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Abstract: Variational autoencoders are deep generative models that have recently received a great
deal of attention due to their ability to model the latent distribution of any kind of input such as
images and audio signals, among others. A novel variational autoncoder in the quaternion domain
H, namely the QVAE, has been recently proposed, leveraging the augmented second order statics of
H-proper signals. In this paper, we analyze the QVAE under an information-theoretic perspective,
studying the ability of the H-proper model to approximate improper distributions as well as the
built-in H-proper ones and the loss of entropy due to the improperness of the input signal. We
conduct experiments on a substantial set of quaternion signals, for each of which the QVAE shows
the ability of modelling the input distribution, while learning the improperness and increasing the
entropy of the latent space. The proposed analysis will prove that proper QVAEs can be employed
with a good approximation even when the quaternion input data are improper.

Keywords: variational autoencoder; generative learning; quaternion neural networks; properness;
second-order circularity

1. Introduction

Generative learning models have been recently gained considerable attention due to
their surprising performance in producing highly realistic signals of various types [1–4].
They have been successfully employed in a wide variety of applications, such as image-
to-image translation [5], image fusion [6], face de-identification [7], natural language
generation [8], data augmentation on ancient handwritten characters [9], MRI super-
resolution [10], brain tumor growth prediction [11], generative modeling of structured-
data [12].

Among such generative methods, the variational autoencoders (VAEs) have been
proven to perform stochastic variational inference and learning even for large datasets
and intractable posterior distributions [13]. The main advantages of the VAEs rely on
their capability of learning smooth latent representations of the input data. This has led
VAEs to be used in several fields of applications, including high-quality image genera-
tion [14], speech enhancement [15], music style transfer [16], data augmentation [17], 3D
scene generation [18], gesture similarity analysis [19], text generation [20] and sequential
recommendation [21], among others.

Recent advances on VAEs focus both on theoretical aspects, such as the improvement
of the stochastic inference approach [22], and on architectural aspects, such as the use of
different types of latent variables to learn local and global structures [23], the definition of
hierarchical schemes [24], rather than the use of a multi-agent generator [25]. Among the
most recent VAE models, we focus on the quaternion-valued variational autoencoder
(QVAE), which exploits the properties of quaternion algebra to improve performance,
on one hand, and to significantly reduce the overall number of network parameters [26],
on the other hand.
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The basic approach on which relies the QVAE is the learning in the quaternion domain,
which results in significant advantages in the presence of multidimensional input data
(mainly 3D and 4D data) showing some inter-channel correlations. This properties have
been widely exploited in shallow learning models, such as linear and nonlinear adaptive
filters [27–34]. Another fundamental property of quaternion-valued learning is the Hamil-
ton product, which has recently favored the proliferation of convolutional neural networks
in the quaternion domain [35–38]. Due to their capabilities, quaternion-valued learning
methods have been applied in several applications, including spoken language understand-
ing [39], color image processing [40,41], 3D audio [42,43], speech recognition [44], image
generation [45], quantum mechanics [46], risk diversification [47], gait data analysis [48].

As with any other complex-valued and hypercomplex-valued algebra, the quaternion-
valued learning can rely on the properties of the second-order statistics, which are fun-
damental to characterize the input data based on their correlation. A characterization of
correlation is achieved in terms of covariance and pseudo-covariance. In particular, ran-
dom variables and processes with a vanishing pseudo-covariance are called proper [49–51].
Properness is preserved under affine transformations. Moreover, it should be considered
that the multivariate Gaussian density assumes a natural form only for proper random
variables. Properness in the quaternion domain, also denoted as H-properness, is based
on the vanishing of three different complementary covariance matrices [51]. In the case
of possibly improper random variables, we need to take into account the quaternion con-
jugate and augmented second-order statistics [51–53]. The degree of improperness of a
quaternion random vector can be measured in several ways. An interesting approach
is to use an improperness measure based on the Kullback–Leibler (KL) divergence be-
tween the augmented covariance matrix and its closest proper version in the KL sense [51].
Quaternion second-order statistics have been used in several applications, from indepen-
dent component analysis to canonical transform [54,55], from linear to nonlinear adaptive
filtering [56–58].

Recently, augmented quaternion second-order statistics have been also exploited for
the first time for the development of a deep learning model, the QVAE [26]. Deep VAEs
should model long-range correlations in data [59] and quaternion layers allow to leverage
internal latent relations between input features. The QVAE also leads to a significant
reduction in the number of parameters, which may benefit the decoder. A full improper
QVAE should be developed to completely exploit correlated multidimensional input data,
such as color images. However, on one hand an improper QVAE may be too complex
due to the sophisticated structure of the complete covariance matrix. On the other hand,
the proper QVAEs may represent a good tradeoff between complexity and performance,
even when input data are improper. To this end, an information-theoretic analyses, thanks
to its relation with improperness measures, may help in understanding how good such
approximation may be in terms of properness [60,61].

