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Abstract: Multiview video plus depth is one of the mainstream representations of 3D scenes in
emerging free viewpoint video, which generates virtual 3D synthesized images through a depth-
image-based-rendering (DIBR) technique. However, the inaccuracy of depth maps and imperfect
DIBR techniques result in different geometric distortions that seriously deteriorate the users’ visual
perception. An effective 3D synthesized image quality assessment (IQA) metric can simulate human
visual perception and determine the application feasibility of the synthesized content. In this paper,
a no-reference IQA metric based on visual-entropy-guided multi-layer features analysis for 3D
synthesized images is proposed. According to the energy entropy, the geometric distortions are
divided into two visual attention layers, namely, bottom-up layer and top-down layer. The feature
of salient distortion is measured by regional proportion plus transition threshold on a bottom-up
layer. In parallel, the key distribution regions of insignificant geometric distortion are extracted by a
relative total variation model, and the features of these distortions are measured by the interaction of
decentralized attention and concentrated attention on top-down layers. By integrating the features of
both bottom-up and top-down layers, a more visually perceptive quality evaluation model is built.
Experimental results show that the proposed method is superior to the state-of-the-art in assessing
the quality of 3D synthesized images.

Keywords: 3D synthesized images; image quality assessment (IQA); no-reference; visual-entropy-
guided; multi-layer features analysis

1. Introduction

With the advancement of video technologies, a free viewpoint video (FVV) system
is gradually applied to various fields, such as distance education, medical service, and
entertainment [1]. Compared with traditional 2D videos, users can interactively embody 3D
scenes from arbitrary viewpoints in the FVV system. Unfortunately, limited by equipment
and cost, capturing all views of FVV via camera is unrealistic and needs the existence of
virtual synthesized viewpoints to enhance the scene switching continuity. Multiview video
plus depth is one of the mainstream representations of 3D scenes, which generate virtual
synthesized images through depth-image-based-rendering (DIBR) techniques [2]. At this
stage, the inaccuracy of depth maps and imperfect DIBR techniques result in different
geometric distortions which seriously deteriorate the users’ visual perception. In addition,
it is time-consuming and impracticable to screen the quality of massive synthesized images
by humans. Hence, designing an effective image quality assessment (IQA) metric [3] via
human visual simulation to measure the image quality deterioration and further determine
the application feasibility of 3D synthesized views is a significant research topic.

So far, extensive IQA methods were designed for the traditional distortions in 2D
images, such as JPEG/JPEG2K compression [4,5], Gaussian white noise [6], Gaussian
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blur [7], blocking [8], and fast fading channel errors [9]. Generally, these distortions globally
distribute in entire 2D images. In contrast, the 3D synthesized geometric distortions appear
in local areas, and seriously destroy the structural semantic information of synthesized
views. Due to the particularity of synthetic distortions, the existing IQA methods for
2D traditional distortions, like [10–14], cannot measure the 3D synthesized distortions
effectively. With this concern, some researchers have proposed IQA metrics targeting 3D
synthesized images. These methods are mainly divided into two categories, full-reference
(FR) [15–23] and no-reference (NR) [24–33].

Bosc et al. explored the necessity of designing synthesized IQA metric, and evaluated
the image quality via pixel deviation [15]. Conze et al. designed an SSIM-based view
synthesis quality assessment (VSQA) metric, which mainly researched the synthesized view
quality degradation caused by shift artifacts [16]. Battisti et al. statistically analyzed the shift
artifacts in the Haar wavelet sub-bands, and proposed a 3D synthesized view image quality
metric (3DSwIM) [17]. Ling and Le Callet proposed a sketch-token-based synthesized
IQA (ST-SIQA) metric [18] and elastic metric based IQA (EM-IQA) metric [19]. Both ST-
SIQA and EM-IQA analyzed shift artifacts by calculating contour similarity between the
reference and synthesized images. Sandić-Stanković et al. designed two IQA metrics, i.e.,
morphological wavelet peak signal-to-noise ratio (MW-PSNR) [20] and morphological
pyramid peak signal-to-noise ratio (MP-PSNR) [21], in order to evaluate the quality of
synthesized geometric distortions in a transform domain. Tian et al. matched the horizontal
displacement between the reference and synthesized images to devise a shift-compensation-
based IQA (SC-IQA) metric [22]. Li et al. presented an FR quality metric for visual views
by simultaneously measuring local instance degradation and global appearance (IDEA), in
which local distortions were detected by discrete orthogonal moments and global sharpness
was measured by super-pixel representation [23]. However, FR synthesized IQA metrics
are not suitable for real application because the reference images of synthesized view are
usually unavailable in FVV systems.

Gu et al. proposed an NR autoregression-plus thresholding (APT) metric based on
a natural scene statistical (NSS) model [24]. Lately, Gu et al. considered local and global
distortion, and presented a multi-scale NSS-based (MNSS) metric [25]. Jakhetiya et al.
counted outliers by a three sigma rule-based robust outlyingness ratio (OUT) to evalu-
ate the quality of synthesized images [26]. Recently, Jakhetiya et al. further proposed
a kernel-ridge-regression-based predictor for synthesized IQA, which detected the com-
plete distortion surface with geometric distortions and estimated corresponding quality
scores [27]. The NSS-based methods above are time consuming and basically designed for
severe geometric distortions. In addition, the metrics based on transform domain are also
considered. Sandić-Stanković et al. proposed an NR IQA metric for synthesized videos
which combined a high frequency component in a morphological wavelet domain with
threshold (NR_MWT) [28]. Wang et al. also extracted features of geometric distortion,
global sharpness, and image complexity in a wavelet transform domain to evaluate the
quality of 3D synthesized images [29]. These transform-domain-based metrics eliminate
uninterested information of synthesized image and save calculation time but are still sensi-
tive to limited geometric distortion types. Based on this, Zhou et al. analyzed synthesized
images using Difference-of-Gaussian-based edge statistics and texture naturalness (SET)
to measure different types of geometric distortions [30]. Tian et al. proposed an NR IQA
of synthesized views (NIQSV), which measured the blurry and crumbling distortions by
opening and closing operations [31]. Subsequently, Tian et al. further analyzed the hole and
stretching distortions, and advanced the NIQSV to NIQSV+ [32]. Likewise, Yue et al. clas-
sified the distortions, and combined local and global features to measure 3D synthesized
images (CLGM) [33]. These distortion-classification-based metrics targeted measure multi-
ple distortion types and are more comprehensive. The pity is that the synthesized image
degradation caused by weak geometric distortions has not received enough attention. Fur-
thermore, few deep-learning-based metrics were exploratively used to evaluate the quality
of 3D synthesized images. Ling et al. proposed a generative adversarial networks-based
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NR metric (GANs-NRM) for synthesized images, which expanded the distortion sample
through the GANs, then used a ‘bag of distortion word’ codebook to classify the distortion,
and finally used the support vector machine to regress the quality score [34]. However, it
only uses the network to expand the training samples and does not achieve end-to-end
score learning. Wang et al. built a new synthesized database including 504 pictures to
expand the ground-truth of training and utilized the local saliency to weight the predicted
scores [35]. Unfortunately, the database samples proposed by this method are still limited.
Thus, how to evaluate the synthesized images using an end-to-end deep learning model
though the small database still remains an open problem.

