
Addendum: Justification from statistical mechanics 

that entropy and Gibbs energy is an exact function of 

action. 

Boltzmann’s statistical definition of entropy defined the probability of finding a particular 

arrangement of particles in different energy levels as the quotient of the total number of possible 

permutations divided by the product of the number of permutations in each level. This result was 

the basis of statistical mechanics as developed later by Gibbs, allowing Boltzmann to relate statistical 

entropy to the thermal entropy defined earlier by Clausius (S = ʃdQ/T).  

The following analysis uses notation given by Walter Moore (1962), taking care to distinguish 

between the partition function for the Gibbs canonical ensemble Z equivalent to the summation 

Σgje-Ej/kT involving the internal energy E per mole and the partition function z (lower case ) 

symbolising the microcanonical ensemble equivalent to the singular state summation Σgje-εj/kT.   

Boltzmann’s famous conjecture regarding the relation of entropy to diversity in arranging the energy 

of N particles is given in (i).  

S = klnW  = ʃdQ/T        (i) 

where 

 W  =  N!/(N1! N2! N3! N4! ….Nj!)      (ii)  

Using Stirling’s approximation for the logarithm of a factorial, we have (where ω is a normalizing 

factor), 

lnW  = (N1lnN1 + N2lnN2 + N3lnN3 …)ω + C     (iii) 

According to Boltzmann (1896), “the most probable distribution of velocities of the molecules in our 

cells will be the one for which lnW is a maximum”.  At this equilibrium point the colliding particles 

are considered (Boltzmann, 1896) to scatter into new energy cells while conserving energy.  Cells 

differing most in energy are the least probable. Without collisions establishing equilibrium for the 

Maxwell-Boltzmann distribution, minimizing the difference between neighbouring levels, maximum 

entropy as expressed in klnW would be impossible. Boltzmann also equates Clausius’ version of 

entropy as the reversible addition of heat with the following formula involving an exponential of 

temperature (T3/2) and the inverse of partial density (ρ-1), the equivalent of specific volume. 

S = ʃdQ/T =  kln[T3/2ρ-1] +constant      (iv) 

In his H-theorem and in his discussion of how it is related to irreversibility and increasing entropy 

and initial conditions, Boltzmann describes the evolutionary behavior of a function of the form H 

equal to the integral ʃf lnf dω, where f is a function taking on the role of relative probability. 

From Boltzmann’s relationship, using Stirling’s approximation for the logarithm of a factorial we 

have entropy as follows (v). 

S = k(NlnN–N) – kΣ(NjlnNj - Nj)       (v) 



Influenced by Clausius and Boltzmann, Gibbs defined the microcanonical ensemble for a system (i.e. 

molecule) of fixed energy (εj), volume (V) and particle number (N). Substituting in equation (v) for Nj 

= Ngje-εj/kT/Σgje-εj/kT and taking Σgje-εj/kT  as the microcanonical partition function z, where gj is the 

occupancy or degeneracy of level j, we obtain,  

 S = k(NlnN–N) – kN(lnN – lnz – 1 – εj/kT)      (vi) 

S = Nεj/T + kNlnz  =  E +  klnzN         (vii) 

The molecular partition function z can be considered as representative of a system’s trajectory 

independent of time, since its energy state is fixed. The relationship between the canonical and 

microcanonical partition functions is established by the following simplified relationship (viii), 

indicating different ways of assigning particles to the energy levels, determining the distinct state of 

the system. 

Z = Σe-Ej/k T  = Σe(-εj(1) + εj(2) + εj(3) …. εj(N))/kT) =  Σe(-εj(1)/kT e-εj(2) /kT e -εj(3) /kT …. e-εj(N))/kT) (viii) 

Since each particle has the same set of allowed energy levels this sum is equal to (ix). 

Z  = (Σje-εj/kT)N  =  zN        (ix) 

For example, consider a simple case of two particles (1) and (2) and two energy levels ɛ1 and ɛ2. 