In order to understand and demystify the theoretical capabilities of generating data
with a proper model when the input data is either proper or improper, in this paper we
investigate the proper QVAE from an information-theoretic perspective. To this end, we
show how the KL divergence may establish a relation between the loss function of the
QVAE and the improperness measure. We exploit the KL-based measure to show the
entropy loss due to the improperness of the quaternion random vector input of the QVAE,
or equivalently, the mutual information among the quaternion random vector and its
involutions over three pure unit quaternions [51,52]. We show how the entropy in input
data plays an important role in the generation of improper signals. Furthermore, we
illustrate how the improperness can be calibrated in the latent space in order to enhance
its differential entropy. Simulation results on artificial signals will prove the ability of the
proper QVAE to be adopted with a good approximation for the generation of improper
signals. Moreover, results will show how the properness is preserved by the model, even if
it is composed of several nonlinearities.
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The paper is organized as follows. In Section 2, we briefly introduce the main proper-
ties of quaternion algebra that are exploited in quaternion-valued processing. In Section 3,
we analyze the quaternion properness and the augmented second-order statistics of
quaternion-valued signals, which are then exploited to define the quaternion variational
autoencoders. In particular, the proper QVAE is described in Section 4, while in Section 5
we define the relation between the loss function of the QVAE and the properness measures
of the involved signals by using the quaternion-valued entropy. Experimental simulations
are shown in Section 6, while final conclusions are derived in Section 7.

2. Fundamental Properties of Quaternion Algebra

Quaternions are hypercomplex numbers consisting of four components, a scalar part
and three imaginary ones, and elements of R4: The quaternion domain H is an extension
of the complex domain C. A quaternion is identified as

q = q0 + q1 ı̂ + q2 ̂ + q3κ̂ = q0 + q (1)

in which q0, q1, q2, q3 are real coefficients and ı̂, ̂, κ̂ imaginary units. A quaternion
without the scalar part q0 is named pure quaternion and represents a vector in R3 since the
imaginary units play the role of orthonormal basis, being ı̂ = (1, 0, 0), ̂ = (0, 1, 0), κ̂ =
(0, 0, 1). The quaternions’ peculiarity is the relation among imaginary components which
comply with the following properties:

ı̂2 = ̂2 = κ̂2 = −1

ı̂ ̂ = ı̂× ̂ = κ̂; ̂κ̂ = ̂× κ̂ = ı̂; κ̂ ı̂ = κ̂ × ı̂ = ̂ (2)

ı̂ ̂ = − ̂ı̂; ̂κ̂ = −κ̂ ̂; κ̂ ı̂ = −ı̂κ̂.

The fundamental properties of quaternion operations are then described below.
Addition and subtraction of two quaternions. Addition and subtraction among quater-
nions q and p are performed component-wise:

q± p = q0 ± p0 + (q1 ± p1)ı̂ + (q2 ± p2) ̂ + (q3 ± p3)κ̂. (3)

Scalar product of two quaternions. As for addition and subtraction, the scalar product is
also an element-wise operation:

q · p = q0 p0 + q1 p1 + q2 p2 + q3 p3. (4)

Vector product of two quaternions. Due to the relations among imaginary units in (2) and
the non commutative properties of vector product in the hypercomplex domain, a new
kind of vector multiplication has to be introduced. The Hamilton product, denoted by ⊗,
is at the core of quaternion neural networks and it is described by the following equation:

q⊗ p = (q0 + q1 ı̂ + q2 ̂ + q3κ̂)(p0 + p1 ı̂ + p2 ̂ + p3κ̂)

= (q0 p0 − q1 p1 − q2 p2 − q3 p3)

+ (q0 p1 + q1 p0 + q2 p3 − q3 p3)ı̂

+ (q0 p2 − q1 p3 + q2 p0 + q3 p2) ̂

+ (q0 p3 + q1 p2 − q2 p1 + q3 p0)κ̂.

(5)

The Hamilton product can also be written in concise form:

q⊗ p = q0 p0 − q · p + q0p + p0q + q× p,

from which it is straightforward obtaining the Hamilton product for pure quaternions,
by fixing q0 = p0 = 0:
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q⊗ p = −q · p + q× p.

