. These
results are theoretically reasonable because the trees that represent the function trees
constructed by Random Forest are meta-trees of MTRF.

Entropy 2021, 23, 768 12 of 19

(a) (b)

(c)

Figure 6. Relationships between the number of learning data n and the average prediction error rate
where the true model tree is model (A-1) (a), model (A-2) (b), and model (B-1) (c).

5.2. Experiment 2

In Experiment 2, we used real data (nursery school data and mushroom data) in the
UCI repository (University of California, Irvine Machine Learning Repository). The proce-
dure of Experiment 2 is mostly the same as that of Experiment 1, but the way of sampling
data is different; instead of Steps 2, 3, and 4 in Experiment 1, we randomly sampled n + t
data from the whole dataset and divided them to n training data and t test data. We
repeated the random sampling of the data for 2500 times.

The detail on nursery school data is as follows. The explanatory variables are discrete
8 attributes of a family whose child wants to enter a nursery school (e.g., finance, health,
and family structure). The dimension of each attributes is up to 5. The targeting variable
is whether the nursery school should welcome him/her or not. We want to consider that
a new child should be welcomed with his attributes and learning data. We set |X | = 5,
|Y| = 2, n = 100, 200, . . . , 1000, t = 1000, K = 8, B = 5, and Dmax = 2, 3, 4. The result is
shown in Figure 7a.

(a) (b)

Figure 7. Relationships between the number of the learning data n and the average prediction error
rate on nursery school data (a)/mushroom data (b) in UCI repository.

Entropy 2021, 23, 768 13 of 19

The detail on mushroom data is as follows. The explanatory variables are discrete
22 attributes of a mushroom (e.g., smell, shape, surface, and color). The dimension of each
attributes is up to 10. The targeting variable is whether the mushroom can be eaten, not
be eaten, or unknown. We want to predict that a new mushroom can be eaten, with its
attributes and learning data. We set |X | = 22, |Y| = 3,n = 100, 200, . . . , 1000, t = 1000,
K = 22, B = 5, and Dmax = 2, 3, 4. The result is shown in Figure 7b.

From Figure 7, we can confirm MTRF outperforms Random Forest in all conditions.

6. Conclusions and Future Work

In this paper, we have considered a model tree and derived the Bayes decision. We
have addressed the computational complexity problem of the Bayes decision by introducing
a notion of meta-tree, and proposed MTRF (Meta-Tree Random Forest), which uses multiple
meta-trees. As we have shown in Theorem 3, if the true model tree is included in the model
tree candidate set represented by multiple meta-trees, MTRF calculates the Bayes decision
with efficient computational cost. Even if the true model tree is not included in the model
tree candidate set represented by multiple meta-trees, MTRF gives the approximation
of the Bayes decision. The advantages of MTRF have been theoretically analyzed. In
Section 4, we have explained that, if we redefine all the function trees constructed by
Random Forest as meta-trees, we can necessarily improve it in a sense of the Bayes risk
function since our model tree candidate set contains all the model trees that correspond
to the original function trees. We have performed experiments in Section 5 to check the
theoretical analysis.

As we have described in Section 1, it is desirable that we construct the model tree
candidate set that includes as many model trees as possible within the allowed computa-
tional cost. This is because if the true model tree is included in the model tree candidate
set, the Bayes decision is calculated. Hence, the main problem of MTRF is how to construct
multiple meta-trees. In Section 5, we have constructed multiple meta-trees by using the idea
of Random Forest. However, we can consider other ways to construct multiple meta-trees.
One of the possible future directions is to use other ideas, such as Boosting. This is one of
the future works in our research.