These can be assigned in four ways.  The sum over states is given by (x). 

Z = e-E1/kT +  e-E2/kT + e-E3/kT +  e-E4/kT      (x) 

which is equal to (xi). 

e-2ɛ1/kT  +  2e-ɛ1/kTe-ɛ2/kT +  e-2ɛ2/kT = (Σe-ɛj/kT)2= zN     (xi) 

Gibbs’ canonical ensemble of systems free to fluctuate in energy content with time, had a partition 

function for many systems in the same heat bath; here, where particles of gas or liquid are free to 

explore the entire volume, a divisor of N! must be included to correct the number of distinguishable 

states (Moore, 1962), given the particles are identical. 

Z = zN/N!        (xii) 

This is an important distinction regarding independence of molecular systems applying only to ideal 

gases free of binding interactions. To the extent a system is liquid or solid, this distinction no longer 

applies since the individual molecules can be distinguished by location. Furthermore, for ideal or 

dilute gases the vast majority of energy levels j at ambient temperatures or higher will have only 

single occupancy (i.e. unit degeneracy with gj = 1), we can take Σe-εj/kT  = z.  

From quantum mechanics for a particle in a box of volume V, we have translational energy levels 

with quantum number n, a cubic partition function z is determined (Moore, 1962) as follows. 

z  = Σe–(n2h2/8ml2)/kT  = V(2πmkT)3/2/h3      (xiii) 

=  Na3{2πm2ϋ2/3}3/2/h3 where V = Na3and ϋ is Maxwell’s root-mean-square velocity 

= Nr3{(πmv)2}3/2/h3  where a= 2r and ϋ2 = 3πv2/8 where v is the mean speed 

= N(mrv/2ħ)3 = Nnt
3       ћ = h/2π (xiv) 



Replacing the root-mean-square velocity ϋ with the mean speed v in a Maxwell-Boltzmann 

distribution (Brown, 1968) and inserting a symmetry factor of 2 to prevent double counting of the 

particles action eliminated the need for a previous zt correction factor (10.22967=1.08543x23, 

Kennedy at al., 2015, 2019) in the denominator. For the calculations in Tables 1, 2 and 3, nt
3 is of the 

order of 105 to 106, indicating the high nondegeneracy and the freedom of action of the molecules. 

They are far from confined to the minimal action volume defined by ħ3. According to Boltzmann, 

these Carnot cycle systems are highly disordered, compared to having an nt
3 nearer 1 when phase 

space is minimal. Then we can interpret the microcanonical translational partition function Σe-εj/kT as 

the total cubic action space, as long as the temperature is sufficiently high.  

z = Nnt
3        (xv) 

So, noting this result for the molecular partition reflects an inverse of the scale of the degeneracy for 

each energy level, the levels are easily accessed for translation by collisions, given the translational 

energy barrier for transition from one level to another is easily exceeded by kT. Indeed, at 

equilibrium only the levels very near to the average energy are occupied (Schrödinger, 1952).  Under 

these environmental conditions of temperature and pressure we then have the partition function as 

reflecting the cubic action, validating the classical procedure used to calculate entropy from action 

used in this paper.  

Then for the canonical partition function for multiple systems we find, 

Z  = Σje-Ej/kT =  zN/N!  =  (Nnt
3)N/N!     (xv) 

Using Stirling’s approximation that N! ≡ (N/e)N , 

Z = (nt
3eN)N/NN = (nt

3e)N  

Taking the logarithm preceding with -kT, we can obtain the Helmholtz energy (A) 

  -kTlnZ = A 

= -kTln(nt
3e)N  

= -NkTln[(nt)3] -NkT = G  - RT    (xvi)  

Schrödinger (1952) remarked that -NkTln(1/ζ), where zeta inversed (1/ζ) is equal to 

(2πmkT/h2)3/2V/N) or nt
3 is the thermodynamic potential (Gibbs function or Gibbs energy) and that 

nt
3 is thus obtained as a function of (T3/2V/N), one also identified mentioned above by Boltzmann for 

defining entropy and that the partial derivative of kTlnZ (Schrödinger’s ψ function) with respect to 

1/nt
3.   