Conjugate of a quaternion. The conjugate of a quaternion number is obtained by subtract-
ing the imaginary units instead of adding them to the scalar part:

q∗ = q0 − q1 ı̂− q2 ̂− q3κ̂ = q0 − q. (6)

Norm of a quaternion. The norm of a quaternion is simply the euclidean norm in R4, thus

|q| = √qq∗ =
√

q2
0 + q2

1 + q2
2 + q2

3.
Quaternion polar form. Quaternions admit an Euler representation, so considering a
quaternion q, an angle θ ∈ R and a pure unit quaternion ν = q/‖q‖, the polar form is:

q = |q|(cos(θ) + ν sin(θ)) = |q|eνθ

in this setting, cos(θ) = q0/‖q‖ and sin(θ) = ‖q‖/‖q‖.
Quaternion involutions. A quaternion involution is generally defined as a mapping which
is its own inverse or self-inverse mapping. Quaternions have infinite involutions that can
be generalized by [62]:

qν = −νqν (7)

in which q is the quaternion to be involved and ν is the axis of the involution. Interestingly,
the scalar part of the quaternion is invariant to any kind of involution while the imaginary
parts are reflected across the axis of the involution. Consequently, the conjugate of a
quaternion is an involution since the scalar part remains unchanged while the imaginary
units are reflected through the axis. Together with the conjugate, there are three crucial
involutions we have to consider, which are perpendicular involutions:

qı̂ = −ı̂qı̂ = q0 + q1 ı̂− q2 ̂− q3κ̂

q ̂ = − ̂q ̂ = q0 − q1 ı̂ + q2 ̂− q3κ̂

qκ̂ = −κ̂qκ̂ = q0 − q1 ı̂− q2 ̂ + q3κ̂

(8)

In the perpendicular involutions, the quaternion is involved across its imaginary units.

3. Augmented Second-Order Statistics and Quaternion Properness
3.1. Statistics for Quaternion Random Signals

In order to understand the behavior of a signal, it is often crucial to study its statistics.
A generic Gaussian signal can be completely described by the mean and the covariance
matrix. For quaternion random variables, the mean can be easily derived by (3), resulting
in another quaternion:

µq = q0 + q1 ı̂ + q2 ̂ + q3κ̂ (9)

in which qδ, δ = {0, 1, 2, 3} is the average of each quaternion component. Conversely,
deriving second-order statistics for quaternion signals requires more detailed computations
due to the interactions among components. As previously demonstrated for complex
numbers [49], the covariance matrix is not able to describe the second-order information
and the complementary covariance matrix needs to be considered too. Consequently,
taking the standard covariance matrix of a quaternion signal into account is not sufficient
to cover the complete second-order statistics; thus, the information is augmented through
three complementary covariance matrices [52]. In order to build this complete statistical
description, we need to introduce the information brought by the perpendicular involutions
qı̂, q ̂, qκ̂ introduced in (8). The matrices to be considered are then:

Cqq = E{qqH}, Cqqı̂ = E{qqı̂H}, Cqq ̂ = E{qq ̂H}, Cqqκ̂ = E{qqκ̂H} (10)
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which are, respectively, the standard covariance matrix and the three complementary
matrices. Note that (·)H is the conjugate transpose operator. These matrices are still
quaternions, so they comprise a real part and three imaginary units. As an example, we
analyze the first matrix Cqq. It is composed by the covariance matrices of the quaternion
components q0, q1, q2, q3 as follows:

Cqq =
(
Cq0 + Cq1 + Cq2 + Cq3

)
+
(
Cq1q0 − Cq0q1 + Cq3q2 − Cq2q3

)
ı̂

+
(
Cq2q0 − Cq0q2 + Cq1q3 − Cq3q1

)
̂

+
(
Cq3q0 − Cq0q3 + Cq2q1 − Cq1q2

)
κ̂.

(11)

Similarly, also the matrices Cqqı̂ , Cqq ̂ , Cqqκ̂ can be determined and written in the above
quaternion form.

The composition and the combination of the standard covariance matrix and of the
complementary covariance matrices give rise to the augmented covariance matrix C̃qq
which recovers the complete second-order information of the augmented quaternion vector
q̃ =

[
q, qı̂, q ̂, qκ̂

]
[52]. The matrices in (10) have interesting properties: each component of

the matrix is symmetric but the component corresponding to the involved imaginary unit
is, instead, skew-symmetric. These characteristics are included in the Hermitian property,
according to which Cqqı̂ is ı̂-Hermitian, Cqq ̂ is ̂-Hermitian and Cqqκ̂ is κ̂-Hermitian.
The derived augmented covariance matrix follows.

C̃qq = E
{

q̃q̃H
}
=


Cqq Cqqı̂ Cqq ̂ Cqqκ̂

CH
qqı̂ Cqı̂qı̂ Cqı̂q ̂ Cqı̂qκ̂

CH
qq ̂ Cq ̂qı̂ Cq ̂q ̂ Cq ̂qκ̂

CH
qqκ̂ Cqκ̂qı̂ Cqκ̂q ̂ Cqκ̂qκ̂

. (12)

By means of the mean and augmented covariance matrix and following [52], it is
now possible to define a generic quaternion Gaussian distribution p(q̃) = p

(
q, qı̂, q ̂, qκ̂

)
,

which is Gaussian if its components are jointly normal:

p(q̃) =
1

(π/2)2N det
(
C̃qq

)1/2 exp
{
−1

2

(
q̃− µ̃q

)H
C̃−1

qq

(
q̃− µ̃q

)}
, (13)

where the mean µ̃q is the mean of the augmented quaternion q̃ and N the number of samples.

