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In recent decades many efforts have been made towards a rigorous definition of
complexity in different branches of science (see [1–12] and references therein). However,
despite all the work done so far, there is not yet a consensus on a precise definition.

The reason behind such interest stems from the fact that at least at an intuitive level,
complexity, no matter how we define it, is a physical concept deeply intertwined with
fundamental aspects of the system. In other words, we expect that a suitable definition of
complexity of the system could allow us to infer relevant conclusions about its behavior.

Therefore, it is of utmost relevance to provide a precise definition of an observable
quantity which allows measurement of such an important property of the system. Thus,
when dealing with a situation that intuitively is judged as “complex”, we need to be able
to quantify this complexity by defining an observable measuring it.

Among the many definitions that have been proposed so far, most of them resort to
concepts such as information and entropy, and are based on the intuitive idea that com-
plexity should, somehow, measure a basic property related to the structural characteristics
of the system.

This Special Issue of Entropy is devoted to the discussion of the possible definition of
the complexity of self-gravitating systems and their applications.

An extension of the definition of complexity based on the work developed by López-Ruiz
and collaborators [7,10] has already been proposed for self-gravitating systems in [13–18].

However, such a definition suffers from two drawbacks, which motivated the intro-
duction of a quite different definition which was proposed in [19] for the static spherically
symmetric case, and extended further in [20] to the general full dynamic case.

The definition given in [19], although intuitively associated with the very concept
of “structure” within the fluid distribution, is not related (at least directly) to information
or disequilibrium; rather it stems from the basic assumption that the simplest system (or
at least one of them) is represented by the homogeneous fluid with isotropic pressure.
Having assumed this fact as a natural definition of a vanishing complexity system, the
very definition of complexity emerges in the development of the fundamental theory of
self-gravitating compact objects, in the context of general relativity.

The variable responsible for measuring complexity, which we call the complexity
factor, appears in the orthogonal splitting of the Riemann tensor, and the justification for
such a proposition, roughly speaking, is as follows.

For a static fluid distribution, the simplest system is represented by a homogeneous
(in the energy density), locally isotropic fluid (principal stresses equal). So, we assign zero
value of the complexity factor for such a distribution. Next, let us recall the concept of
Tolman mass [21], which may be interpreted as the “active” gravitational mass, and may
be expressed, for an arbitrary distribution, through its value for the zero-complexity case
plus two terms depending on the energy density inhomogeneity and pressure anisotropy,
respectively. These latter terms in turn may be expressed through a single scalar function
that we call the complexity factor. It obviously vanishes when the fluid is homogeneous
in the energy density, and isotropic in pressure, but also may vanish when the two terms
containing density inhomogeneity and anisotropic pressure cancel each other out. Thus, as
in [7], vanishing complexity may correspond to very different systems.
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When dealing with time-dependent systems, we face two different problems; on the
one hand, we have to generalize the concept of complexity of the structure of the fluid
distribution to time-dependent dissipative fluids, and on the other hand we also have to
evaluate the complexity of the patterns of evolution and propose what we consider to be
the simplest of them.

In [20] it was shown that the complexity factor for the structure of the fluid distribution
is the same scalar function as for the static case, which now includes the dissipative
variables. As for the simplest pattern of evolution, it was shown that the homologous
condition characterizes the simplest possible mode. However, as was shown later on,
it may be useful to relax this last condition to enlarge the set of possible solutions, by
adopting the so-called quasi-homologous condition, which was done in [22].

The axially symmetric static case has been considered in [23], while some particular
cases of cylindrically symmetric fluid distributions have been studied in [24,25]. Further
applications of the concept of complexity as defined in [19] may be found in [26–30].
Always within the context of general relativity, exact solutions for static fluid distributions
endowed with hyperbolical symmetry and satisfying the condition of minimal complexity
were presented in [30], while dynamic solutions endowed with hyperbolical symmetry
and satisfying the condition of minimal complexity were obtained in [31], such solutions
evolve in the so-called quasi-homologous regime.

The concept of complexity as defined in [19] has also been extended to other theories
of gravity in [32–51].

All the above-mentioned cases concern fluid distributions (which eventually may be
charged); however, the vacuum case has barely been treated. The only known example
is the extension of the complexity factor as defined in [19] to the vacuum solutions of
the Einstein equations represented by the Bondi metric [52]. A complexity hierarchy was
established in this case, ranging from the Minkowski spacetime (the simplest one) to
gravitationally radiating systems (the most complex).

Open Issues

As follows from the comments above, we have already available a good candidate for
measuring the complexity of a self-gravitating system. However, it is by no means unique
and it is therefore pertinent to ask what alternative definitions to the complexity factor as
defined in [19] may be proposed. In the same line of arguments, the simplest patterns of
evolution assumed so far are the homologous and the quasi-homologous regimes. However,
once again, it is not clear whether or not other patterns of evolution could also fit the role
of the simplest pattern of evolution.

Additionally, we believe that a definition of complexity for vacuum space–time is
worth considering. Finally, new exact solutions to the field equations in the context of
the Einstein theory or any alternative one, would serve as a test-bed for the definition
of complexity.

Based on these remarks, we propose below a list of questions which we would like to
see treated in the manuscripts submitted to this Special Issue. It is of course a partial list,
and it goes without saying that any manuscript devoted to a subject related to the concept
of complexity of self-gravitating systems, but not mentioned in the list below, would also
be welcome.

• Are there alternative definitions of complexity different from the one proposed in [19]?
• How can we extend the definition of complexity for vacuum space–time?
• Besides the homologous and the quasi-homologous regime, could we define another

pattern of evolution that could qualify as the simplest one?
• Can we relate the complexity factor(s) in the non-spherically symmetric case to the

active gravitational mass, as in the spherically symmetric case?
• Can we single out a specific family of exact axially symmetric static solutions satisfying

the vanishing complexity factor(s) condition?
• Can any of the above solutions be matched smoothly to any vacuum Weyl solution?
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• The definition of complexity proposed in [19] is not directly related to entropy or
disequilibrium, although it is possible that such a link might exist after all. If so, how
could such relationship be brought out?

• Could it be possible to provide a definition of the arrow of time in terms of the
complexity factor?

• How is the complexity factor related to physical relevant properties of the source, in
terms of stability or maximal degree of compactness?

• How does the complexity factor evolve? Do physically meaningful systems prefer
vanishing complexity factors?

• Should a physically sound cosmological model have a vanishing complexity factor?
Should it evolve in the homologous or quasi-homologous regime?

• The complexity factor for a charged fluid is known, but what is the complexity factor
for a different type of field (e.g., scalar field?).

• How should we define the complexity factor in the context of other alternative theories
of gravity that have not been considered so far?

• How can we find new solutions satisfying the vanishing complexity factor? Could we
use the general methods described in [53–57] to obtain such solutions?

• What relevant physical features share solutions satisfying the vanishing complexity factor?
• Is there a link between the concept of complexity and some kind of symmetry

(e.g., motions, conformal motions, affine collineations, curvature collineations, matter
collineations, etc.)?
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