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Abstract: Channel state information (CSI) provides a fine-grained description of the signal propa-
gation process, which has attracted extensive attention in the field of indoor positioning. However,
considering the influence of environment and hardware, the phase of CSI is distorted in most cases.
It is difficult to extract effective location features in multiple scenes only through the determined
artificial experience model. Graph neural network has performed well in many fields in recent
years, but there is still a lot of room to explore in the field of indoor positioning. In this paper,
a phase feature extraction network based on multi-dimensional correlation is proposed, named
Cooperation-Graph Convolution Network (C-GCN). The purpose of C-GCN is to extract new fea-
tures of multiple correlation and to mine the relationship between antenna and subcarrier as much
as possible. C-GCN is composed of convolution layer and graph convolution layer. In the graph
convolution layer, C-GCN regards each subcarrier of each antenna as a node in the graph network,
constructs the connection by the correlation between the antenna and the subcarrier, and aggregates
the node vectors by graph convolution. In the convolution layer, there is a natural corresponding
structure between data packets, C-GCN extracts the fluctuation with convolution in Euclidean space.
C-GCN combines these two layers, and applies end-to-end supervised training to obtain effective
features. Extensive experiments are conducted in typical indoor environments to verify the superior
performance of C-GCN in restraining error tailing. The average positioning error of C-GCN is 1.29 m
in comprehensive office and 1.71 m in garage. Combined with the amplitude feature, the average
positioning error is 0.99 m in comprehensive office and 1.14 m in garage.

Keywords: channel state information; phase; feature extraction; fingerprint localization

1. Introduction

With the popularity of mobile devices, location-based services (LBS) provide great
convenience for smart cities, industrial production and people’s daily life. Because of the
shelter of buildings and the complexity of indoor environment, Global Navigation Satellite
System (GNSS) that widely used outdoors is unable to achieve high-precision positioning
indoors. To solve this problem, assistant signal sources like Wi-Fi [1,2], Bluetooth [3,4],
RFID [5] and ultra-wideband (UWB) [6,7] have been proposed to provide ample features.
Localization methods including angle of arrival-based method (AOA) [8], time of arrival-
based method (TOA) [9], and fingerprint- based method [10] are proposed to locate targets.

Commercial Wi-Fi devices have gradually opened up the physical layer information,
making it possible to obtain channel state information (CSI), such as Intel Wi-Fi link
5300 NIC [11] and Atheros ar9580 chipset [12]. Compared with the received signal strength
information (RSSI), CSI contains rich features from multiple antennas and subcarriers,
providing a fine-grained description of the indoor environment.

CSI data consists of amplitude and phase. The amplitude feature is greatly affected
by NLOS(Non Line of Sight) and noise, while the phase feature is distorted by sampling
frequency offset, center frequency offset and packet delay et al. The existing research shows
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that the processed phase can effectively reduce the influence of occlusion [13] , so this
paper focuses on the phase feature extraction of CSI in the indoor environment.

In order to extract effective positioning feature from the original phase, Y. Zhuo et al. [14]
discussed five factors that affect the phase accuracy: carrier frequency offset (CFO), sam-
pling frequency offset (SFO), packet detection delay (PDD), PLL phase offset (PPO) and
phase ambiguity (PA). M. Kotaru et al. [15] corrected the known linear error part by
linear transformation. Y. Zhuo et al. [16] proposed a model to fit the nonlinear error.
Xuyu Wang et al. proposed to extract phase features by self-encoder BiLoc [17] and convo-
lutional neural network CiFi [13], and eliminate errors caused by PDD, SFO and CFO by
calculating the phase difference between antennas.

The existing phase error correction algorithms are mainly based on the artificial
experience nonlinear model and linear transformation, and the interaction between phases
is mainly calculated by difference. Artificial experience model is only a partial reflection of
the phase shift, which is often difficult to adapt to a variety of complex environments, and
its adaptability in a variety of scenarios needs to be further verified.