Author Contributions: Conceptualization, N.D., S.S., Y.N. and T.M.; Methodology, N.D., S.S., Y.N.
and T.M.; Software, N.D. and Y.N.; Validation, N.D., S.S., Y.N. and T.M.; Formal Analysis, N.D.,
S.S., Y.N. and T.M.; Investigation, N.D., S.S., Y.N. and T.M.; Resources, N.D.; Data Curation, N.D.;
Writing—Original Draft Preparation, N.D., S.S. and Y.N.; Writing—Review & Editing, N.D., S.S.,
Y.N. and T.M.; Visualization, N.D., S.S. and Y.N.; Supervision, T.M.; Project Administration, T.M.;
Funding Acquisition, S.S. and T.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by JSPS KAKENHI Grant Numbers JP17K06446, JP19K04914
and JP19K14989.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://archive.ics.uci.edu/ml/datasets/Nursery and https://archive.ics.uci.edu/
ml/datasets/Mushroom (accessed on 8 June 2021).

Acknowledgments: The authors would like to thank all the members of Matsushima Lab. for their
comments and discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

https://archive.ics.uci.edu/ml/datasets/Nursery
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://archive.ics.uci.edu/ml/datasets/Mushroom

Entropy 2021, 23, 768 14 of 19

Abbreviations
The following abbreviation is used in this manuscript:

MTRF Meta-Tree Random Forest

Appendix A. Proof of Theorem 1

Proof of Theorem 1. From (4)–(6), and Bayes’ theorem, we have

BR(δ(·, ·, ·))

= ∑
xn∈X Kn

∑
yn∈Yn

∑
xn+1∈X K

p(xn+1)

(
∑

yn+1∈Y
p(yn+1|xn, yn, xn+1)l(yn+1, δ(xn, yn, xn+1))

)
· p(xn, yn), (A1)

where

p(yn+1|xn, yn, xn+1) = ∑
(T,k)∈M

∫
Θ

p(yn+1|xn+1, θ, T, k)p(θ, T, k|xn, yn)dθ. (A2)

We need to calculate δ that minimizes the brackets in (A1) when we minimize the
Bayes risk. Let a = δ(xn, yn, xn+1) and F(a) denote the formula in the bracket of (A1). Then,

F(a) = ∑
yn+1∈Y

l(yn+1, a)p(yn+1|xn, yn, xn+1)

= ∑
yn+1∈Y\{a}

1 · p(yn+1|xn, yn, xn+1). (A3)

Therefore, the decision function a that minimizes F(a) is

a = arg max
yn+1

p(yn+1|xn, yn, xn+1). (A4)

We can prove (7) by substituting (A2) for (A4).

Appendix B. Proof of Lemma 1

Proof of Lemma 1. Let Θs(xn+1)
denote the space of parameters on s(xn+1). In addition,

we define

Θs 6=s(xn+1)
:= Θ \Θs(xn+1)

. (A5)

Then, we can rewrite the left-hand side of (11) as below:

q(yn+1|xn+1, xn, yn, T, k) =
∫

Θ
p(yn+1|xn+1, θ, T, k)p(θ|xn, yn, T, k)dθ

=
∫

Θs(xn+1)

θyn+1|s(xn+1)

∫
Θs 6=s(xn+1)

p(θ|xn, yn, T, k)dθs 6=s(xn+1)
dθs(xn+1)

, (A6)

where the last equality follows from (1).
Looking into the term

∫
Θs 6=s(xn+1)

p(θ|xn, yn, T, k)dθs 6=s(xn+1)
in (A6), we have∫

Θs 6=s(xn+1)

p(θ|xn, yn, T, k)dθs 6=s(xn+1)

(a)
∝
∫

Θs 6=s(xn+1)

p(θ|T, k)p(yn|xn, θ, T, k)dθs 6=s(xn+1)
(A7)

=
∫

Θs 6=s(xn+1)
∏
s∈S

p(θs|αs)
n

∏
i=1

θyi |s(xi)
dθs 6=s(xn+1)

(A8)

∝ p(θs(xn+1)
|αs(xn+1)

) ∏
i∈{j∈N:s(xj)=s(xn+1)}

θyi |s(xi)
, (A9)

Entropy 2021, 23, 768 15 of 19

where (a) follows from Bayes’ theorem.
Because we can transform the right-hand side of (11) in the same way, we ob-

tain (11).