In summary, the existing IQA metrics for 3D synthesized images still have some
limitations. (1) The reference images are not accessible in the FVV system. (2) Most of the
existing IQA metrics search geometric distortions though the entire image, which have
difficulty measuring local-distributed distortions in synthesized images. (3) Although the
performance of the distortion-classification-based IQA metrics is competitive, they have
room for further improvement in terms of weak geometric distortion measurement.

In this paper, a novel NR IQA metric based on visual-entropy-guided multi-layer
features analysis (MLFA) is proposed. Extensive experiments exhibit that MLFA has a
better performance than the prevailing IQA metrics and strong robustness on different
databases. The main contributions of MLFA are as follows:

(1) The metric elaborately classifies geometric distortions into bottom-up and top-down
layers via visual entropy, and integrates multi-layer features to regress quality score.

(2) In the bottom-up layer, the strong geometric distortion is measured by calculating
area proportion plus transition threshold.

(3) In the top-down layer, key regions of weak geometric distortions are extracted by
the relative total variation model, and the features are measured by the interaction of
decentralized attention (entropy, secondary Gaussian blur similarity, and horizontal
pixels correlation) and concentrated attention (Gaussian mixture models).

The rest of this paper is organized as follows. The motivation of our method is detailed
in Section 2. Section 3 describes the visual-entropy-guided MLFA method for synthesized
images. Section 4 presents the experimental results. Finally, conclusions are drawn in
Section 5.

2. Motivation

Figure 1 shows the visual comparison pair of geometric distortions, the left and right
are the local areas of original and distorted images, respectively, and all subfigures are
originated from the IRCCyN_IVC_DIBR_images database [36]. Different from traditional
2D distortions, 3D synthesized geometric distortions are mainly caused by inaccurate
depth map and DIBR techniques.

Figure 1a shows the hole distortion. Occlusion and exposure are the main reasons
for the hole generation. If one object is occluded in the real view and exposed in the
virtual view, the corresponding region in virtual view cannot be warped from the real
view. Consequently, a hole is generated. Most of the hole phenomenon occurs in the depth
abrupt areas.

To tackle the hole problem, many scholars preprocessed the depth video. For instance,
Fehn et al. [37] used a low-pass filter to smooth the depth information. By this method, the
hole problem can be alleviated in synthesized images, but inaccurate depth information
also brings the geometric distortions, curving, and object shifting, which are respectively
visible in the chair and face of Figure 1b,c. One can see that the distortions are particularly
perceptible in background and foreground transitions.
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Figure 1. 3D synthesized geometric distortions, (a) hole; (b) curving; (c) object shifting; (d) ghosting; (e) blurry; (f) stretching.

In addition, the filling algorithms for hole regions also bring distortions. Figure 1d
shows the ghosting phenomenon based on patch-based synthesis methods [38,39]. This
distortion generates when the pixels from the optimal matching patch do not fit the actual
scene. Figure 1e shows a rendered result when the hole area is filled using the methods
in [40,41]. As we can observe, the in-painting method cannot effectively fill holes in complex
texture areas, which result in blurry distortion at the boundaries of the potted plant and
the man’s arm. Additionally, the stretching distortion mainly occurs on the left/right side
of image and is produced by a particular in-painting method [42], which fills holes with
existing horizontal adjacent pixels, as shown in Figure 1f.

According to the observations of above synthesized distortions, we find that people
cannot distinguish the specific distortion types without professional training, and can only
roughly evaluate the degree of image quality degeneration. Therefore, the mess types of
synthesized distortions are regulated for unified measurement. The distortions, caused by
inaccurate depth information, i.e., curving and object shifting, are classified to ‘deforming’.
The distortions that are manifested as the pixel overflow and caused by the inaccurate
filling algorithm, i.e., ghosting and blurry, are collectively called ‘blurry’. Simultaneously,
we find that the geometric distortion often occurs in the local areas of synthesized images,
especially on the left/right side of images and the boundary areas of objects.

Biologically, visual stimuli enter the primary visual cortex for the short term and
progress along two parallel hierarchical streams, i.e., the brain neurons are divided into
two major regions to control the attention mechanism. The ‘dorsal stream’ mainly pro-
cesses visual information in the posterior parietal cortex and is concerned with directing
attention. The ‘ventral stream’ processes stimuli in the inferotemporal cortex, focusing on
recognition capability [43]. The dorsal and ventral streams must interact to achieve good
scene understanding. However, the fusion of two streams to process information is simple
for the human brain, but challenging for the computer. Otherwise, implementing two
streams at the same time has an obstacle that only small parts of visual stimuli are stored
as short-term memory [44]. Hence, processing a large amount of sensory information in
one step is unrealistic.

We focus our research by combining biological theories, and the distinction of energy
entropy included in different stimuli (i.e., distortions) is huge, which may cause different
distortions to be processed in different visual cortexes. This presumption is indeed verified
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by some studies—that there exists an approximately linear relationship between energy
entropy and a visual attention mechanism [45,46]. Thus, a two-component framework for
visual attention mechanism stimulated by stimuli energy entropy (short for visual entropy)
was proposed to simulate the physiological structure of the human brain processing visual
information [47]. The framework suggests a human selective attention scene though
bottom-up and top-down mechanisms. The bottom-up mechanism means that a stimulus
with high energy is sufficiently salient and can pop out of a visual scene, which will take
20–50 ms reaction time of human attention. On the contrary, for the top-down mechanism,
like a task in which people need to move their eyes to find low energy scenes, such volitional
attention will take 200 ms or more reaction time. Inspired by this theory, hole distortion
can pop out in an image due to its obviousness, which tends to be a bottom-up mechanism.
Other distortions are interfered by complex textures and require careful observation, which
takes a longer reaction time and tends to be a top-down mechanism. In addition, the visual
attention mechanism is affected by inhibition of return (the current attention will not be
attended again), so both bottom-up and top-down mechanisms can operate in parallel.