With the upgrade of hardware computing ability, deep learning has been widely
used in CSI based indoor positioning. In 2016, Wang et al. [18] proposed DeepFi system,
which extracts features based on CSI amplitude by self-encoder, and takes the weights
of the neural network as new fingerprint. Then position estimation is carried out based
on probability algorithm. CFI [19] extracted feature of calibrated phase by self-encoder.
The location errors in open and complex environments are 1.08 m and 2.01 m, respectively.
In 2017, CiFi [13] calculated AOA by CSI phase difference, and assembled AOA into
image. These images are sent to convolutional neural network for position estimation, and
shows better performance than DeepFi and CFI. In 2019, Hsieh et al. [20] proposed one-
dimensional CNN network. Based on the idea of classification, multiple one-dimensional
convolution layers were used to deal with CSI amplitude and RSS respectively, and the
results show that one-dimensional CNN can greatly reduce the network parameters while
maintaining accuracy. BiLoc [17] improved the amplitude and AOA image respectively by
self-encoder, and applied probability algorithm to match. Compared with the previous
DeepFi, CFI and CiFi, which use single information, BiLoc uses both amplitude and
phase, effectively improving the positioning accuracy. ResLoc [21] extracted the AOA and
amplitude more accurately by the two-channel residual sharing learning mechanism.

Although deep learning has achieved great success in Euclidean data, more and
more applications need to handle data from non-Euclidean space and carry out effec-
tive analysis. For example, building a recommendation system based on interpersonal
relationship [19,22,23], material analysis based on molecular structure [24,25], and impact
analysis based on Citation relationship [26,27]. There are unordered nodes with variable
size in the non-Euclidean space, and the neighbors of each node is different, which is
usually named graph data. Some important operations (such as convolution) are no longer
directly applicable to the graph structure. In addition, a core assumption of existing ma-
chine learning algorithms is that instances are independent of each other. However, for
graph data, each instance (node) is connected to each other through a complex connection.
The complexity of graph data brings challenges to existing machine learning algorithms.

In 2013, Bruna [28] proposed a GCN variant based on spectral theory for the first time.
Since then, there have been many improved spectral based convolution networks [26,29–31].
However, every time the spectral method is updated, it needs to deal with the whole graph,
which is difficult to parallel or expand. So, the convolution network based on space has
been widely concerned in recent years. Space-based convolution network convolutes
the information of adjacent nodes directly into the graph domain, which improves the
efficiency of operation.
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In this paper, a phase feature extraction network based on multi-dimensional corre-
lation is proposed, named Cooperation-Graph Convolution Network (C-GCN). C-GCN
aims to extract new features with multiple correlations, excavate the relationship between
antenna and subcarrier, then integrate the fluctuation of a single location into the database.
Based on the time-space structure proposed by Chen Chen et al. [11]. There are two types
of correlation in C-GCN: (1) correlation between antennas and subcarrier correlation in
non-Euclidean space, (2) correlation between adjacent data packets in Euclidean space.
A detailed analysis of these two correlations will be included in the design challenges in
Section 3. C-GCN is mainly composed of convolution layer and graph convolution layer. In
the graph convolution layer, C-GCN regards each subcarrier of each antenna as a node in
the graph network, constructs the connection by the correlation between the antenna and
the subcarrier, and aggregates the node vectors by graph convolution. In the convolution
layer, there is a natural corresponding structure between data packets, C-GCN extracts the
fluctuation with convolution in Euclidean space. C-GCN combines these two layers, and
applies end-to-end supervised training to obtain effective location features.

The main contributions of this paper are summarized as follows [16]:

1. To the best of our knowledge, this is the first work to apply the graph convolution
in CSI based indoor positioning. We elaborate on how to connect the data with the
correlation between phases, and optimize the parameters with the constraints of the
loss function to obtain new features that are effective for position estimation. This
paper presents the feasibility of position estimation based on the irregular correlation
in CSI.