3.2. H-Properness

In the previous subsection, we describe the complete second-order information of a
quaternion signal by means of the augmented covariance matrix which is comprised of the
covariance matrices of the quaternion with its perpendicular involutions. Due to the four
degrees of freedom in quaternions, the H domain includes manifold properness definitions
that are employed to characterize the relation of q with qı̂, q ̂, qκ̂ in some particular cases.

The lighter condition is described in the R-properness, which holds for a signal that
is uncorrelated with one of its perpendicular involutions, leading to the cancellation of
either one of the complementary covariance submatrices Cqqı̂ , Cqq ̂ , Cqqκ̂ . A slightly
harder constraint is brought by the C-properness which claims the nullification of two
of the three complementary covariance submatrices. A composition of the two already
defined properties gives rise to the strongest properness condition, the H-properness.
The latter holds when each complementary covariance matrix vanishes, that is Cqqı̂ =
Cqq ̂ = Cqqκ̂ = 0. However, according to [52], an H-proper variable has also several
other features that are reported in Table 1. An H-proper signal is then uncorrelated with
its perpendicular involutions and, according to the second property in Table 1, it also
has uncorrelated components q0, q1, q2 q3 which have equal variance σ2. From these
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assumptions, we can derive the corresponding augmented covariance matrix for H-proper
signals which will be symmetric and positive definite:

Ĉqq = E
{

q̃q̃H
}
=


Cqq 0 0 0

0 Cqı̂qı̂ 0 0
0 0 Cq ̂q ̂ 0
0 0 0 Cqκ̂qκ̂

 = 4σ2I. (14)

Table 1. Fundamental properties of H-proper random variables.

E
{

q2
δ

}
= E

{
q2

ε

}
= σ2 ∀δ, ε = {0, 1, 2, 3}

E{qδqε} = 0 ∀δ, ε = {0, 1, 2, 3}, δ 6= ε
E{qq} = −2σ2 ∀δ = {0, 1, 2, 3}
E
{
|q|2

}
= 4σ2 ∀δ = {0, 1, 2, 3}

The structure of the matrix Ĉqq is invariant to any linear transformation ν = T
H

q
where T is a quaternion weight matrix [54], thus ensuring that the quaternion properness
is preserved by linear layers in neural networks.

As for improper signals in Section 3.1, a probability density function can be derived
for H-proper signals too. In this framework, the distribution is described by the covariance
matrix in (14) which is equal to 4σ2I and by the mean of the quaternion component in (9):

p(q̃) =
1

(2πσ2)
2N exp

{
− 1

2σ2

(
q− µq

)H(
q− µq

)}
(15)

In order to evaluate the properness of an augmented zero-mean quaternion random
vector, a simple and fast coefficient was proposed in [32]. It indicates the correlation of the
signal with its perpendicular involutions through the complementary covariance matrices.
Note that the coefficient is bounded in [0, 1] and it is 0 in the case of H-proper signals, while
it is equal to 1 for improper ones. It is defined as

Iα =

∣∣∣∣Cqqα

Cqq

∣∣∣∣, α = ı̂, ̂, κ̂. (16)

In our experiments, since we are dealing with H-proper signals, we can just report the
average of the three coefficients, simply denoted as I. Conversely, if we evaluate R or C
proper signals, we should consider each coefficient independently.

4. The H-Proper Variational Autoencoder

Originally introduced in [26] (the implementation of the QVAE is available online at:
https://github.com/eleGAN23/QVAE, accessed on 1 July 2021), the quaternion variational
autoencoder (QVAE) is a generative model which learns and controls the latent distribution
of an n-dimensional H-proper quaternion input. Once the distribution is learnt, then the
model is able to generate new samples from it thanks to the probabilistic relation between
the two quaternion spaces of the input and of the latent distribution.

Similar to the variational autoencoder (VAE) for real-valued distributions in [13],
the QVAE grasps the mapping of the original quaternion input x ∈ H into the latent space
described by a prior distribution pθ(ε), with ε ∈ H. Then, it learns the conditional distribu-
tion pθ(x|z) of the input with respect to the latent vector z ∈ H, that is the prior distribution
adjusted with the statistics learnt by the encoder. However, due to the intractability of the
mapping distribution pθ(z|x), the QVAE introduces an approximation qφ(z|x) to encode
the input into the latent vector, as in its real-valued counterpart [13]. The parameters of this
recognition model (or inference model) are then optimized to match the true intractable

https://github.com/eleGAN23/QVAE
https://github.com/eleGAN23/QVAE
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conditional distribution as qφ(z|x) ≈ pθ(z|x). By employing this approximation, it is
possible to express the marginal likelihood

log(pθ(x)) = λDKL
(
qφ(z|x)‖pθ(z|x)

)
+ Lθ,φ(x)

