
entropy

Article

A Framework for Detecting System Performance Anomalies
Using Tracing Data Analysis

Iman Kohyarnejadfard * , Daniel Aloise *, Michel R. Dagenais and Mahsa Shakeri

����������
�������

Citation: Kohyarnejadfard, I.; Aloise,

D.; Dagenais, M.R.; Shakeri, M. A

Framework for Detecting System

Performance Anomalies Using

Tracing Data Analysis. Entropy 2021,

23, 1011. https://doi.org/

10.3390/e23081011

Academic Editors: Christian W.

Omlin and Sotiris Kotsiantis

Received: 3 May 2021

Accepted: 26 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
michel.dagenais@polymtl.ca (M.R.D.); mahsa.shakeri@polymtl.ca (M.S.)
* Correspondence: iman.kohyarnejadfard@polymtl.ca (I.K.); daniel.aloise@polymtl.ca (D.A.)

Abstract: Advances in technology and computing power have led to the emergence of complex and
large-scale software architectures in recent years. However, they are prone to performance anomalies
due to various reasons, including software bugs, hardware failures, and resource contentions. Per-
formance metrics represent the average load on the system and do not help discover the cause of
the problem if abnormal behavior occurs during software execution. Consequently, system experts
have to examine a massive amount of low-level tracing data to determine the cause of a performance
issue. In this work, we propose an anomaly detection framework that reduces troubleshooting time,
besides guiding developers to discover performance problems by highlighting anomalous parts in
trace data. Our framework works by collecting streams of system calls during the execution of a
process using the Linux Trace Toolkit Next Generation(LTTng), sending them to a machine learning
module that reveals anomalous subsequences of system calls based on their execution times and
frequency. Extensive experiments on real datasets from two different applications (e.g., MySQL and
Chrome), for varying scenarios in terms of available labeled data, demonstrate the effectiveness of
our approach to distinguish normal sequences from abnormal ones.

Keywords: anomaly detection; machine learning; performance evaluation; operating system; tracing

1. Introduction

In recent years, computing infrastructure has significantly evolved, whereas complex
systems have facilitated many complicated and large-scale tasks. For example, functional
co-processing units accommodate conventional processing units to speed up particular
tasks such as virtualization or complex machine learning computations. Consequently,
a simple operation can involve multiple parallel cores, being served in a few seconds or
milliseconds. These improvements have increased the expectation level of the users, so
that any performance fluctuations or increased latency may lead to user dissatisfaction
and financial loss. Different reasons such as software bugs, misconfigurations, network
disconnection, hardware faults, aging phenomena of the systems, or even extreme load
injected by other applications into the system, may degrade the performance of a particular
service or application. Hence, monitoring and analyzing the performance of applications
to find any performance anomaly or degradation is of particular importance. Indeed, any
delay in detecting performance problems and troubleshooting can significantly increase
the cost to fix them.

Performance anomaly detection refers to the problem of finding exceptional patterns
in execution flow that do not conform to the expected normal behavior. Many sources
may cause performance anomalies, such as application bugs, updates, software aging
phenomenon, and hardware failure. It should be noted that performance anomalies are
different from high resource consumption. An application might be inherently CPU or I/O
intensive without being categorized as anomalous. However, imposing a continuous and
more than expected average workload intensity on the system can be a sign of an anomaly.

Entropy 2021, 23, 1011. https://doi.org/10.3390/e23081011 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7259-259X
https://doi.org/10.3390/e23081011
https://doi.org/10.3390/e23081011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23081011
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23081011?type=check_update&version=2