2. Affected by random noise, the fingerprint fluctuation of a single location point is
extracted from the data packet with natural corresponding data structure by Euclidean
space convolution. This kind of time correlation only exists between nodes with the
same subcarrier sequence number, which effectively reduces the impact of random
noise during position estimation.

3. Extensive experiments are conducted in typical indoor environments to verify the
superior performance of C-GCN in restraining error tailing. Besides, we also introduce
amplitude features to further verify the feasibility of bi-modal positioning based on
the new feature generated by C-GCN.

In the reminder of this paper, we provide the background of CSI in Section 2. Then the
structure of C-GCN is presented in Section 3. The methodology is described in Section 4.
Evaluation is implemented in Section 5. Section 6 summarizes this paper.

2. Preliminary

In Wi-Fi network, OFDM (Orthogonal Frequency Division Multiplexing) system
divides communication channels into orthogonal subchannels with different frequencies.
Channel state information (abbreviated as CSI) reflects the characteristics of communication
link between transmitter and receiver. The data packet received by the receiver includes
time stamp, RSSI, antenna number, noise, CSI et al. The transmission process in frequency
domain can be expressed as:

Y = HX + N (1)

where Y is the received signal, X is the transmitted signal, H denotes the complex matrix
of channel state information, N represents the additive Gaussian white noise, so CSI can be
expressed as:

Ĥ =
Y
X

(2)

where Ĥ represents the channel frequency response (CFR) of each subchannel.
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The receiver correlates the received signal with the reference signal and samples at
time zero to calculate the CSI. Assume that the reference complex sinusoidal signal of the
frequency f transmitted by the q-th antenna is ej2π f t, and the signal obtained through the
wireless channel hq is hqej2π f t. The corresponding CSI is calculated as follows:

ĥq =
1
T

∫ T

0
hqej2π f te−j2π f t+jvdt = hqejv (3)

where T is the transmission time and v is the relative phase between the receiver and
the transmitter.

In the time domain, channel frequency response is expressed as channel impulse
response (CIR). Its mathematical expression is as follows:

h(τ) =
N

∑
i=1

amie−jθi σ(τ − τi) (4)

ami, θi, τi represent the amplitude, phase and delay of the i-th signal propagation path
respectively. N is the number of multipath, σ(τ) is the pulse function, and CFR and CIR
are mutually Fourier transforms.

3. System Design
3.1. Design Challenges

The phase of CSI is mainly affected by carrier frequency offset, sampling frequency
offset, packet detection delay, PLL phase offset and phase ambiguity. Linear factors are
mainly eliminated by linear transformation, and nonlinear factors are generally fitted
by artificial experience model. However, considering the complexity of obstacles and
the serious impact of multipath in the indoor environment, the fixed artificial experience
model is not good at adapting to the changing indoor scene. For the phase shift caused
by unknown factors, there is no mainstream solution. To extract effective features from
complex and changeable phase data is mainly faced with the following challenges:

First, in the calculation of CSI, a higher packet transmission rate is needed, so the
receiver will get a large number of packets in a short time. Multiple time-dependent packets
obtained at any reference point reflect the fluctuation of the signal. Traditional fingerprint
database mainly stores reference fingerprint in a static way, which is easy to be affected by
random noise. When matching online, it will bring uncontrollable random fluctuations. So
how to apply temporal correlation to fingerprint database of CSI and improve the stability
of location is still a problem to be solved.

Second, each packet contains multiple subcarrier data from multiple antennas.
Spotfi [32] system proposed the Phase relationship between antennas. In Figure 1, uniform
linear array composed of 3 antennas, For AoA of θ, the target’s signal travels an additional
distance of d ∗ sin θ to the second antenna in the array compared to the first antenna. There
is a fixed distance between adjacent antennas, and the signal under the same path will
introduce −2π ∗ d ∗ sin(θ) ∗ f /c phase difference, which can illustrate the correlation be-
tween antennas In addition, affected by multi-path, the delayed signal will have an offset
in the frequency domain, so it will have a greater impact on adjacent signals. This impact
is often not negligible, and it brings the uniqueness of the channel, which is often related to
the ap location. So it’s necessary to explore this correlation introduced by multi-path. But
the stability of the correlation is affected by the environment, which is Challenging to fit it
with a fixed artificial experience model.