Particularly, the performance of top-down attention is controlled by complex brain
regions, such as the frontal lobes. Hence, it is difficult to express visual perception by inte-
gration of the various scene features. Treisman and Gelade proposed a feature integration
theory [48], which came up with two visual attention mechanisms, decentralized attention
and concentrated attention. The former is a decentralized search for different features
of the scene (e.g., color, shape). The latter is mainly a concentrated search for the scene
where various features are mixed. The decentralized attention is a single-dimensional
feature extraction, which has strong pertinence and information dependence. By contrast,
the concentrated attention is a multi-dimensional extraction of mixed features, which has
strong robustness to information update. Therefore, we consider extracting the distortions
of the top-down layer via feature integration theory (i.e., decentralized and concentrated
attention) to achieve the maximum utilization of features.

Based on all distortion observations, biology and psychology theory, we divide the
3D synthesized geometric distortions into two visual-entropy-guided attention layers.
Specifically, the hole distortion is divided into a bottom-up layer because of its eye-catching
energy, and insignificant geometric distortions (i.e., deforming, blurry, and stretching) are
assigned to a top-down layer. Further focusing on a top-down layer, the key distributed
areas (i.e., left/right side of images and the boundary areas of objects) of weak geometric
distortion are highlighted, and the decentralized and concentrated attention are combined
to measure top-down features based on key areas. By integrating the features of bottom-up
and top-down layers, a novel NR IQA metric for 3D synthesized images is built. Exten-
sive experimental results demonstrate the effectiveness and robustness of the proposed
method (MLFA).

3. The Proposed Visual-Entropy-Guided MLFA Method

Figure 2 shows the block diagram of the proposed visual-entropy-guided MLFA
method, which contains three parts, feature extraction of bottom-up and top-down layers,
and quality regression of random forest (RF). The details of each part will be introduced in
Sections 3.1–3.3.

3.1. Feature Extraction of the Bottom-Up Layer

Figure 3 shows two kinds of black areas origination in the IRCCyN_IVC_DIBR_images
database: natural black object and hole distortion, in which the natural black object does
not affect the quality attenuation of the image. Therefore, we need to eliminate the inter-
ference caused by natural black objects (i.e., non-hole) when extracting the hole features.
Specifically, the regions with a pixel value of 0 are calculated as the candidate areas, as
shown in the second subfigures of Figure 3a,b.
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Subsequently, we find that, compared with non-hole 0-pixel regions, the boundary
pixels of hole regions are more abrupt, such as the rightmost subfigures of Figure 3a,b
shown. Thus, a statistical method of boundary-pixel transition is introduced. The 0-value-
pixel boundaries are obtained by Sobel algorithm (visualized in the third column subfigures
of Figure 3a,b, and the Euclidean distance d between the current boundary pixel and the
predicted boundary pixel are calculated:

d(i, j) =
∣∣∣b(i, j)− b̃(i, j)

∣∣∣ (1)

where b(i,j) represents 0-value boundary pixels at (i,j). b̃(i, j) means the pixel value predicted
by the transition statistical method at (i,j):

b̃(i, j) =
1

n× n ∑
q(i,j)∈Ω1

q(i, j) (2)

where q(i,j) belongs to Ω1, which are adjacent pixels surrounding (i,j) in the n × n patch.
After that, the same numbers of hole and non-hole 0-pixel regions are respectively

selected to get their median of distances as shown in Figure 3c. Based on the size of
database [36], the number of 0-pixel regions are set to 50, and the median performance of
1000 calculations is considered as the model to exclude outlier distances. Then, a transition
threshold is defined as T = Average (min {hole}, max {non-hole}) to distinguish between hole
and non-hole regions. Here, T is rounded to 32.

To the end, the hole rate is calculated as the feature of the bottom-up layer:

fh =

{
Num(Rh)

W×H Median{d(i, j)} > T
0 otherwise

(3)

where Num(·) indicates the pixel number. Rh represents hole regions. W and H denote the
width and height of the test image.

3.2. Feature Extraction of a Top-Down Layer

As mentioned by the APT metric [24], the performance of using the NSS model directly
on unprocessed synthesized images is poor, and the histograms of different geometric
distortions are quite close to each other as shown in Figure 4a. Thus, to avoid the global
‘good quality’ information affecting local distorted information, popping out the local
distorted regions is indispensable. Due to the distortions that usually occur on the left/right
side of the image and boundaries of objects, we consider extracting these two parts as the
key region. Fundamentally, the test image is divided into the side region (Rs) and middle
region (Rm) according to the image width (W):{

Rm(i, j) = {Y(i, j)|Tl ·W ≤ i ≤ (1− Tr) ·W, 0 ≤ j ≤ H}
Rs(i, j) = Y(i, j)−Rm(i, j)

(4)

where Y(i,j) is the pixel value at (i,j) in the test image. Tl and Tr are width proportion
thresholds, which determine the left and right sides of Rm in the image.

Further to Rm, inspired by the fact that the image semantic contains structure and
texture information [49], we combine image structure extraction with morphological opera-
tions to extract the boundaries of objects. Specifically, a relative total variation model is
used to extract the structure image S:

argmin
s(i,j)

∑
i,j

(S(i, j)−Rm(i, j))2 + λ ·
(

Ws,x(i, j)
W f ,x(i, j) + ε

+
Ws,y(i, j)

W f ,y(i, j) + ε

)
(5)

where the first term aims to make S(i,j) and Rm(i,j) similar. λ is a weight which determines
the blur degree of the structure image. ε is a small constant to avoid the situation of
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division-by-zero. Ws,x(i, j) and Ws,y(i, j) are the values measured by sliding window in x
and y directions: 

Ws,x(i, j) = ∑
k(i,j)∈Ω2

g(i,j),k(i,j) ·
∣∣∣(∂xS)k(i,j)

∣∣∣
Ws,y(i, j) = ∑

k(i,j)∈Ω2
g(i,j),k(i,j) ·

∣∣∣(∂yS
)

k(i,j)

∣∣∣ (6)

where k(i,j) belongs to Ω2, the 3 × 3 neighboring pixels centered at (i,j). ∂x and ∂y are
partial derivatives. g(i,j),k(i,j) is a weighting function, which is proportional to the exponent:

g(i,j),k(i,j) ∝ exp(−
(x(i,j) − xk(i,j))

2 + (y(i,j) − yk(i,j))
2

2σs2 ) (7)

where σs dominates the scale of the window and controls the scale of the texture element.
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Similarly, W f ,x(i, j) and W f ,y(i, j) are measured by a fixed window in Equation (5).
They are defined as: 

W f ,x(i, j) =

∣∣∣∣∣ ∑
k(i,j)∈Ω2

g(i,j),k(i,j) · (∂xS)k(i,j)

∣∣∣∣∣
W f ,y(i, j) =

∣∣∣∣∣ ∑
k(i,j)∈Ω2

g(i,j),k(i,j) ·
(
∂yS
)

k(i,j)

∣∣∣∣∣
(8)

Different from the formula in Equation (6), the value obtained by a fixed window does
not include the modulus. Thus, the sum of ∂(·)S directly decides the gradient consistency.