Entropy 2021, 23, 1011 2 of 24

Relying on the definition of performance anomaly detection, we believe that whatever the
source of the anomaly is, it makes the execution’s flow different from the normal situation.
Consequently, it seems interesting to look at the problem from a more general point of
view and try to find the deviations of the execution’s flow, regardless of the source of the
anomaly. In case of any abnormal behavior during software execution, system developers
or experts need information that not only locates that behavior but also provides details
of the execution at the time the anomaly occurs. The performance metrics provided by
tools such as top, etc., can represent the average load on the system. However, they do not
help detect anomalies since a live threshold subject to the current system state would be
needed to distinguish whether the application’s behavior is normal or abnormal, which
is practically impossible. Even if such thresholds were available, these tools would not
provide any details about the application’s execution flow. Therefore, system experts often
employ logs and low-level tracing tools to define efficient strategies to find anomalies as
well as their causes. Tracing is an effective way of gaining information on a system for
further analysis and debugging of the underlying system, while minimizing monitoring
influence [1]. However, it is an exhausting responsibility for human administrators to man-
ually examine a massive amount of low-level tracing data and monitor the execution status
of an application [2]. Hence, an accurate anomaly detection framework with minimum
human intervention is in order.

Tracing data can offer detailed information about the execution of applications and
processes. System calls are essential traceable events that contain valuable information
about the program’s flow. They represent low-level interactions between a process and the
kernel in the system. Processes must interact with the operating system for each request,
such as opening a file, writing into the registry, or opening a network connection, which is
done through system calls. A system call trace provides an ordered sequence of system
calls that a process performs during its execution. The definition of normal behavior is
stable for standard UNIX process [3]. When a process is anomalous, its system call trace is
extremely different from the process running under normal conditions [4,5]. Our goal in
anomaly detection is to find sets of system calls that are not likely to happen together in
normal situations.

This work proposes a general anomaly detection framework to process the large
volume of tracing data by taking advantage of machine learning technologies and open-
source tools (i.e., LTTng and Trace Compass). Its main contributions are the following:
First, unlike many other methods that use performance metrics or unstructured logs,
we employed LTTng for data collection, which provides a system software package for
correlated tracing of the Linux kernel, applications, and libraries [6]. LTTng provides high-
resolution details of the program’s execution by presenting kernel and userspace events
related to the moment anomalies occur. Second, this article has addressed the problem of
availability of labeled data by proposing learning techniques depending on their volume.
Consequently, when a large amount of labeled training data is available, a supervised
method is introduced, whereas an unsupervised method is preferred when labeled data
is not available. Moreover, we propose a novel semi-supervised machine learning model
within proposed framework that benefits from both supervised and unsupervised learning
techniques when only a few labeled data are available. It should be noted that all proposed
learning methods use the same data structure. Third, this is the first time that the durations
of the most important system calls are used to make feature vectors. The duration of a
system call in a window acts like the weighted frequency of that system call. Further,
using the most important system calls instead of the whole set of system calls is novel, and
it is shown to improve detection performance. Fourth, the proposed anomaly detection
framework reduces troubleshooting time and directs the developer or troubleshooter to
discover the problem by highlighting the anomalous parts of the trace. It helps developers
look at just a few small windows instead of the whole trace includes millions of events.
Using the proposed anomaly detection framework alongside the Trace Compass gives
the developers a deep understanding of what happened at the time of the anomaly. It

Entropy 2021, 23, 1011 3 of 24

enables developers to use many preexisting scripts and views in Trace Compass for further
analyzing the anomaly detection output.

The rest of the paper is organized as follows. In Section 2, related studies are presented.
In Section 3, we describe the details of the performance anomalies in processes. In Section 4,
we introduce our automatic integrated anomaly detection framework. Section 5 discusses
the algorithm for kernel tracing and data extraction. Preprocessing of the extracted data
is explained in Section 6. Then, the feature selection strategy along with supervised,
unsupervised, and semi-supervised anomaly detection methods are proposed in Section 7.
Section 8 provides the experimental results from two different applications (i.e., MySQL
and Chrome), followed by the conclusions in Section 9.

2. Previous Work

In this section, the available techniques for performance anomaly detection are re-
viewed. The earliest efforts consisted of statistical methods [7]. These works keep the
activity of subjects and generates profiles to represent their behavior. Profiles include
measures such as activity intensity measure, audit record distribution measure, categorical
measures, and ordinal measure. As events are processed, an anomaly score is computed
using an abnormality function and profiles. If the anomaly score is higher than a certain
threshold, the detection system generates an alert. Statistical models have some disadvan-
tages. Defining proper thresholds which can balance the likelihood of false positives and
false negatives is very difficult to set. Moreover, most of the statistical anomaly detection
techniques require the assumption of a quasi-stationary process. However, this cannot
be assumed for most data processed by anomaly detection systems. Wang and Battiti [8]
proposed a method in which the distance between a vector and its reconstruction onto the
reduced PCA subspace represents whether the vector is normal or abnormal. This method
is limited to pre-determined anomalies and is not able to detect novel types of anomalies,
besides suffering from the problem of defining thresholds.