Three kinds of correlation including time correlation, antenna correlation and subcar-
rier correlation are discussed, which are also affected by random noise. How to combine
them effectively is the key point of designing an algorithm to extract effective location
features from complex phase.
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Figure 1. Uniform linear array model.

3.2. System Architecture

In this paper, a phase feature extraction network based on multi-dimensional correla-
tion is proposed, named Cooperation-Graph Convolution Network (C-GCN). As a feature
extraction module, C-GCN is applied to both offline and online to extract effective phase
features. The structure of the positioning system is shown in Figure 2.
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Figure 2. Structure of CSI phase feature extration system.

The offline part divides the original data into several groups according to the data
labels and sends them to C-GCN to obtain the corresponding enhanced features as the
fingerprint database. The online part collects real-time CSI phase data and computes new
features in the same way. The last step is to match the real-time data with the fingerprint
database and calculate the location of the target.

The structure of C-GCN is shown in Figure 3. The input includes the original phase
data and the adjacency matrix A. Adjacency matrix is the representation of the connec-
tion between data. The preprocessing of the original phase includes two steps: phase
unwrapping and linear transformation. Phase unwrapping is used to remove the period
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introduced by arctangent function, and linear transformation is applied to remove the
known linear factors.
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Figure 3. Structure of C-GCN.

C-GCN is mainly composed of convolution layer and graph convolution layer. The
convolution layer is used to capture the fluctuation of multiple data packets of a single
location over time. There is a natural corresponding structure between multiple data
packets, which belongs to Euclidean spatial correlation. C-GCN adds the time correlation
to the weight optimization through the convolution layer. The graph convolution layer
is applied to capture the correlation between antenna and subcarrier in a single packet,
which is more flexible and exists both in adjacent antennas (or subcarriers) and one to
many antennas (or subcarriers). In the graph convolution layer, each subcarrier of each
antenna in a single packet is viewed as a node in the graph network, and the edge con-
nection of the graph is established by antenna correlation and subcarrier correlation to
simulate the information transmission between nodes. The specific connection strategies
and mathematical expressions are described in 4.1.1. Inspired by the inception module
in GoogLeNet [19], we use a GCN and a CNN as a block, and we call this block twice in
our network to achieve the best results. The end-to-end supervised learning is applied to
calculate the optimal parameters and iteratively minimize the loss function.

4. Methodolgy

The details of C-GCN is introduced in this section, which consists of two parts: (1) graph
convolution layer in non-Euclidean space and (2) convolution layer in Euclidean space.

4.1. Graph Convolution Layer in Non-Euclidean Space

The graph convolution layer extends the convolution from the traditional Euclidean
space to the non-Euclidean space. The key point of graph convolution layer is to aggregate
the feature Xi of node vi and the feature Xj of its neighbor, and generate a new represen-
tation of node v’s feature by learning function f , where j ∈ N(vi). The process of graph
convolution consists of three steps: (1) aggregate the neighbor node of vector v, (2) aggre-
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gate neighbor nodes with v, and (3) aggregate all nodes. The mathematical expressions of
the above three parts are:

a(k)v = AGGREGATE(k)({z(k−1)
u : u ∈ N(v)}) (5)

z(k)v = COMBINE(k)(z(k−1)
v , a(k)v ) (6)

zG = READOUT({z(k)v |v ∈ G}) (7)

where u is the neighbor node of v, z(k−1)
v represents the k− 1-order aggregation of node u,

a(k)v represents the k-order aggregation result, z(k)v represents the aggregation result with
the node itself, zG represents the aggregation result of all nodes, which is used for graph
vector representation.