In short, the structure and texture information of S depends on two parameters: λ
and σs. When λ and σs are small, S contains complex texture information. Otherwise,
details of S are lost too much to capture object boundaries reasonably. Here, λ and σs are
experimentally set as 0.02 and 4.

Figure 5 presents the visualized results of the relative total variation model with
morphological processing. Specifically, Figure 5a shows the acquired structure image S. The
structure edge image Se and structure mask image Sm are obtained by the Sobel algorithm
and dilation operation, as shown in Figure 5b,c. Figure 5d shows the structure distortion
image Sd, which is obtained by S× Sm. Finally, the key region Rk is stitched by Rs (red boxes
in Figure 5e) and Sd (green box in Figure 5e). In addition, the original edge image Oe, the
original mask image Om, and the original distortion image Od are calculated for comparison
as shown in Figure 5f–h. It can be found that Od is more complicated and chaotic than Sd,
which proves that the extracted Rk can effectively highlight object boundaries’ regions with
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geometric distortion and is consistent with the subjective perception of real synthesized
distortion regions.
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After the Rk is extracted, the feature integration theory (i.e., decentralized and concen-
trated attentions) is applied to measure the geometric distortions on the top-down layer. On
the one hand, the features of geometric distortions on top-down layer are independently
extracted by decentralized attention.

For the deforming distortion, it can be observed from Figure 1b,c that the regular
pixel arrangement turns to a disorderly distribution after deforming. As a universal
cognition, image entropy is a quantity that expresses the degree of disorder of the pixels
state. Therefore, we use image entropy to extract the feature of deformation:

fde f = −∑
a

∑
b

Pa,blgPa,b (9)

where a is the gray value of the pixel, and b is the average gray value in the 3 × 3 neigh-
borhood. p = f (a,b)/Num(Rk) expresses the frequency that the gray feature group f (a, b)
in Rk.

For the blurry distortion, since its distortion appearance is similar to Gaussian blur
(Gblur), a secondary Gblur plus structural similarity (SSIM) [11] is calculated as the feature:

fblu = S
(
Rk(i, j), R′′k (i, j)

)
=

2Rk(i, j) ·R′′k (i, j) + ε

R2
k(i, j) + R′′k

2(i, j) + ε
(10)

where R′′k (i, j) = Rk(i, j) · w(i, j) is the secondary Gblur image; among this, the value of

Gaussian weight w(i, j) = 1
2πσb

2 exp(− i2+j2

2σb
2 ), and σb = 1.5.

For the stretching distortion, the horizontal pixel correlation is analyzed. Specifically,
we detect the value equality of current pixel and its horizontal neighboring pixels. If the
pixel satisfies the relevance condition, the numbers of pixels are counted:

fstr =


Num(x(i,j))

Rk(i,j)

2
∑

l=1
‖x(i + l, j)− x(i, j)‖1 = 0

0 otherwise
(11)

where x(i,j) denotes the pixel value at pixel coordinates (i,j).
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On the other hand, the mixed multi-dimensional features are concentratively extracted
by the Gaussian mixture model. The image is normalized:

R′k(i, j) =
Rk(i, j)− µk(i, j)

σk(i, j) + ε
(12)

where µk(i,j) and σk(i,j) are the mean and contrast value of Rk(i,j), which are calculated by
a Gaussian kernel with a size of 3 × 3. R′k(i, j) represents the mean subtracted contrast
normalized (MSCN) coefficient.

Figure 4b plots a histogram of MSCN coefficients for an original image and different
top-down geometric distorted versions to visualize how the MSCN coefficient distributions
change as a function of geometric distortions. Compared with Figure 4a, the MSCN
coefficients can explicitly distinguish different top-down distortions within a certain range
in key region Rk, which further verify the effectiveness of the above-mentioned key region
extraction strategy.

In addition, the MSCN coefficients of adjacent pixels also have similar statistical
characteristics. The MSCN coefficients of the present pixel and its four adjacent pixels
(horizontal, vertical, main-diagonal, and secondary-diagonal) are calculated. Then, the
Gaussian mixture model, which consists of generalized Gaussian distribution (GGD) and
asymmetric GGD (AGGD), is used to extract mixed multi-dimensional features [50]. The
mixed feature fM is a set with fGGD and fAGGD:

fGGD(x;α,σ2) =
α
√

Γ(3/α)

2σ
√

Γ3(1/α)
exp(−

(
|x|
σ
·

√
Γ(3/α)

Γ(1/α)
)α

)
(13)

fAGGD(x;β,σl ,σr) =


β
√

Γ(3/β)

(σl+σr)
√

Γ3(1/β)
exp(−

(
−x
σl

√
Γ(3/β)
Γ(1/β)

)β

)
x < 0

β
√

Γ(3/β)

(σl+σr)
√

Γ3(1/β)
exp(−

(
−x
σr

√
Γ(3/β)
Γ(1/β)

)β

)
x ≥ 0

(14)

where Γ(x) =
∫ ∞

0 tx−1e−tdt, x > 0, α and σ2 are the parameters of GGD, which re-
flect the shape and variance features of the current pixel distribution. β, σl, σr, and
η are four parameters that affect AGGD. The AGGD gets the best performance when
η = (σr − σl)

Γ(2/β)√
Γ(3/β)

√
Γ(1/β)

.

In addition, owing to the human perception for scenes being multi-scale [25], we
build the feature extraction model on original and down-sampled images. Therefore, the
Gaussian mixture model generates 36-dimensional features, which includes α and σ2 in
GGD and β, σl, σr, and η in AGGD with four adjacent directions and two image scales,
i.e., fM = [4fGGD, 32fAGGD].

3.3. Quality Regression

In this part, we use the regression function Hm(·) to map the extracted features to
objective scores Q, which are expressed as:

Q = Hm(ftotal) (15)

where Hm(·) is obtained by machine learning, and ftotal = [fh, fdef, fblu, fstr, fM] are the total
feature vectors.

RF shows favorable accuracy and has few over-fitting problems in regression operator.
Therefore, we use the RF to learn the function Hm(·) and achieve the predication of objective
quality scores. In specific experiments, the 3D synthesized images in databases are divided
into two non-overlapping parts randomly, 80% are used for training and the rest 20% are
used for testing. The process of ‘training-testing’ is repeated for 1000 times, and the median
performance is selected as the final model to eliminate performance bias.
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4. Experimental Results and Analysis

This section mainly evaluates the performance of the visual-entropy-guided MLFA
method. Firstly, we introduce the databases and performance evaluation criteria used in
experiments. Secondly, the parameters are determined for achieving the best performance.
Then, the performance of the visual-entropy-guided MLFA method is compared with
other state-of-the-art metrics. Finally, generalization ability, impact of training percentages,
multi-layer strategy, key region extraction strategy, and feature ablation experiments are
implemented to prove the effectiveness of the visual-entropy-guided MLFA method.