= −λDKL
(
qφ(z|x)‖pθ(ε)

)
+ Eq{log(pθ(x|z))}

where Lθ,φ(x) is the so called evidence lower bound (ELBO) [13] with respect to the param-
eters φ and θ, which is a lower bound on the log-likelihood of the data distribution [63].
DKL(·) is the KL divergence between the H-proper centered isotropic Gaussian variable
pθ(ε) ∼ N (0, Ĉεε) and the H-proper Gaussian qφ(z|x) ∼ N (µz, Ĉzz), with Ĉzz taking
the form of (14) and Ĉεε = 4Iσ2 . The KL divergence in the quaternion domain takes the
following form:

DKL
(
qφ(z|x)‖pθ(ε)

)
=

1
2

(
Tr
{

Ĉ−
1
2

εε ĈzzĈ−
1
2

εε

}

+ µH
z Ĉ−1

εε µz − N + log

det
(

Ĉεε

)
det
(

Ĉzz

)
.

(17)

The optimization of the QVAE cost function (17) goes through the minimization of
the KL divergence, through which the QVAE forces the recognition model to be as close as
possible to the prior distribution by operating on the statistics µz and Ĉzz.

5. Kullback–Leibler Divergence as Entropy Loss Due to Improperness

The KL divergence in (17) can be indeed seen as a measure of the improperness of the
recognition model. As defined in [51], the measure is described by:

P = min
Ĉεε∈C

DKL

(
Ĉzz‖Ĉεε

)
(18)

where C is the set of all the augmented covariance matrices respecting one of the quaternion
propernesses introduced in Section 3.2. This measure estimates the distance of the recogni-
tion model qφ(z|x) with an augmented covariance matrix Ĉzz from the H-proper isotropic
Gaussian variable pθ(ε) described by the augmented covariance matrix Ĉεε, by assuming
µz = 0.

Since we are considering distributions with zero mean, the first term in the second
line of the KL Equation (17) vanishes. Furthermore, Equation (18) minimizes the diver-
gence over the set C; thus, in the H-proper case, the matrix which minimizes (18) is the
diagonal covariance matrix defined in (14). Employing these considerations and with some
computations, we can reduce the improperness measure to:

P = −1
2

log
(

det
{

Ĉ−
1
2

εε ĈzzĈ−
1
2

εε

})
. (19)

If the signal for which we want to measure the improperness, i.e., the recognition
model qφ(z|x), is H-proper, then the measure will be close to 0 since Ĉzz will be close to
Ĉεε in the KL sense. Conversely, if the signal is improper, P will be far from 0.

By defining the improperness measure through the KL, it is possible to leverage the
relation among the divergence and the entropy and exploring the mutual information of
the signal. Therefore, we can use the definition of the differential entropy for a generic
quaternion vector [51,52] to compute the entropy of the recognition model qφ(z|x) :
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H
(
qφ(z|x)

)
= 2N log

(πe
2

)
+

1
2

log
(

det
(

Ĉzz

))
= log

((πe
2

)2N
det
(

Ĉzz

) 1
2
)

.
(20)

The entropy expression can be simplified for isotropic H-proper variables such as the
prior distribution pθ(ε), by replacing the value of the determinant from (14), which is equal
to (4σ2)4N .

H(pθ(ε)) = log

((πe
2

)2N
((

4σ2
)4N

) 1
2
)

= 2N
(

log
(

2πeσ2
))

.

(21)

In [52], the authors proved that the differential entropy is maximum for H-proper
signals. Thus, (21) is an upper bound for the general entropy definition (20), hence:
H
(
qφ(z|x)

)
≤ H(pθ(ε)).

Then, according to [51], the improperness measure P can be rewritten through the
difference between the entropy of the generic augmented quaternion and the entropy of
the isotropic variable:

PH = H(pθ(ε))−H
(
qφ(z|x)

)
. (22)

This formulation elegantly evaluates the loss of entropy that is due to the improper-
ness of the recognition model. Therefore, we can measure the properness of the recognition
model and compute the QVAE entropy loss due to the measure of properness (or improper-
ness) of qφ(z|x). Thus, when optimizing the QVAE cost function during training, together
with the ELBO minimization, through the KL divergence we are jointly minimize also the
difference between the Gaussian distributions pφ(ε) and qφ(z|x) and the entropy loss of
the latter.

Since the KL under the information theoretic perspective allows the QVAE to deal also
with improper signals, although the QVAE is originally set up for H-proper distributions,
by means of an approximation it can be employed also for improper random variables. Let
us consider an incoming improper signal x ∈ H, so both the recognition model qφ(z|x)
and the generative model pθ(x|z) are represented by improper distributions too. We leave
instead unchanged the prior distribution pθ(ε), which is the centered isotropic H-proper
distribution. On the training stage, the KL divergence of the QVAE will move the improper
distribution towards the H-proper prior distribution. While the distribution learning is
well performed by the model, the KL takes care of increasing the entropy by slightly
reducing the improperness. However, the overall original (improper) structure of the signal
is preserved by the QVAE which just aims at enhancing the entropy of the recognition
model, while leaving free the generative model.