4.1.1. Graph Convolution Strategy

Correlation in C-GCN can be divided into two types: correlation in single data package
and correlation in multiple data packages. This section focuses on the relationships in a
single packet. The mathematical expression of a single packet is shown in Equation (8),
where n is the number of antennas and m is the number of subcarriers. There are two
kinds of relations in a single packet: the correlation between antennas (h(i,j), h(i,j′)) and the
correlation between subcarriers (h(i,j), h(i′ ,j)).

CSI =


h1,1 h1,2 · · · h1,n
h2,1 h2,2 · · · h2,n

...
...

. . .
...

hm,1 hm,2 · · · hm,n

 (8)

The correlation is expressed in the form of number pairs, and then converted to the
adjacency matrix for calculation. The representation of correlation in pairs of numbers
brings great flexibility to the customization of graph network. It supports both the rep-
resentation of near neighbor relationship and the “far neighbor” after multi-level jump.
Taking the adjacent node relationship as an example, m-subcarriers establish m− 1 number
pairs with neighbors, and n antennas establish n− 1 number pairs with neighbors. These
number pairs are transformed into adjacency matrix representation, in which the position
with correlation is set as 1, and the other is 0. Based on adjacency matrix, undirected graph
is constructed. The node set in the graph can be expressed as:

V = {Vi|i = 1, 2, . . . , N} (9)

where N = m ∗ n, it has better adaptability under different bandwidth and center frequency.
The connection between nodes consist of two subsets, which can be expressed as:

ES = {VmiVmj|(i, j) ∈ N} (10)

EF = {VmiV(m+1)i} (11)

ES represents inter antenna correlation, which exists between corresponding subcarri-
ers of different antennas. EF represents the correlation between subcarriers, which exists
between different subcarriers of a single antenna.

4.1.2. Aggregate Feature Vector of Nodes

The aggregation of node v’s neighbor nodes and the aggregation of neighbor nodes
with v are realized by the following formula:

Z(l+1) = σ(D−
1
2 AD−

1
2 Z(l)W(l)) (12)
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where A is the adjacency matrix, D is the Laplace normalization matrix, Z(l) is the output
of the previous layer, and W(l) represents weight matrix. The adjacency matrix A provides
the connection relationship between adjacency nodes, and adds the self-connection by
adding with the unit matrix I.

4.1.3. Aggregate All Nodes into Graph

In the graph convolution layer, subcarrier data from each antenna in a single packet is
regarded as nodes in the network, and the edge connection is established by the correlation
between antenna and subcarrier. It is necessary to estimate the location based on all data
in a package, so C-GCN is a graph level network, graph fusion is applied by pooling, as
shown in the following:

z(k)v = ReLU(W ∗Mean{z(k−1)
u , ∀u ∈ N(v) ∪ {v}}) (13)

4.2. Convolution Layer in Euclidean Space

The receiver acquires a large number of CSI packets in a short time, which constitutes
a three-dimensional data space. Graph convolution layer is used to calculate the correlation
in a single data package in 2D space, convolution layer focuses on the temporal correlation
among multiple data packets.

The data structure in the three-dimensional space is shown in the Figure 4. When the
number of antennas and subcarriers is fixed, each two-dimensional slice has a natural corre-
sponding relationship. Traditional static fingerprint does not record the fluctuation of data
packets with time, so it is susceptible to burst noise in real-time calculation. This section
introduces a dynamic fingerprint extraction layer based on CNN to improve the stability.

Figure 4. Graph connection in single packet and natural corresponding connection between multi-
ple packets.