4.1. Databases and Evaluation Criteria

Two databases, IRCCyN_IVC_DIBR_images database [36] and IETR DIBR image
database [51], are used for the experiment in this study. The IRCCyN_IVC_DIBR_images
database contains 96 images (84 3D synthesized images, 12 original images) and subjective
quality scores. The database has three sequences, each sequence has four virtual views
synthesized by a neighboring viewpoint using seven DIBR algorithms [37–42]. The IETR
DIBR image database contains 150 images (140 3D synthesized images, 10 original images)
and subjective quality scores. The database uses seven updated DIBR algorithms [52–58]
to synthesize visual views and excludes some old-fashioned distortions (e.g., hole).

Pearson Linear Correlation Coefficient (PLCC), Spearman Rank Correlation Coefficient
(SRCC), and Root Mean Square Error (RMSE) are used to evaluate the difference between
objective scores from metrics and subjective scores. The higher value of PLCC and SRCC,
and the lower value of RMSE, mean that objective scores predicted by metrics are more
similar to the subjective scores.

4.2. Parameters Determination

Three parameters, n, Tl, and Tr in the MLFA method, are determined in the IRC-
CyN_IVC_DIBR_images database.

Table 1 lists n and the corresponding discrimination performance of hole and non-hole
regions. Specifically, we set n = {3, 5, 7, 9, 11} and select 50 hole and non-hole regions
respectively to calculate each median of distances. Next, the standard deviation is used to
compare the stability of 50 regions. The smaller value of standard deviation means more
stable performance. Then, T and computational time are calculated in different values of n.
The experimental results show that, with the increase of n, the standard deviation of the
hole increases slightly, but the standard deviation of non-hole increases dramatically. This
unstable trend decreases the distinction between hole and non-hole areas, and eventually
T cannot be obtained. In addition, the method also becomes time-consuming with the
increase of n. In short, the experimental data verify that expanding the value of rectangle
adjacent pixels will destruct the autocorrelation of transition statistics between hole and
non-hole regions and increase computational complexity. Hence, in the MLFA method, we
assign n as equal to 3.

Table 1. Influence of n on the performance of hole and non-hole distinction.

n 3 5 7 9 11

Standard deviation of hole 17.87 17.16 18.32 18.33 18.55
Standard deviation of non-hole 1.67 2.06 4.56 7.63 11.74

T 32 33 42 47 -
Computational time (s) 2.83 3.71 4.40 4.74 4.92

Figure 6 shows the impact of different width thresholds Tl and Tr on SRCC perfor-
mance. The optimal thresholds are determined by comparing the SRCC values when the
ranges of Tl and Tr are 0 to 10. Form 3D surface of SRCC performance, the Tl and Tr, with
largest SRCC (SRCC = 0.8579), are 6% and 5%, respectively. Hence, we set Tl as 6%, and Tr
as 5% in the proposed MLFA method.
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4.3. Performance Comparison

Table 2 illustrates the PLCC, SRCC, and RMSE performance comparison of MLFA with
state-of-the-art metrics on the IRCCyN_IVC_DIBR_images database in which the best per-
formance is highlighted with bold font. Specifically, the PSNR and SSIM [11] are traditional
IQA metrics. The VSQA [16], 3DSwIM [17], ST-SIAQ [18], EM-IQA [19], MW-PSNR [20],
MP-PSNR [21], SC-IQA [22], and IDEA [23] are FR IQA metrics for 3D synthesized images.
The APT [24], MNSS [25], OUT [26], NR-MWT [28], SET [30], NIQSV [31], NIQSV+ [32],
CLGM [33], GANs-NRM [34], and Wang [35] are NR metrics designed for 3D synthesized
images. In the experimental results, we can obtain three potential conclusions:

(1) The traditional metrics, like PSNR and SSIM, are not effective for 3D synthesized
images. The performance of PSNR and SSIM is poor because they have not been
conceived for dealing with the local specificity of geometric distortions (e.g., the PLCC
is less than 0.5).

(2) The performance of metrics designed for 3D synthesized images is better than tradi-
tional metrics, but not sufficient. The metrics, VSQA, 3DSwIM, ST-SIAQ, EM-IQA,
and NIQSV, are mainly designed for the object shifting and blurry distortions (parts of
the top-down layer). The metrics, MW-PSNR, MP-PSNR, APT, MNSS, and OUT, are
mainly sensitive to hole distortion. The above-mentioned metrics ignore the diversity
of geometric distortions. Among them, the MNSS metric shows the best performance,
and PLCC, SRCC, and RMSE are 0.7700, 0.7850, and 0.4120. A few metrics consider
multiple distortions, such as SC-IQA, IDEA, NR-MWT, SET, NIQSV+, and CLGM.
However, the weak geometric distortions are inadequately and ambiguously classi-
fied, and merely measured via decentralized attention. In addition, only a few metrics
(e.g., IDEA) emphasize the utilization of local distortion distribution characteristics.
These limitations lead these metrics to fail to effectively estimate weak distortions.
Even for SET, the best among these metrics, the corresponding PLCC, SRCC, and
RMSE are 0.8586, 0.8109, and 0.3015, and can be further improved. The performance
of deep-learning-based metrics, such as GANs-NRM and Wang, is also unsatisfactory
due to the limitation of insufficient training samples.

(3) The proposed method MLFA is superior to the state-of-the-art metrics, and PLCC,
SRCC, and RMSE are 0.8757, 0.8579, and 0.4106. It affirms the effectiveness of MLFA
method for 3D synthesized images.
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Table 2. Performance comparison of the proposed method with state-of-the-art metrics on the
IRCCyN_IVC_DIBR images database.