Appendix C. Proof of Theorem 2

Proof of Theorem 2. We prove Theorem 2 with mathematical induction according to the
following three steps:

Step 1: We prove (15) for n = 0 with Lemmas A1 and A2.

Step 2: We prove (16) for n = 0 by using the result of Step 1.

Step 3: If we assume (15) and (16) for n = N, we can prove (15) and (16) for n = N + 1 by
repeating Steps 1 and 2.

In the following, we give a proof of each step.
Step 1: First, we prove (15) for n = 0. Let S(xi) (i = 1, . . . , n + 1) denote the set of all

nodes on the path of xi in the meta-tree MT,k. Let Ts := {T ∈ TMT,k |s ∈ L(T)}. Then, we
transform q̃(y1|x1, k) as below:

q̃(y1|x1, k)
(a)
= ∑

T∈TMT,k

p(T)q(y1|x1, T, k) (A10)

= ∑
s∈S(x1)

∑
T∈Ts

p(T)q(y1|x1, T, k) (A11)

(b)
= ∑

s∈S(x1)

qs(y1|x1, k) ∑
T∈Ts

p(T), (A12)

where (a) follows from (10), and (b) follows from Lemma 1. The right-hand side of (A12)
contains the summation with respect to T as below:

∑
T∈Ts

p(T). (A13)

Regarding (A13), we prove the following lemmas.

Lemma A1. The prior probability distribution p(T) assumed in (12) satisfies the next property:

∑
T∈TMT,k

p(T) = 1. (A14)

Proof of Lemma A1. In this proof, for simplicity, we use T instead of TMT,k . Before show-
ing the formal proof, we consider an example. Let us consider the set of tree T shown
in Figure A1. In this example, T is composed of five model trees. Among these model
trees, T1 is included in {[sλ]} and T2–T5 are included in T ∈ T \{[sλ]}. Therefore, the next
equation holds:

∑
T∈T

p(T) = ∑
T∈T

 ∏
s∈I(T)

gs ∏
s′∈L(T)

(1− gs′)

 (A15)

=(1−gsλ)+gsλ ∑
T∈{T2,T3,T4,T5}}

 ∏
s∈L(T)

(1−gs) ∏
s′∈I(T)\{sλ}

gs′

 (A16)

=(1−gsλ)+gsλ[(1− gs0)(1− gs1) + gs0 (1− gs00)(1− gs01)(1− gs1)

+(1− gs0)gs1 (1− gs10)(1− gs11) + gs0 (1− gs00)(1− gs01)gs1 (1− gs10)(1− gs11)] (A17)

=(1−gsλ)+gsλ[{(1− gs0) + gs0 (1− gs00)(1− gs01)}{(1− gs1) + gs1 (1− gs10)(1− gs11)}] (A18)
(a)
= (1−gsλ)+gsλ[{(1− gs0) + gs0}{(1− gs1) + gs1}] (A19)

= 1, (A20)

Entropy 2021, 23, 768 16 of 19

where (a) follows from gs = 0 for a leaf node s of the meta-tree (see Assumption 2).
Now, we give the formal proof. Because

∑
T∈T

p(T) = ∑
T∈T

 ∏
s∈I(T)

gs ∏
s′∈L(T)

(1− gs′)

, (A21)

we prove

∑
T∈T

 ∏
s∈I(T)

gs ∏
s′∈L(T)

(1− gs′)

 = 1 (A22)

by induction.
Let [sλ] denote the tree that consists of only the root node sλ of T. Then, we have

∑
T∈T

 ∏
s∈L(T)

(1−gs) ∏
s′∈I(T)

gs′

=(1−gsλ

)+gsλ ∑
T∈T \{[sλ]}

 ∏
s∈L(T)

(1−gs) ∏
s′∈I(T)\{sλ}

gs′

. (A23)