6. Experimental Results

In this section, we report the sets of experiments we performed for testing the reli-
ability of the improperness measures and the performances of the H-proper variational
autoencoder in learning proper as well as improper distributions.

6.1. Proper and Improper Test Signals

We consider two proper signals and two improper signals and we evaluate the im-
properness coefficient (16), the differential entropy (20), the improperness measure (18)
and the entropy loss (22). We expect that the proper signals have improperness measure
and coefficients close to 0, as well as the entropy loss. On the contrary, the entropy should
be greater than for the corresponding improper signals.

As input signals, we consider:
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1. H-proper signal x with independent Gaussian components defined as:

P1: xδ ∼ N (0.03, 1)

with δ = {0, 1, 2, 3}.
2. H-proper filtered signal x from a colored Gaussian noise η[n] as [31]:

P2: x[n] = bx[n− 1] +

√
1− b2
√

4
η[n]

with b = 0.5.
3. Improper signal x from a quaternion q with components:

q0 = 0, q1 ∼ N (0, 1), q2 ∼ N (0, 1), q3 ∼ N (0, 1)

and composed as:
I1: x = zeq, with z ∼ N (0.03, 1)

4. Improper filtered signal x from a Gaussian noise η[n] as:

I2: xδ[n] =
√

1− b2
δ + (1− bδ)η[n]

with b = [0.75, 0.78, 0.82, 0.85] and δ = {0, 1, 2, 3}.
Mild improper signals (i.e., with Iα different from 0 and to 1) can be generated

by varying the coefficient b in the improper signal I2. As an example, by setting b =
[0.01, 0.2, 0.75, 0.99], it is possible to obtain a mild-improper signal with 0.4 < Iα < 0.7.
However, we want to stress the H-proper QVAE with completely improper cases that are
the extreme and most difficult cases. For this reason, we only consider improper signals
with Iα = 1.

We compute the measures defined in Section 5 for each of these signal by using the
Quaternion Toolbox for MATLABr (S. J. Sangwine and N. Le Bihan. Quaternion Toolbox
for MATLABr, Version 2 with support for Octonions, 2013. First public release 2005.
Software library available online at: http://qtfm.sourceforge.net/, accessed on 1 July 2021)
and report the results in Table 2. As we expect, the proper signals have low improperness
coefficients, meaning that the complementary covariances are sparse, while the coefficients
for the improper signals are reasonably equal to 1. On the other hand, the differential
entropy is low and negative for the improper signals, while it is highest for the proper
ones, proving that (21) is an upper bound for the generic differential entropy. Moreover,
the entropy loss is almost 0 for proper signals, confirming that there is no loss of entropy
due to the improperness. On the contrary, the improper signals come at the cost of a high
entropy drop.

Table 2. In order to prove the measures and the assumptions presented in Section 5, we compute the
average improperness coefficient I (16), the differential entropy H (20), the improperness measure
P (19) and entropy loss PH (22) for different kinds of H-proper and improper signals. The entropy
H is highest for the H-proper signals, while the improperness measure and coefficients are close to
0. As is clear from P and PH, there is a low entropy loss due to the improperness in the first two
signals, while it is high for the last two, improper, random vectors.

Signal I H P PH

P1. (proper) 0.0393 4.0177 0.0049 0.0049
P2. (proper) 0.0528 5.0174 0.0103 0.0103

I1. (improper) 1.0000 −51.6040 50.9298 51.0691
I2. (improper) 0.9999 −45.4454 51.3121 51.1843

http://qtfm.sourceforge.net/
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6.2. Proper and Improper Signals for an H-Proper QVAE

We consider a plain QVAE with a quaternion encoder network and a quaternion
decoder network. The first model is comprised of a stack of five quaternion fully connected
layers (QFC) with an increasing number of weights [32, 64, 128, 256, 512], as in [26,64] and
split ReLU activation function as the PixelHVAE in [65]. The statistics of the latent distribu-
tion are learnt through two additionally quaternion linear layers with number of weights
equal to 4 times the latent dimension, which we fix to 25. The decoder has a mirrored
structure, and thus quaternion fully connected layers are piled up as [512, 256, 128, 64, 32],
with an additional refiner layer at the end of the stack. We do not consider including the
quaternion batch normalization [38,45] since it can introduce randomness which may affect
the correct learning of the distribution statistics [24,66]. For every experiment, the prior
distribution is a centered isotropic H-proper quaternion Gaussian distribution, as described
in Section 4. We employ a training signal with 1000 samples, a validation set of 500 and a
test set of 1000 without mini batches and we perform 5k iterations with Adam having a
learning rate equal to 0.0005. As in the original QVAE [26], the cost function is a weighted
sum of a quaternion mean squared error as defined in [37], and the KL divergence of Sec-
tion 5, for which we fix the scale parameter λ equal to 0.1. Figure 1 shows the architecture
of the QVAE we consider in our tests.