Category Distortion Type Metric PLCC SRCC RMSE

FR 2D traditional distortion
PSNR 0.4515 0.4589 0.5527

SSIM [11] 0.4850 0.4368 0.5823

FR 3D synthesized distortion

VSQA [16] 0.5742 0.5233 0.5451
3DSwIM [17] 0.6584 0.6156 0.5011
ST-SIAQ [18] 0.6914 0.6746 0.4812
EM-IQA [19] 0.7430 0.6282 0.4455

MW-PSNR [20] 0.5622 0.5757 0.5506
MP-PSNR [21] 0.6174 0.6227 0.5238

SC-IQA [22] 0.8496 0.7640 0.3511
IDEA [23] 0.7796 0.6652 0.3533

NR 3D synthesized distortion

APT [24] 0.7307 0.7157 0.4546
MNSS [25] 0.7700 0.7850 0.4120
OUT [26] 0.7243 0.7010 0.4591

NR-MWT [28] 0.7343 0.5169 0.4520
SET [30] 0.8586 0.8109 0.3015

NIQSV [31] 0.6346 0.6167 0.5146
NIQSV+ [32] 0.7114 0.6668 0.4679
CLGM [33] 0.6750 0.6528 0.4620

GANs-NRM [34] 0.8262 0.8072 0.3861
Wang [35] 0.8112 0.7520 0.3820

MLFA 0.8757 0.8579 0.4106

Figure 7 shows the scatter plots of subjective DMOS and objective scores in SSIM,
MP-PSNR, APT, MNSS, NIQSV+, and MLFA on the IRCCyN_IVC_DIBR_images database.
The points of the MLFA method aggregate on the fitting line. By contrast, the scattered plots
of the comparative metrics present vertical point distribution, i.e., objective scores of the
vertical distributed points are similar, while the subjective scores are different. By validating
the corresponding image of each point, we found that the comparative metrics can roughly
distinguish specific distortions but fail to effectively estimate weak geometric distortions.
For instance, the NIQSV+ metric can roughly distinguish three kinds of distortions, hole,
stretching, and blurry distortion. Correspondingly, the scatter points present three clusters
with different objective scores. However, due to the insufficiency of mixed weak distortions
estimation, the corresponding objective scores of scatter points are close in each cluster, as
shown in the subfigure of Figure 7. Hence, the objective scores calculated by the MLFA
method can achieve higher consistency with human subjective perception.

Table 3 shows PLCC, SRCC, and RMSE of MLFA with state-of-the-art IQA metrics on
the IETR DIBR image database, where the best results are highlighted in boldface. One can
see that the performance of some representative metrics, such as NIQSV+ and CLGM, is
poor. These metrics mainly measure limited and salient distortion types via decentralized
attention. Thus, the defects, i.e., poor robustness for update 3D synthesized scenes, are
easily exposed on the database without old-fashioned distortions. Among these metrics,
the performance of SC-IQA metric is the best. However, its PLCC, SRCC, and RMSE
are only 0.6856, 0.6423, and 0.1805. Comparatively, the MLFA method obtains the best
performance on this database, i.e., PLCC, SRCC, and RMSE are 0.7378, 0.7036, and 0.1899.
It validates that the MLFA method is effective and robust for various distorted scenes,
especially including weak geometric distortions.
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Table 3. Performance comparison of the proposed method with state-of-the-art metrics on the IETR
DIBR image database.

Category Distortion Type Metric PLCC SRCC RMSE

FR 2D traditional distortion
PSNR 0.6012 0.5356 0.1985

SSIM [11] 0.4016 0.2395 0.2275

FR 3D synthesized distortion

VSQA [16] 0.5576 0.4719 0.2062
ST-SIAQ [18] 0.3345 0.4232 0.2336
EM-IQA [19] 0.5627 0.5670 0.2020

MW-PSNR [20] 0.5301 0.4845 0.2106
MP-PSNR [21] 0.5753 0.5507 0.2032

SC-IQA [22] 0.6856 0.6423 0.1805

NR 3D synthesized distortion

APT [24] 0.4225 0.4187 0.2252
MNSS [25] 0.3387 0.2281 0.2333
OUT [26] 0.2007 0.1924 0.2429

NR-MWT [27] 0.4769 0.4567 0.2179
NIQSV [31] 0.1759 0.1473 0.2446

NIQSV+ [32] 0.2095 0.2190 0.2429
CLGM [33] 0.1146 0.0860 0.2463

MLFA 0.7378 0.7036 0.1899

4.4. Generalization Ability

As a train-test-based quality model, the generalization ability is a persuasive robust-
ness criterion. Therefore, we verify the generalization ability of our visual-entropy-guided
MLFA method through a cross-experiment, where the best results are also marked in bold.
Specifically, (1) the IETR DIBR image database is used when training the model, and the
IRCCyN_IVC_DIBR_images database is used to test. (2) The IRCCyN_IVC_DIBR_images
database is adopted to train and the IETR DIBR image database is used to test. Table 4
shows the performance comparison of our MLFA method and the other NR state-of-the-art
synthesized IQA metrics. One can see that the proposed MLFA method acquires the best
performance among these metrics. In addition, the performance of training on the IETR
DIBR image database and testing on the IRCCyN_IVC_DIBR_images database is better
than training on the IRCCyN_IVC_DIBR_images database and testing on the IETR DIBR
image database. This is because the distortions of IRCCyN_IVC_DIBR_images database
are old-fashioned, while the distortions of IETR DIBR image database are upgraded and
more meticulous.



Entropy 2021, 23, 770 15 of 20

Table 4. Cross-validation of the proposed MLFA method and the NR state-of-the-art metrics on IETR DIBR image database
and IRCCyN_IVC_DIBR_images database.

Training Database Testing Database Method PLCC SRCC RMSE

IETR DIBR image IRCCyN_IVC_DIBR_images

APT 0.6745 0.5817 0.4916
MNSS 0.6539 0.6147 0.5037
NIQSV 0.4989 0.0889 0.5494

NIQSV+ 0.5921 0.2680 0.5365
MLFA 0.8645 0.8562 0.3945

IRCCyN_IVC_DIBR_images IETR DIBR image

APT 0.3838 0.2198 0.2249
MNSS 0.2829 0.2196 0.2335
NIQSV 0.1216 0.0839 0.2416

NIQSV+ 0.0292 0.0569 0.2433
MLFA 0.7046 0.6720 0.2181

4.5. Impact of Training Percentages

To research how the amount of training data affects the performance of MLFA method,
we execute the experiment via adopting different proportions of two DIBR image databases
with 10% steps to train the model. Mainly, the image percentages of database used to train
the model are set to five levels, i.e., 90%, 80%, 70%, 60% and 50%. All of the training–testing
processes are operated 1000 times to get the median value, and the results are shown
in Table 5. With the cut back of training data, the performance of the model gradually
decreases. However, even with the lowest 50% training in the IRCCyN_IVC_DIBR_images
database, we still get relatively good performance compared to most state-of-the-art synthe-
sized IQA metrics, i.e., PLCC reaches 0.83. Moreover, on IETR DIBR image database, with
only 50% training, our method outperforms the state-of-the-art metrics. These experiment
results verify that our proposed MLFA method can still achieve better performance even if
it uses less data for training.

Table 5. Performances of the proposed MLFA method with different training percentages.