Because each tree T ∈ T \ {[sλ]} is identified by |X | sub-trees whose root nodes are the
child nodes of sλ, let sλchild,j denote the j-th child node of sλ for 0 ≤ j ≤ |X |− 1 and T sλchild,j

denote the set of sub-trees whose root node is sλchild,j. Figure A1 shows an example of
T sλchild,0 and T sλchild,1 . Then, the summation in the right-hand side of (A23) is factorized as

|X |−1

∏
j=0

∑
Tj∈T

sλchild,j

 ∏
s∈L(Tj)

(1−gs) ∏
s′∈I(Tj)

gs′

. (A24)

Consequently, because the goal is to show (A22), Lemma A1 is proven by induction.

Lemma A2. Let As denote the set of all ancestor nodes of s. Then, we have

∑
T∈Ts

p(T) = (1− gs) ∏
s′∈As

gs′ . (A25)

Figure A1. An illustration of T sλchild,0 (left lower enclosure) and T sλchild,1 (right lower enclosure).
In the trees T2–T5, sλ has child nodes sλchild,0 and sλchild,1. Therefore, we can decompose the child
nodes of sλ in the trees T2–T5 into the nodes included in T sλchild,0 and the nodes included in T sλchild,1 .

Entropy 2021, 23, 768 17 of 19

Proof of Lemma A2.

∑
T∈Ts

p(T)
(a)
= ∑

T∈Ts

∏
s′∈I(T)

gs′ ∏
s′′∈L(T)

(1− gs′′) (A26)

(b)
= (1− gs) ∏

s′∈As

gs′ ∑
T∈Ts

∏
s′′∈I(T)\As

gs′′ ∏
s′′′∈L(T)\{s}

(1− gs′′′), (A27)

where (a) follows from Assumption 2, and (b) follows from the fact that all trees T ∈ Ts
have the node s and its ancestor nodes.

Further, as we will prove later, it holds that

∑
T∈Ts

∏
s′′∈I(T)\As

gs′′ ∏
s′′′∈L(T)\{s}

(1− gs′′′) = 1. (A28)

Thus, we obtain (A25) by combining (A27) and (A28).
To prove (A28), we can apply the factorization of Lemma A1 to (A28) if we regard the

node whose parent node is s or an element of As as a root node, as shown in Figure A2.
Let J denote the number of that factorized trees, and let rj denote the root node of j-th
factorized tree. Then, we can rewrite (A28) as follows:

∑
T∈Ts

∏
s′′∈I(T)\As

gs′′ ∏
s′′′∈L(T)\{s}

(1− gs′′′) =
J−1

∏
j=0

∑
Tj∈T

rj

 ∏
s∈L(Tj)

(1−gs) ∏
s′∈I(Tj)

gs′

 = 1. (A29)

Hence, the proof is complete.

Now, we transform (A12) as follows.

∑
s∈S(x1)

qs(y1|x1, k) ∑
T∈Ts

p(T)
(a)
= ∑

s∈S(x1)

qs(y1|x1, k)(1− gs) ∏
s′∈As

gs′ (A30)

= (1− gsλ
)qsλ

(y1|x1, k)

+ gsλ ∑
s∈S(x1)\{sλ}

qs(y1|x1, k)(1− gs) ∏
s′∈As\{sλ}

gs′ , (A31)

where (a) follows from Lemma A2.

Figure A2. An illustration of r0,r1,r2, and r3. In this example, the dotted line represents the path
from sλ to s and As is the set of two parent nodes of s. Furthermore, the rectangles of the dotted line
represent four factorized trees T0, T1, T2, and T3.

Here, let sλchild
denote the node that is a child node of sλ and an element of S(x1).