Latent
representation

Input
Quaternion Signal

Reconstructed
Quaternion Signal

QFC Layer

QFC Layer

QFC and
ReLU

activation
Block

QFC Layer
QFC and

ReLU
activation

Block
and

QFC refiner

MSE

Figure 1. Plain QVAE architecture. The input signal can be either proper or improper. The encoder
network is composed of quaternion fully connected layers (QFC) and it learns the statistics of the
original distribution and employs them to build the latent representation, on which the KL divergence
acts. The representation is then passed to the decoder network which reconstruct the input signal,
evaluating the result by means of a quaternion MSE loss (MSEq).

For each experiment, we evaluate the performance of the model in the reconstruction
task and generation task as well as on the ability of preserving the properness or the
improperness of the incoming signal. In order to assess the generation ability of the model,
in Figure 2, we plot the generated components and the complete signal sampling from
the model trained on a proper signal and on an improper signal. While the components
x0, x1, x2, x3 of the improper signal show different variances, the ones from the proper
signal has the same variance according to the properties in Table 1. Figure 3 reports instead
the original and reconstructed distributions for the proper and improper case, in the first
and in the second line, respectively, with an MSE equal to 0.1161 for the proper signal and
to 0.01293 for the improper one. In the figure, the first four columns represent the four
components x0, x1, x2, x3, while the last one displays the distribution of the complete signal
x. The H-QVAE is able to perfectly reconstruct the input distribution even in the improper
case, grasping the different variances in each component and learning the complete signal.
Thus, the QVAE is effective even if approximated for improper distributions, for which it is
capable of learning the correct statistics of each component.



Entropy 2021, 23, 856 11 of 17

3
0.0

0.2

0.4

0.6

0.8

P
ro

p
er

x0

x1

x2

x3

x

−2 −1 0 1 2
Components

0.0

0.2

0.4

0.6

0.8

Im
p

ro
p

er

x0

x1

x2

x3

−2 −1 0 1 2
Complete distribution

x

Figure 2. Generated samples from the QVAE trained on the proper signal P1 (first line), and on the
improper signal I2 (second line). On the left are the generated components, on the right are the com-
plete distribution of the signal. While H-proper components have the same variance, the improper
ones have different variance values, respecting the properties of the original signal.
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Figure 3. Original and reconstructed distributions from the QVAE trained with the proper signal
P1 in the first line, and with improper signal I2 in the second line. The QVAE is able to perfectly
learn the different variance values for each of the four components, thus fully reconstructing the
distribution of the input signal.

Table 3 presents the results of the improperness and entropy analysis on the recon-
structed and generated signals on the test set. As for the original samples in Table 2, we
compute the improperness coefficient (16), the differential entropy (20), the improper-
ness measure (18) and the entropy loss (19). It is worth noting that the QVAE trained
on H-proper signals still generates and reconstruct H-proper signals, as measured by
the improperness measures and the entropy loss. Moreover, the entropy of this kind of
signal is higher than the entropy of the improper samples. While we already knew that
H-properness is preserved by linear transformations, this result asserts that it is maintained
also for non-linear transformations brought by activation functions in neural networks,
adding an important milestone in the study of H-proper signals.

Another interesting result comes when the QVAE is trained on improper signals.
While the improperness coefficients of both reconstructed and generated signals are close
to the coefficients of their respective original signals in Table 2, indicating the improperness
of these random variable, the entropy values and losses values are intriguing. Indeed,
the differential entropy is increased with respect to the input signal (originally, ≈−51 and
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≈−45), approaching values from ≈−10 up to 0, meaning that the H-proper structure of
the QVAE works towards an increase in entropy and an improperness reduction in the
input signal. Confirming this, the loss of entropy PH was drastically reduced with respect
to the original signal, ranging from approximately 8 and 13 while the input entropy loss is
around ≈51.

Hence, the H-proper QVAE can be approximated to learn improper distributions,
on which it preserves the original structure of the signal while increasing the entropy
of the latent space, at the cost of a limited improperness reduction. Although the slight
modification on the distribution, the QVAE is still able to catch the correct statistics and to
perform a good generation as well as a precise reconstruction, as Figures 2 and 3 show.

To further assess the performance of the QVAE and provide a comparison with its real-
valued counterpart, we test a real-valued VAE on the same signal benchmarks. We expect
that the real-valued VAE performs similar to the QVAE in the proper case, but that the
quaternion model outperforms the real-valued one when dealing with improper signals.
Indeed, thanks to the quaternion algebra properties, the QVAE is able to learn intra-
component correlations while the VAE do not catch them. Thus, in cases with no correlation
among components i.e., proper signals, the two models should have similar performances.
On the contrary, in the improper case where the correlation among components is higher
the QVAE gains advantages from the quaternion algebra and obtains better performances.
Results and details are reported in the Appendix A. However, thanks to the quaternion
algebra properties, the QVAE has just 25% of free parameters with respect to its real-valued
counterpart.