Schrödinger (1952) further remarked that at high temperature and low density, conditions similar to 

those given here for the Carnot cycle, that “the quantum cells are so numerous, that on average, 

even in the most populated region only every 10,000th or 100,000th is occupied at all, …  the 

occupancy is either zero (most of them) or 1, hardly ever 2”. He computes for monatomic helium at 

0 oC  and 1 atm that 1/ζ (= nt
3) is equal to 255,570. “For translation, even at 2-3 K and 100th the 

volume, this factor 1/ζ (nt
3) is still about 100,000”.   

Then for an ideal monatomic gas, from equation (vii) 

  S = Nεj/T + kNlnz  =  E/T +  klnzN 



We have  

S =   E +  klnZ  =  (E – A)/T      (xvii)  

A = G – RT    (when N is one mole) 

  = E – ST 

 G = H - ST  

For diatomic molecules like N2, we have the microcanonical partition function  including a rotational 

term. 

z  =  ztzr  =  Nnt
3jr

2        (xviii) 

From the same relationship as equation (xvi) we have equation (xix). 

Z = (nt
3jr

2eN)N/NN = (nt
3e jr

2)N  

G = H - ST  

These relationships regarding translational entropy for monatomic systems apply for translation to 

all polyatomic gases; they are particularly important as the Gibbs energy G for determining chemical 

potential or distance from equilibrium. For polyatomic gases, the partition functions as action for 

rotation and vibration are easily added (Kennedy et al., 2019), allowing determination of the total 

entropy. 

For molecules like N2, vibrational entropy is negligible even at 640K.  However, in the case of CO2 for 

the vibration resonant with quanta at 15 μm wavelength of importance in greenhouse forcing, some 

22% of the molecules are excited to the first level of 3hv/2, making a significant contribution to the 

entropy (Table).  As shown in the table, the excited vibrational levels can also be expressed in terms 

of translational action and entropy using the formula mrv for the rarer excited species.  Note the 

larger radii rn  of activated species, indicating their low probability but greater impulse δmrv in 

collisions. 

Table. Vibrational energy (ɛ) states for N2 and CO2 indicating translational action of molecules excited 

up to ɛvib = 5hv/2. 

640 K 
N2 

N0/Nn 

=Vn/Vo 
δɛ ergs 

rn/ro= 
@tn/@t0 

ɛ ex action  
kTln(ntn/nto)3 

288 K 
N2 

N0/Nn 

=Vn/Vo 
 rn/ro= 

@tn/@t0 
ɛ ex action  

kTln(ntn/nto)3 

δɛvib  x1013  x1013 δɛvib   x1013 x1013 

e-2hv/kT 102582 10.1954 46.812 10.1954 5hv/2 1.367e11 5151.40 10.1954 

e-hv/kT 320.284   5.0977   6.842 5.0977 3hv/2 369605 77.771 5.0977 

eo 1.000     0   1.000 0 hv/2 0 1.000 0 

         

640 K 
CO2 

No/Nn 

=Vn/Vo 
δɛ ergs 

rn/ro= 
@tn/@t0 

ɛ ex action  
kTln(ntn/nto)3 

288 K 
CO2 

No/Nn 

=Vn/Vo 
rn/ro= 

@tn/@t0 
ɛ ex action  

kTln(ntn/nto)3 

δɛvib     δɛvib   x1013 x1013 

e-2hv/kT 20.065  2.6499   2.717 2.6499 e-2hv/kT 783.99 9.221 2.6499 

e-hv/kT  4.479  1.3250   1.648 1.3250 e-hv/kT 28.000 3.037 1.3250 

eo 1.000     0   1.000      0 eo 1.000 1.000 0 

         

 