The input of convolution layer is the output of the previous graph convolution layer.
Each packet contains a fixed amount of data, and there is a structure corresponding
relationship between different packets. For this typical Euclidean spatial relationship,
the information of adjacent packets can be aggregated by CNN. The connection between
packets only exists between the corresponding subcarriers, which is used to simulate the
association between multiple subcarriers at different times. As shown in Figure 4, the
output matrix H(M, N, V) of the previous layer is converted to H(M, V, N), and then
convolution is performed along the time axis.

4.3. Network Optimization

Over fitting will weaken the generalization ability of neural network. When the model
is far beyond the task complexity, the performance of the model is superior in the existing
training set, but poor in the new data set. This part optimizes the C-GCN from three
aspects: dataset, network structure and training time.

In terms of dataset, the input of C-GCN includes adjacency matrix and preprocessed
phase. Without special preprocessing of noise, it will propagate with the network layer.



Entropy 2021, 23, 1004 9 of 16

When the loss function is optimized, the interference term caused by noise is punished at
the same time, so as to suppress the weight in the back propagation.

In terms of network structure, dropout is used to increase the randomness of the origi-
nal structure by randomly invalid partial neuron nodes, so that the results are determined
by multiple random structures.

In terms of training time, over fitting is avoided through early stopping. After each
training, the accuracy of the verification dataset is recorded and compared with the optimal
accuracy. If the continuous t times is lower than the optimal accuracy, the training is
stopped. T is the upper limit, which is 20 in C-GCN.

In this section, C-GCN is optimized by the above three ways to increase the general-
ization ability.

5. Evaluation
5.1. Experiment Methodology

The positioning stability and accuracy of C-GCN are tested in two typical indoor
scenarios: comprehensive office and garage. Besides, the feasibility of building a bi-modal
positioning system by combining the C-GCN with amplitude is tested. The amplitude fea-
ture is the enhanced amplitude proposed in [33]. Both transmitter and receiver are mobile
terminals equipped with Intel 5300 NIC. Each terminal is equipped with Ubuntu16.04. In
the receiver, fine-grained CSI data is parsed by modifying the driver. The received packets
include time stamp, RSSI, number of antennas, noise and CSI et al.

The Data set size is 226,000, of which 70% is the training set, 20% is the test set, and 10%
is the validation set. Table 1 shows the experimental parameters. The specific parameters
are set as follows:batch-size = 10, patience = 20 , Learning-rate = 0.0005, Level-jump = 1.
The activation function is sigmoid and the loss function is cross-entropy loss. we use the
phase unwinding to preprocess the input In the training phase, we use the Glorot initializer
to initialize the network. The Gradient change learning algorithm is Adam. And also we
use the early stopping strategy, the initial best loss = 1× 109 , patience = 20.

Table 1. Parameters in the experiment.

Parameter Name Parameter Value

batch-size 10
patience 20

Learning-rate 0.0005
loss function cross-entropy loss

initializer Glorot initializer

5.1.1. Comprehensive Office

As shown in Figure 5, this is a comprehensive office environment including laboratory,
conference room and corridor. The total area is 152.9 m2, the laboratory is 16.4 × 4.4 m2;
the conference room is 16.4 × 4 m2; and the corridor is 8.4 × 1.8 m2. There are many tables
and computers in the environment. The laboratory and conference room are separated
by a glass wall. The layouts of this comprehensive environment are shown in Figure 4.
There are 59 reference points, 55 test points and 4 transmitters. The distance between two
adjacent reference points is 1.2 m. Our experiments were conducted outside of working
hours, but there were still few people move around.
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Figure 5. Layout of comprehensive office.

5.1.2. Garage

As shown in Figure 6, the second environment is an underground garage. This is a
relatively special indoor environment that contains the movement of large metal objects
(cars). The layouts are shown in Figure 5, the garage is 87.8 m2 with a total of 56 reference
points, 56 test points and 3 emitters. The distance between two adjacent reference points is
1.5 m.
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5.1.3. Benchmarks

For comparison, two systems are implemented: CiFi [13] and BiLoc [17]. CiFi applies
CNN to AOA image calculated by CSI’s phase feature, and BiLoc extracts bi-modal features
based on self-encoder. For fair comparison, all three schemes use the same dataset.