Database Training–Testing PLCC SRCC RMSE

IRCCyN_IVC_DIBR_images

90–10% 0.8895 0.8585 0.2967
80–20% 0.8757 0.8579 0.3106
70–30% 0.8620 0.8330 0.3871
60–40% 0.8467 0.8073 0.4339
50–50% 0.8303 0.7970 0.5010

IETR DIBR image

90–10% 0.7473 0.7158 0.1642
80–20% 0.7378 0.7036 0.1899
70–30% 0.7180 0.6845 0.1928
60–40% 0.7055 0.6644 0.2027
50–50% 0.6899 0.6473 0.2092

4.6. Performance Analysis of a Multi-Layer Strategy

To illustrate the superiority of the visual-entropy-guided multi-layer strategy proposed
in our method, we conduct a comparative experiment S1 with a single-layer strategy. In S1,
the key region of the test image is firstly extracted. Then, the features of hole, deforming,
blurry, and stretching are measured at the same level. Here, the MLFA method based on
multi-layer strategy is denoted as S2.

Table 6 lists PLCC, SRCC, and RMSE of S1 and S2 on IRCCyN_IVC_DIBR_images
and IETR DIBR image databases. Both S1 and S2 show good performance, which validate
the integral effectiveness of feature extraction algorithms in our method. However, the
performance of S1 is not poor but worse than S2, e.g., the PLCC value of S2 is about 0.02
higher than S1 on two databases. It suggests that putting the distortions of different visual
stimuli at the same level will affect the accuracy of feature extraction to a certain extent.
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Therefore, the multi-layer strategy is conducive to further improving the performance of
3D synthesized IQA metrics.

Table 6. Performance comparison of S1 and S2 on two databases.

Scheme
IRCCyN_IVC_DIBR_Images IETR DIBR Image

PLCC SRCC RMSE PLCC SRCC RMSE

S1 0.8558 0.8004 0.4269 0.7133 0.6861 0.2061
S2 0.8757 0.8579 0.4106 0.7378 0.7036 0.1899

4.7. Performance Analysis of Key Region Extraction

Table 5 shows the PLCC performance of fh, fdef, fblu, fstr, and fM with or without key
region extraction. Specifically, we perform a comparative experiment denoted by S3. In S3,
the process of key region extraction is canceled. Meanwhile, the scheme with key region
extraction (i.e., MLFA method) is named S4. From Table 7, the PLCC results of various
features in S3 and S4 on different databases can reflect the following two conclusions:

(1) S3 and S4 have similar PLCC performance on the bottom-up layer (i.e., fh). However,
the performance of S3 is reduced on the top-down layer, especially for fM. Theoreti-
cally, most regions of the 3D synthesized images are not geometrically distorted. In
S3, the features are extracted throughout the entire image, and the local geometric
distortions are too subtle to be extracted. However, S4 adopts key region extraction,
which highlights the regions of weak geometric distortion. Hence, the interference
of most non-geometric distortion regions is effectively eliminated. The experimental
data indeed verifies this theoretical explanation, i.e., the PLCC of S4 is nearly twice as
high as S3 in fM on two databases.

(2) Different from fM, the PLCC performance of fdef, fblu, and fstr on the top-down layer is
slightly affected by key region extraction. fM is a multi-dimensional feature and is ob-
tained by concentrated attention. By contrast, fdef, fblu, and fstr, are single-dimensional
features, and extracted from corresponding distortions via decentralized attention.
Thus, the latter features are more distortion-specific, and insensitive to the regional
interference in different scenes. The analysis is validated by the experimental results,
which the PLCC of S3 slightly decreases within 0.04 compared to S4 in terms of fdef,
fblu, and fstr.

Table 7. PLCC comparison with or without key region extraction.

Database Scheme fh fdef fblu fstr fM

IRCCyN_IVC_DIBR_images S3 0.5409 0.5760 0.6248 0.3956 0.3535
S4 0.5416 0.6108 0.6358 0.4331 0.6906

IETR DIBR image S3 0.4278 0.2972 0.4092 0.3367 0.2094
S4 0.4271 0.3365 0.4165 0.3681 0.4544

In short, the experimental results on both two databases verify the effectiveness of
the key region extraction on the top-down layer. In particular, the strategy of key region
extraction plays a decisive role in the performance of fM, which means that the key region
extraction is close relative to concentrated attention, and is a potential reason for the
superiority of the overall model.

4.8. Feature Ablation Experiments

To analyze the contribution of the feature component, we also perform feature ablation
experiments on the IRCCyN_IVC_DIBR_images database in which fh, fdef, fblu, fstr, and
fM are permuted and combined into 17 models. The experimental results are listed in
Table 8, and the best results are marked in bold. From extensive experimental results, two
arguments can be made.
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(1) M1–M5, composed of one feature, have poor performance, i.e., PLCC is below
0.7 roughly. In M6–M11, the feature components reach three, and the PLCC ranges
from 0.7465 to 0.8174. For M12–M16, the feature components are increased to four,
and the PLCC is further improved and stabilized in 0.8294 to 0.8538. In M17, PLCC is
the best and equals 0.8757, when the feature components are five. The experimental
data show that the performance increases in steps and gradually stabilizes with the
addition of feature components. Hence, each feature is an essential part of the MLFA
method and can significantly increase the accuracy and stability of the IQA model.

(2) Among these models, M12 and M17 are emphatically compared. In M12, the features
are merely obtained by decentralized attention (as traditional distortion-classification-
based 3D synthesized IQA metrics do). In M17, the features are acquired via feature
integration theory, i.e., the interaction of decentralized attention and concentrated
attention (as the MLFA method does). Obviously, the performance of M17 is better
than M12, i.e., PLCC and SRCC are 0.0353 and 0.0988 higher than M12, and RMSE is
0.0145 lower than M12. The performance comparison demonstrates that the MLFA
method, which uses the strategy of feature integration theory, achieves higher feature
utilization and improves the consistency with the subjective scores.

Table 8. Performance of different feature components on the IRCCyN_IVC_DIBR images database.