Table 3. Average improperness coefficient I (16), differential entropy H (20), improperness measure
P (19) and entropy loss PH (22) for different outputs from the QVAE (Recons stands for the recon-
structed signal, Sample for the generated one) with different kinds of H-proper and improper signals.
The QVAE preserves the structure of the signal, learning the properness and improperness nature of
the input.

Signal Out I H P PH

P1. (proper) Recons 0.0287 5.1519 0.0030 0.0029
Sample 0.0537 2.3859 0.0096 0.0095

P2. (proper) Recons 0.0640 3.4614 0.0124 0.0123
Sample 0.1099 −0.2705 0.0348 0.0347

I1. (improper) Recons 0.9989 0.3749 9.9700 9.9700
Sample 0.9930 −3.6337 8.1208 8.1208

I2. (improper) Recons 0.9998 −8.1100 13.0767 13.0767
Sample 0.9964 −10.7147 12.1469 12.1469

7. Conclusions

In this paper, we have conducted a thorough analysis on a H-proper quaternion-valued
variational autoencoder (QVAE) under an information-theoretic perspective, investigating
the entropy loss of the model due to the measure of improperness in the input signal. We
have proved that the QVAE can be approximated for improper signals, for which it increases
the entropy of the latent space by slightly reducing the improperness. Moreover, it is worth
noting that, in each of our experiments, the properness is preserved also for nonlinear
transformations brought by activation functions and not only for simple quaternion linear
operations. As a conclusion, the QVAE is able to learn the correct distribution of both
H-proper and improper random variables, while the measure of improperness, as well
as the entropy of the latent space, can be calibrated through the KL divergence in the
cost function.
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Appendix A. Evaluation of the Real-Valued VAE on Proper and Improper Signals

In order to further assess the performance of the H-proper QVAE, we perform a set
of experiments with a real-valued VAE on the same benchmarks. In order to make a fair
comparison, the hyperparameters are the same as for the QVAE, while the architecture
is built with real-valued blocks. Moreover, the KL divergence is the standard divergence
in [13]. However, due to the algebra in real domain, the VAE has 506, 316 parameters while
the QVAE has just 127, 980, thus the proposed model in the quaternion domain has exactly
the 25% of parameters with respect to its real-valued counterpart. Thus, the QvAE is able to
learn the improperness of the input signal and to generate or to reconstruct precise signals
while requiring 1/4 parameters and memory. Moreover, the QVAE is able to perfectly
reconstruct the improper signal, as shown in Figure 3, while the real-valued VAE makes
some errors. These results can be seen in Figures A1 and A2. As we expect, the QVAE
outperform the real-valued VAE when dealing with correlated signals i.e., improper cases,
since the proposed method leverages the quaternion algebra properties, including the
Hamilton product, to learn intra-components relations, while the real-valued VAE is not
able to catch them. Thus, while for proper signals the performances between VAE and
QVAE are similar, in the improper cases the QVAE has better performances thanks to the
Hamilton product in its core blocks. Finally, the improperness measures and corresponding
entropy loss for each of the signals considered are reported in Table A1.

Table A1. Average improperness coefficient I (16), differential entropy H (20), improperness measure
P (19) and entropy loss PH (22) for different output from the real-valued VAE (Recons stands for the
reconstructed signal, Sample for the generated one) with different kinds of H-proper and improper
signals. As the QVAE, also the VAE, which is however 75% larger in terms of free parameters, is able
to learn the improperness of the input.

Signal Out I H P PH

P1. (proper) Recons 0.031 5.4547 0.0031 0.0030
Sample 0.0697 5.4498 0.0148 0.0147

P2. (proper) Recons 0.0396 4.8138 0.0050 0.0050
Sample 0.9879 −21.2687 6.7205 6.7205

I1. (improper) Recons 0.9983 −8.9158 14.0350 14.0350
Sample 0.9995 −8.2952 16.1035 16.1035

I2. (improper) Recons 0.9984 −9.0598 14.2591 14.2591
Sample 0.9977 −9.2681 13.7240 13.7240
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Figure A1. Generated samples from the real-valued VAE trained on the proper signal P1 and on the
improper signal I2. These model generates good samples (upper figure), even if the variance is larger
with respect to the QVAE.
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Figure A2. Reconstructed distributions from the real-valued VAE on signal P1 (proper) in the upper
line and I2 (improper) in the lower line. Although the larger number of parameters, the VAE commits
some errors in both the signal for the reconstruction task, while the QVAE is able instead to perfectly
reconstruct original signals. The MSE values are 0.1237 for the proper signal and 0.0191 for the
improper one.
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