Firstly, the single-modal features of C-GCN and CiFi are compared to verify the perfor-
mance of C-GCN based on phase feature extraction. Then, the enhanced amplitude feature
from [33] is introduced to construct our bi-modal positioning system MAP-GCN. Compared
with BiLoc, the new features of C-GCN are verified to be feasible for bi-modal positioning.

5.2. Positioning Accuracy
5.2.1. Single-Modal Estimation

The cumulative positioning error of C-GCN and CiFi in the comprehensive office is
shown in Figure 7. In the range of 0–2 m, both of them perform good positioning ability,
and C-GCN is slightly better. Generally speaking, CiFi performs well at the beginning,
but the trend is not stable, which brings great uncertainty to the positioning of practical
application. C-GCN has an obvious inhibition effect on large-scale deviation, which
balances the positioning accuracy in the range of 0–2 m and effectively suppresses the
problem of error tailing.When the probability reaches 1.0, the positioning error of C-GCN
is 8.72 m, while the error of CIFI is 12.93 m.
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Figure 7. The cumulative positioning error of C-GCN and CiFi in comprehensive office.

Figure 8 shows the cumulative positioning error of C-GCN and CiFi in the garage. As
can be seen from the figure, two curves intersect at 1–2 m and 5–8 m, When the probability
reaches 1.0, the positioning error of C-GCN is 9.89 m, while the error of CIFI is 13.56 m.
C-GCN but the performance of C-GCN is more stable and the positioning error is smaller.
In the garage environment, the maximum positioning error has increased, but C-GCN still
shows a good error suppression, effectively reducing the error fluctuation range.
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Figure 8. The cumulative positioning error of C-GCN and CiFi in garage.

5.2.2. Bi-Modal Estimation

Figure 9 shows the cumulative positioning error of C-GCN, BiLoc and CiFi in the com-
prehensive office. In the range of 0–2 m, both MAP-GCN and CiFi show good positioning
performance. Combined with Figure 6, the early fluctuation of C-GCN is compensated.
BiLoc also has a good inhibition effect on error tailing, but its positioning performance is
relatively weak in the range of 0–2 m. At the same time, there is still a problem of error
tailing in CiFi.When the probability reaches 1.0, the positioning error of MAP-GCN is
9.03 m and BiLoc is 9.35 m, while CIFI is 12.93 m.
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Figure 9. The cumulative positioning error of MAP-GCN, BiLoc and CiFi in comprehensive office.

Figure 10 shows the cumulative positioning error of MAP-GCN, BiLoc and CiFi in
the garage, which is slightly worse than that in the comprehensive office environment. In
the range of 0–2 m, the performance of MAP-GCN and CiFi is better than that of BiLoc,
but the problem of error tailing still exists in CiFi. On the whole, both MAP-GCN and
BiLoc can handle the error tailing problem, but in the range of 0–2 m, the positioning
accuracy of BiLoc is relatively weak.When the probability reaches 1.0, the positioning error
of MAP-GCN is 9.99 m and BiLoc is 10.02 m, while CIFI is 13.56 m.
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Figure 10. The cumulative positioning error of MAP-GCN, BiLoc and CiFi in garage.

5.3. Positioning Stability

This part will evaluate the positioning stability from mean error and standard deviation.

5.3.1. Single-Modal Estimation

According to Table 2, compared with CiFi, the mean error of C-GCN is reduced by
46% and the standard deviation of positioning is reduced by 59%. Combined with the
cumulative positioning error, it can be seen that the main reason for improving the mean
error of C-GCN is to restrain the error tailing.

Table 3 shows detailed error comparison of C-GCN and CiFi in the garage environment.
Compared with CiFi, the mean error of C-GCN is reduced by 23.6%, and the standard
deviation is reduced by 16%. C-GCN effectively improves the positioning stability, ensures
the positioning accuracy within the range of 0–2 m, and shows superior performance in
terms of accuracy.