Models
Features IRCCyN_IVC_DIBR_Images

fh fdef fblu fstr fM PLCC SRCC RMSE

M1
√

0.5416 0.3670 0.7050
M2

√
0.6108 0.3543 0.6248

M3
√

0.6358 0.5375 0.6420
M4

√
0.4331 0.3829 0.7605

M5
√

0.6906 0.5639 0.6022
M6

√ √ √
0.8174 0.7558 0.4518

M7
√ √ √

0.7465 0.6680 0.5366
M8

√ √ √
0.8029 0.7301 0.4856

M9
√ √ √

0.8103 0.7085 0.4698
M10

√ √ √
0.7895 0.7088 0.4850

M11
√ √ √

0.7781 0.6887 0.5049
M12

√ √ √ √
0.8404 0.7591 0.4251

M13
√ √ √ √

0.8378 0.7735 0.4353
M14

√ √ √ √
0.8294 0.7511 0.4537

M15
√ √ √ √

0.8373 0.7598 0.4497
M16

√ √ √ √
0.8538 0.7997 0.4146

M17
√ √ √ √ √

0.8757 0.8579 0.4106

Figure 8 shows four images in the IRCCyN_IVC_DIBR_images database, which in-
cludes different geometric distortions. We extracted their features of the single-dimensional
channel (i.e., fh, fdef, fblu, fstr) separately and listed the results. It can be seen that the pro-
posed feature extraction method acquires the largest value in their corresponding images,
as shown in bold. Moreover, if there are several kinds of distortions in an image, the
MLFA model can still work very well. For example, the ‘blurry’ images also include some
stretching distortion. The value of stretching feature is extracted as 0.0422 but less than
0.0553 of the ‘stretching’ image. This further verifies that the relationship between the
proposed feature extraction model and their corresponding distortion is highly consistent,
and the feature extraction model can reflect image distortion levels pretty well.
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5. Conclusions

In this paper, we have proposed an NR IQA metric based on visual-entropy-guided
MLFA for 3D synthesized images. Taking into account the stimulation of energy entropy to
the human visual attention mechanism, different geometric distortions are divided into
bottom-up layer and top-down layer. The ratio of 0-value pixels and the transition threshold
are combined to calculate the hole feature on the bottom-up layer. In the meantime,
based on key distorted region extraction, we adopt the interaction of decentralized and
concentrated attentions to obtain the features of insignificant geometric distortions on
the top-town layer. The final objective scores are obtained by regressing the features on
multiple visual attention layers through RF. Extensive experiments have demonstrated that,
compared with classical and state-of-the-art metrics, our MLFA method achieves better
performance both on two public synthesized image databases and has a higher consistency
with human subjective perception.

Author Contributions: C.J. designed and completed the algorithm and drafted the manuscript.
Z.P. co-designed the algorithm and polished the manuscript. W.Z. proofread the manuscript. F.C.
analyzed the experimental results. G.J. co-designed the algorithm. M.Y. polished the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant
Nos. 61771269, 61620106012, 61871247, 62071266, and 61931022, the Natural Science Foundation of
Zhejiang Province under Grant No. LY20F010005, the Natural Science Foundation of Ningbo under
Grant No. 2019A610107, the Science and Technology Research Program of Chongqing Municipal
Education Commission under Grant No. KJZD-K202001105, and the Scientific Research Foundation
of Chongqing University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buisine, J.; Bigand, A.; Synave, R.; Delepoulle, S.; Renaud, C. Stopping Criterion during Rendering of Computer-Generated

Images Based on SVD-Entropy. Entropy 2021, 23, 75. [CrossRef] [PubMed]
2. Qiao, Y.; Jiao, L.; Yang, S.; Hou, B.; Feng, J. Color Correction and Depth-Based Hierarchical Hole Filling in Free Viewpoint

Generation. IEEE Trans. Broadcast. 2019, 65, 294–307. [CrossRef]
3. Lin, Y.; Yu, M.; Chen, K.; Jiang, G.; Chen, F.; Peng, Z. Blind Mesh Assessment Based on Graph Spectral Entropy and Spatial

Features. Entropy 2020, 22, 190. [CrossRef] [PubMed]
4. Li, B.; Tian, M.; Zhang, W.; Yao, H.; Wang, X. Learning to Predict the Quality of Distorted-then-Compressed Images via a Deep

Neural Network. J. Vis. Commun. Image Represent. 2021, 76, 103004. [CrossRef]

http://doi.org/10.3390/e23010075
http://www.ncbi.nlm.nih.gov/pubmed/33419115
http://doi.org/10.1109/TBC.2019.2901391
http://doi.org/10.3390/e22020190
http://www.ncbi.nlm.nih.gov/pubmed/33285965
http://doi.org/10.1016/j.jvcir.2020.103004


Entropy 2021, 23, 770 19 of 20

5. Cui, X.; Peng, Z.; Jiang, G.; Chen, F.; Yu, M. Perceptual Video Coding Scheme Using Just Noticeable Distortion Model Based on
Entropy Filter. Entropy 2019, 21, 1095. [CrossRef]

6. Deng, C.; Wang, S.; Bovik, A.C.; Huang, G.; Zhao, B. Blind Noisy Image Quality Assessment Using Sub-Band Kurtosis. IEEE
Trans. Cybern. 2020, 50, 1146–1156. [CrossRef]

7. Guan, X.; He, L.; Li, M.; Li, F. Entropy based Data Expansion Method for Blind Image Quality Assessment. Entropy 2020, 22, 60.
[CrossRef]

8. Zhan, Y.; Zhang, R. No-Reference JPEG Image Quality Assessment Based on Blockiness and Luminance Change. IEEE Signal
Process. Lett. 2017, 24, 760–764. [CrossRef]

9. Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep Learning-Based Channel Estimation. IEEE Commun. Lett. 2019,
23, 652–655. [CrossRef]

10. Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE
Trans. Image Process. 2006, 15, 3440–3451. [CrossRef]

11. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

12. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process.
2012, 21, 4695–4708. [CrossRef] [PubMed]

13. Saha, A.; Wu, Q. Full-reference image quality assessment by combining global and local distortion measures. Signal Process. 2016,
128, 186–197. [CrossRef]

14. Zhang, Y.; Mou, X.; Chandler, D.M. Learning No-Reference Quality Assessment of Multiply and Singly Distorted Images with
Big Data. IEEE Trans. Image Process. 2020, 29, 2676–2691. [CrossRef] [PubMed]

15. Bosc, E.; Callet, P.L.; Morin, L.; Pressigout, M. An edge-based structural distortion indicator for the quality assessment of 3D
synthesized views. In Proceedings of the Picture Coding Symposium (PCS), Krakow, Poland, 7–9 May 2012; pp. 249–252.

16. Conze, P.-H.; Robert, P.; Morin, L. Objective view synthesis quality assessment. In Proceedings of the International Society for
Optical Engineering (SPIE), Burlingame, CA, USA, 27 February 2012; pp. 8256–8288.

17. Battisti, F.; Bosc, E.; Carli, M.; Callet, P.L.; Perugia, S. Objective image quality assessment of 3D synthesized views. Signal Process.
Image Commun. 2015, 30, 78–88. [CrossRef]

18. Ling, S.; Callet, P.L. Image quality assessment for free viewpoint video based on mid-level contours feature. In Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 79–84.

19. Ling, S.; Callet, P.L. Image quality assessment for DIBR synthesized views using elastic metric. In Proceedings of the 17th ACM
International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1157–1163.
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