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Due to the proliferation of applications and services that run over communication networks,
ranging from video streaming and data analytics to robotics and augmented reality, tomorrow’s
networks will be faced with increasing challenges resulting from the explosive growth of
data traffic demand with significantly varying performance requirements. This calls for more
powerful, intelligent methods to enable novel network design, deployment, and management.
To realize this vision, there is an increasing need to leverage recent developments in machine
learning (ML), as well as other artificial intelligence (AI) techniques, and fully integrate them
into the design and optimization of communication networks.

In this editorial, we will first summarize the key problem structures in communica-
tion systems where machine learning solutions have been used. Then, we will describe
the areas where there are gaps in learning algorithms for their optimal applications to
communication systems.

In the following, we will describe the different problem structures in communication
systems, which can be solved by ML approaches.

Parametric Optimization with Deep Neural Networks: The formulation of parametric
optimization is given as follows.

x∗(θ) = arg min
x

f (x, θ) (1)

In this problem, the aim is to represent the solution to an entire family of problems
(for all θ). One approach for solving such problems is to use a Deep Neural Network
with θ as an input and x∗(θ) as the output. Using a certain values of θ, the optimization
problem can be solved and these values make the training data for the neural network.
The trained neural network is then used to obtain x∗(θ) for all θ. Such approaches has
been used for beamforming [1] as well as power control [2]. In these problems, the channel
coefficients or the signal-to-noise ratio of the links are the parameters θ based on which
optimal beamforming vectors or power control solution needs to be calculated.

We note that even for a given θ, finding x∗(θ) maybe a hard problem which limits
obtaining enough training data for the problem. Recently, the authors of [2] proposed
an approach where θ is sampled, and a single step along the gradient of the objective
function is taken. This allows more flexibility as the optimization problem do not need to
be fully solved for the training examples. Such an approach has been validated on power
control problems by the authors of [2]. While such direction has great empirical evidence,
convergence rates to global optimal x∗(θ) with samples is an open problem, to the best of
our knowledge.

Reinforcement Learning for Combinatorial Optimization: Many problems in communi-
cation systems require combinatorial optimization, e.g., routing optimization, scheduling,
and resource allocation [3]. Many combinatorial problems are NP-hard, and thus key
approaches for such problems have been approximation algorithms, hand-crafted heuris-
tics, or meta-heuristics [4]. The combinatorial optimization problem can be formulated
as follows: Let V be a set of elements and f : V → R be a cost function. Combinatorial
optimization problem aims to find an optimal value of the function f and any correspond-
ing optimal element that achieves that optimal value on the domain. One of the emerging
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recent trends is to solve combinatorial optimization problems by using a reinforcement
learning approach. In this approach, the combinatorial optimization problem is formulated
as a Markov Decision Process (MDP). The state encodes the current solution, and the action
describes the modification of the current solution. The reward is given by the change
in objective with the modification. The exact state and action encoding depends on the
problem and the approach used. A recent survey of the different approaches based on
reinforcement learning to combinatorial optimization are presented in [5]. We note that
combinatorial optimization approaches using reinforcement learning have been used in
communications to find efficient encoding designs [6–8].

Reinforcement Learning for Dynamic Resource Management: In the presence of dynamic
job arrivals, online resource management of computing and communication resources become
important. Consider an example of a single queue which is serving different types of customers.
The overall objective is to minimize weighted latency of the different types of customers,
where the queue needs to decide which of the customer request to be processed next. This
can be modeled as a Markov decision process with the state as the vector composed of the
queue length of each type of customer, action is to choose which of the customer request to be
processed next, and the cost (negative of reward) is the weighted latency of the served customer.
The current action impacts the next state and leads to a dynamic system. In networking
problems, such scheduling problems occur at all layers, which make the use of reinforcement
learning important in networking problems. In particular, modern networks such as Internet
of Things (IoT), Heterogeneous Networks (HetNets), and Unmanned Aerial Vehicle (UAV)
network become more decentralized, ad-hoc, and autonomous in nature. Network entities
such as IoT devices, mobile users, and UAVs need to make local and autonomous decisions,
e.g., spectrum access, data rate selection, transmit power control, and base station association,
to achieve the goals of different networks including, e.g., throughput maximization, and energy
consumption minimization [9]. This has led to widespread use of reinforcement learning
in networking applications, see [9] for a detailed survey. Some of the applications include
traffic engineering [10], caching [11], queue management [12], video streaming [13], software-
defined networks [14]. In addition to wireless networks, reinforcement learning for dynamic
resource management has been widely used in transportation networks, e.g., vehicle routing
and dispatch [15–17], freight scheduling [18], and traffic signal control [19].