Then, we can decompose

Entropy 2021, 23, 768 18 of 19

∑
s∈S(x1)\{sλ}

qs(y1|x1, k)(1− gs) ∏
s′∈As\{sλ}

gs′

=
(
1− gsλchild

)
qsλchild(y1|x1, k)

+ gsλchild ∑
s∈S(x1)\{sλ ,sλchild}

qs(y1|x1, k)(1− gs) ∏
s′∈As\{sλ ,sλchild}

gs′ . (A32)

The equation (A32) has a similar structure to (A31). Like this, we can decompose
(A31) recursively to the leaf node that is included in S(x1). In addition, we can utilize the
assumption gs = 0 for any leaf nodes s of a meta-tree MT,k. Consequently, we can prove
that (A31) coincides with q̃sλ

(y1|x1, MT,k).
Step 2: Next, we prove (16) for n = 0. Because the parameters gs are updated only

when their nodes are the elements of S(x1), we decompose the right-hand side of (16) for
n = 0 as follows:

∏
s∈I(T)

gs|x1,y1 ∏
s′∈L(T)

(
1− gs′ |x1,y1

)
= ∏

s∈I(T)∩S(x1)

gs|x1,y1 ∏
s′∈L(T)∩S(x1)

(
1− gs′ |x1,y1

)
· ∏

s′′∈I(T)\S(x1)

gs′′ |x1,y1 ∏
s′′′∈L(T)\S(x1)

(
1− gs′′′ |x1,y1

)
(A33)

= ∏
s∈I(T)∩S(x1)

gs|x1,y1 ∏
s′∈L(T)∩S(x1)

(
1− gs′ |x1,y1

)
∏

s′′∈I(T)\S(x1)

gs′′ ∏
s′′′∈L(T)\S(x1)

(1− gs′′′). (A34)

We transform the part of (A34), whose parameters gs are renewed by x1 and y1, as follows:

∏
s∈I(T)∩S(x1)

gs|x1,y1 ∏
s′∈L(T)∩S(x1)

(
1− gs′ |x1,y1

)
(a)
=
(

1− gs(x1)|x1,y1

)
∏

s∈I(T)∩S(x1)

gs|x1,y1 (A35)

(b)
=
(

1− gs(x1)

)
∏

s∈I(T)∩S(x1)

gs q̃schild(y1|x1, MT,k)

q̃s(y1|x1, MT,k)
(A36)

(c)
=

(
1− gs(x1)

)
q̃s(x1)

(y1|x1, MT,k)

q̃sλ
(y1|x1, MT,k)

∏
s∈I(T)∩S(x1)

gs (A37)

=
q̃s(x1)

(y1|x1, MT,k)

q̃sλ
(y1|x1, MT,k)

∏
s∈I(T)∩S(x1)

gs ∏
s′∈L(T)∩S(x1)

(1− gs′), (A38)

where (a) follows from s′ ∈ L(T) ∩ S(x1) is uniquely determined as s(x1), (b) follows from
Definition 3, and (c) follows from reduction of q̃s(y1|x1, MT,k).

Thus, the right-hand side of (A34) is calculated as

q̃s(x1)
(y1|x1, MT,k)

q̃sλ
(y1|x1, MT,k)

∏
s∈I(T)

gs ∏
s′∈L(T)

(1− gs′). (A39)

(a)
=

q̃s(x1)
(y1|x1, MT,k)p(T)

q̃sλ
(y1|x1, MT,k)

(A40)

(b)
=

q(y1|x1, T, k)p(T)
q̃(y1|x1, k)

(A41)

(c)
= p(T|x1, y1, k), (A42)

Entropy 2021, 23, 768 19 of 19

where (a) follows from Assumption 2, the denominator of (b) follows from Theorem 2 for
n = 0, the numerator of (b) follows from Definition 3 and the definition of
qs(xn+1)

(yn+1|xn+1, xn, yn, k), and (c) follows from the Bayes’ theorem.
Step 3: Finally, if we assume (15) and (16) are true when n = N, we can also prove

(15) and (16) when n = N + 1 in the same way. Therefore, Theorem 2 holds.