Table 2. Mean error and standard deviation in comprehensive office.

C-GCN CiFi

Mean error (m) 1.29 2.42
Standard deviation (m) 1.42 3.47

Minimum error (m) 0.02 0
Q1 (m) 0.12 0.92
Q2 (m) 0.94 1.12
Q3 (m) 1.91 2.11

Maximum error (m) 8.72 12.93

Table 3. Mean error and standard deviation in garage.

C-GCN CiFi

Mean error (m) 1.71 2.28
Standard deviation (m) 2.21 2.64

Minimum error (m) 0.02 0
Q1 (m) 0.96 0.97
Q2 (m) 0.99 1.12
Q3 (m) 1.85 1.93

Maximum error (m) 9.89 13.56
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5.3.2. Bi-Modal Estimation

This part evaluates MAP-GCN, CiFi and BiLoc from mean error and standard deviation.
The testing results in comprehensive office are shown in Table 4. It can be seen

that MAP-GCN has superior performance in positioning accuracy. BiLoc performs well
in positioning stability, and the average accuracy and standard deviation of CiFi are
relatively weak.

Table 4. Mean error and standard deviation in garage.

MAP-GCN BiLoc CiFi

Mean error (m) 0.99 1.5 2.42
Standard deviation (m) 1.51 1.22 3.47

Minimum error (m) 0.01 0 0.47
Q1 (m) 0.35 1.39 0.34
Q2 (m) 0.44 1.84 0.46
Q3 (m) 1.42 3.12 1.56

Maximum error (m) 9.99 10.02 13.56

Table 5 shows the detailed error comparison of MAP-GCN, BiLoc and CiFi in the
garage. It can be seen from Table 5 that the performance in garage environment is similar
to that in the comprehensive office, the performance of CiFi is not ideal considering the
error tailing problem.

Table 5. Mean error and standard deviation in comprehensive office.

MAP-GCN BiLoc CiFi

Mean error (m) 1.14 2.07 2.28
Standard deviation (m) 1.69 1.51 2.64

Minimum error (m) 0 0 0
Q1 (m) 0.31 0.46 0.32
Q2 (m) 0.32 1.28 0.67
Q3 (m) 1.12 2.01 1.88

Maximum error (m) 9.03 9.35 12.93

6. Summary

The phase feature of CSI is greatly affected by sampling frequency offset, center fre-
quency offset and nonlinear noise, phase distortion and feature extraction are difficult. In
this paper, three kinds of correlation among phases are analyzed: time correlation intro-
duced by adjacent packets, antenna correlation introduced by antenna physical location,
and subcarrier correlation. Based on the above, a CSI phase feature extraction network
C-GCN based on multi-dimensional correlation is proposed. The network consists of
convolution layer in Euclidean space and graph convolution layer in non-Euclidean space.
The Euclidean space convolution is used to process the packet with natural structure, and
the dynamic fluctuation at single point is integrated into the fingerprint database; the
non-Euclidean space graph convolution layer is used to process the irregular relationship
between antennas and subcarrier, and fully mine the correlation between them. Finally,
we combine these two spaces and use the end-to-end training method to calculate new
features including three types of correlation. C-GCN ensures the accuracy and stability
of localization, and verifies the feasibility of positioning based on irregular correlation in
CSI.The average positioning error of C-GCN is 1.29 m in comprehensive office and 1.71 m
18 in garage. Combined with the amplitude feature, the average positioning error is 0.99 m
in 19 comprehensive office and 1.14 m in garage.And the application of this algorithm in
aerial scenes remains to be explored.
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In this paper, the validity of C-GCN in extracting phase feature is verified. The phase
of CSI can still be explored from physical layer, and the phase can be further modified from
the source. Accurate source data will improve the performance of feature extraction. More
scene data can enrich the experiment content.
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