We will now describe some of the areas where novel learning-based solutions are
needed, which have applications in communication research.

Joint Decision of Multiple Agents: Communication systems consist of multiple decision
makers in the system, e.g., multiple base stations. With multiple decision makers, multiple
challenges arise. One of them is that the joint decision requires joint state and joint action
space of the users. However, this is computationally prohibitive. In order to deal with this
challenge, multiple approaches have been proposed. One of the approaches is an approxi-
mation of cooperative multi-agent reinforcement leaning by a mean-field control (MFC)
framework, where the approximation error is shown to be of O(1/

√
N) for N agents [20].

Another approach is the use of decentralizable algorithms, which aim to do centralized
training and decentralized execution [21–23]. Further, there is a distributed approach which
introduces communication among agents during execution [24,25]. Even though multi-
ple approaches have been investigated, efficient complexity-performance-communication
tradeoff is an important research problem.

Multi-objective Optimization: Many realistic applications have multiple objectives,
e.g., capacity and power usage in the communication system [26,27], latency and en-
ergy consumption [28], efficiency and safety in robotic systems [29]. Further, the overall
aim is to optimize a non-linear function of the different objectives. In this setup, standard re-
inforcement learning approaches do not work since the non-linear objective function looses
the additive structure, and thus the Bellman’s Equation does not work anymore in this
setting [30]. Recently, this problem has been studied, where guarantees for model-based
algorithm and model-free algorithm have been studied in [30,31], respectively. The ap-
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proaches have been applied to cellular scheduling, traffic engineering, and queue schedul-
ing problems. However, the research on this direction is still in its infancy, and scalable
algorithms with better guarantees need investigation.

Constraints in Decision Making: Most communication systems have constraints, e.g., power,
latency, etc. Consider a wireless sensor network where the devices aim to update a server
with sensor values. At time t, the device can choose to send a packet to obtain a reward
of 1 unit or to queue the packet and obtain 0 reward. However, communicating a packet
results in pt power consumption. At time t, if the wireless channel condition, st, is weak
and the device chooses to send a packet, the resulting instantaneous power consumption,
pt, is high. The goal is to send as many packets as possible while keep the average power
consumption, ∑T

t=1 pt/T, within some limit, say C. This environment has state (st, qt) as the
channel condition and queue length at time t. To limit the power consumption, the agent
may choose to send packets when the channel condition is good or when the queue length
grows beyond a certain threshold. The agent aims to learn the policies in an online manner
which requires efficiently balancing exploration of state-space and exploitation of the estimated
system dynamics. Similar to the example above, many applications require to keep some costs
low while simultaneously maximizing the rewards [32]. Some attempts to use constrained
reinforcement learning approaches to communication problems can be seen in [12,33,34].

The problem setup, where the system dynamics are known, is extensively studied [32].
For a constrained setup, the optimal policy is possibly stochastic [32,35]. In the domain
where the agent learns the system dynamics and aims to learn good policies online, there
has been work where to show asymptotic convergence to optimal policies and regret
guarantees for infinite horizon [36–38], as well as episodic MDPs [39,40]. Recently, guar-
antees for policy-gradient based approaches have been studied [41,42]. In addition, peak
constraints have also been studied for convergence guarantees [43]. Further, algorithms
with use of deep learning architectures have been studied [12,44]. Scalable algorithms with
better guarantees in presence of constraints still need more investigation.

Adaptivity to changes in the environment: Most existing works on reinforcement learn-
ing consider a stationary environment and aim to find or be comparable to an optimal
policy. In many applications, however, the environment is far from being stationary. As an
example, network demands have diurnal patterns [45]. With dynamic changes in the
environment, the strategies need to adapt. There has been two key approaches to measure
non-stationarity of the environment. The first is where there are L changes in the system,
and another is where the total amount of variation in the MDP is bounded by ∆. Different
algorithms have been proposed to optimize the dynamic regret in this setup, with dif-
ferent amounts of information on L and ∆, for a comprehensive set of algorithms from
regret perspective the reader is referred to [46]. Ideally, we require an adaptive algorithm
that works without the knowledge of L and ∆, while achieving optimal regret bounds.
Such algorithms have been shown in the episodic MDPs in tabular and linear cases [46].
There are partial results for infinite-horizon tabular case, while the proposed algorithm
is not scalable. This is because the proposed algorithm opens multiple instances of base
algorithms which increases the complexity of the approach. Recently, there has been an
approach based on change point detection on the experience tuples to detect the change in
MDPs [47], which has been applied to a sensor energy management problem and a traffic
signal control problem in [47], and extended to adapt to diurnal patterns in demand of
ride-sharing services in [48,49]. However, theoretical guarantees for such an approach
are open.
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