Appendix D. Proof of Lemma 2

Proof of Lemma 2.

p(k|xn, yn) ∝ p(k)p(xn, yn|k) (A43)

= p(k)
n

∏
i=1

q̃(yi|xi, xi−1, yi−1, k)p(xi|xi−1, yi−1, k) (A44)

(a)
∝

n

∏
i=1

q̃(yi|xi, xi−1, yi−1, k) (A45)

(b)
=

n

∏
i=1

q̃sλ
(yi|xi, xi−1, yi−1, MT,k), (A46)

where (a) follows from Assumption 3 and x1, . . . , xn are i.i.d.; (b) follows from Theorem 2
at each i = 1, . . . , n.

References
1. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
2. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
3. Athey, S.; Tibshirani, J.; Wager, S. Generalized Random Forests. Ann. Stat. 2019, 47, 1148–1178. [CrossRef]
4. Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
5. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, CA, USA, 13–17 August 2016; Association for
Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

6. Schulter, S.; Wohlhart, P.; Leistner, C.; Saffari, A.; Roth, P.M.; Bischof, H. Alternating Decision Forests. In Proceedings of the 2013
IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 508–515. [CrossRef]

7. Mishina, Y.; Murata, R.; Yamauchi, Y.; Yamashita, T.; Fujiyoshi, H. Boosted Random Forest. IEICE Trans. Inf. Syst. 2015,
E98.D, 1630–1636. [CrossRef]

8. Bulo, S.; Kontschieder, P. Neural Decision Forests for Semantic Image Labelling. In Proceedings of the 2014 IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 81–88. [CrossRef]

9. Kontschieder, P.; Fiterau, M.; Criminisi, A.; Bulo, S.R. Deep Neural Decision Forests. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1467–1475. [CrossRef]

10. Tanno, R.; Arulkumaran, K.; Alexander, D.; Criminisi, A.; Nori, A. Adaptive Neural Trees. In Proceedings of the 36th International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6166–6175.

11. Zhou, Z.H.; Feng, J. Deep Forest: Towards An Alternative to Deep Neural Networks. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 3553–3559.
[CrossRef]

12. Frosst, N.; Hinton, G. Distilling a Neural Network Into a Soft Decision Tree. arXiv 2017, arXiv:1711.09784.
13. Suko, T.; Nomura, R.; Matsushima, T.; Hirasawa, S. Prediction Algorithm for Decision Tree Model. IEICE Tech. Rep. Theor. Found.

Comput. 2003, 103, 93–98. (In Japanese)
14. Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: New York, NY, USA, 1985. [CrossRef]
15. Matsushima, T.; Hirasawa, S. A Bayes Coding Algorithm Using Context Tree. In Proceedings of the 1994 IEEE International

Symposium on Information Theory, Trondheim, Norway, 27 June–1 July 1994; p. 386. [CrossRef]
16. Nakahara, Y.; Matsushima, T. A Stochastic Model of Block Segmentation Based on the Quadtree and the Bayes Code for It. In

Proceedings of the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; pp. 293–302. [CrossRef]

http://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/18-AOS1709
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1109/CVPR.2013.72
http://dx.doi.org/10.1587/transinf.2014OPP0004
http://dx.doi.org/10.1109/CVPR.2014.18
http://dx.doi.org/10.1109/ICCV.2015.172
http://dx.doi.org/10.24963/ijcai.2017/497
http://dx.doi.org/10.1007/978-1-4757-4286-2
http://dx.doi.org/10.1109/ISIT.1994.394633
http://dx.doi.org/10.1109/DCC47342.2020.00037

	Introduction
	Preliminaries
	Model Tree
	Problem Setup
	Optimal Prediction Based on the Bayes Decision Theory
	Previous Study
	Expectation over the Parameters
	Summation over All Model Trees Represented by a Meta-Tree

	Proposed Method
	CART and Random Forest Revisited and Comparison with MTRF
	CART and Random Forest Revisited
	Comparison of Random Forest with MTRF

	Experiments
	Experiment 1
	Experiment 2

	Conclusions and Future Work
	Proof of Theorem ??
	Proof of Lemma ??
	Proof of Theorem ??
	Proof of Lemma ??
	References