In addition to these methods, several machine learning-based schemes have been
applied to detect anomalies in systems. They work based on the establishment of a model
that allows the patterns to be categorized [9]. Bayesian networks can encode probabilistic
relationships among variables of interest, thereby predicting the consequences of an event
in the system [10]. Ye and Borror presented a cyber-attack detection technique through
anomaly detection using a Markov chain [11]. Achieving high performance in these
techniques depends on the quality of the data. This is because the Markov Chain technique
is not robust to outliers and performs better when the amount of noise in data is low [12].
Besides, these models have better performance for small datasets. Among other approaches,
clustering algorithms can detect abnormal behavior without prior knowledge. Many
clustering algorithms, such as k-means, k-medoids, EM Clustering, and outlier detection
algorithms, have been employed for anomaly detection. In [13], the k-Means clustering
algorithm with the accompaniment of different dimensionality reduction modules (PCA,
ICA, GA, and PSO) was used to separate time intervals of the traffic data into normal and
anomalous groups. However, none of these works have mentioned how to collect the data.
These works are limited to clustering preexisting datasets and do not provide a solution for
real-world usage. Apart from clustering methods, classification-based anomaly detection
approaches like support vectors, Fuzzy Logic, and Neural Networks have been widely used
in this area [14]. In [15], a fuzzy technique is proposed to extract abnormal patterns based
on various statistical metrics in which fuzzy logic rules are applied to classify data [15].
Statistical metrics cannot be used to find the root cause of the anomaly after detecting an
anomaly because these metrics do not provide details of the execution flow.

One imperative point in system performance analysis is how to characterize the exe-
cuting software. In this regard, behavioral analysis techniques can be used to automatically
monitor the performance of the processes running on a system. Some other studies have
used system calls to characterize software behavior. Forrest et al. [3] showed that during
the normal execution of a program, a consistent sequence of system calls is generated.

Entropy 2021, 23, 1011 4 of 24

In their method, all possible normal patterns of different lengths are collected to form the
normal dataset. Then different patterns in the new trace are compared with the normal
dataset, and any deviation from the normal model is considered an anomaly. The first
weakness of this method is that finding all the patterns with different lengths is extremely
time-consuming because a short tracing file includes thousands of events. Furthermore,
the resulting database is massive. It is notably time-consuming to compare a new pattern
to the entire normal dataset.

The use of system calls has led to a dramatic improvement in anomaly detection
techniques. Canzanese et al. characterized system call traces using a bag-of-n-grams model,
which represents a system call trace as a vector of system call n-gram frequencies [16]. In
this regard, Kolosnjaji et al. [17] attempted to apply deep learning to model the malware
system call sequences for malware classification. They constructed a neural network based
on convolutions in order to obtain the most desirable features of n-grams. A well-known
issue with N-gram-based approaches is sparsity. The N-gram model, like many statistical
models, is significantly dependent on the training data. Besides, the performance of the
N-gram model varies with the change in the value of N. In [18], Strace is utilized for
collecting logs, and then the Linux kernel system calls are extracted to construct weighted
directed graphs. This method in which the graph-based representation is used for anomaly
detection suffers from the high cost of obtaining such graphs. Finding related system calls
out of thousands of events requires extremely high computational power.

Many sources may cause anomalies or performance degradation, such as application
bugs, updates, software aging phenomenon, and hardware failure. Various articles have
tried to discover or solve performance degradations resulting from each of these sources.
For example, software rejuvenation was introduced to prevent or at least delay aging-
related failures [19]. Software aging has been demonstrated to affect many long-running
systems, such as web servers, operating systems, and cloud applications. Ficco et al.
have examined the effects of software aging on the gradual increase in the failure rate or
performance degradation of Apache Storm over time [20]. Apache Storm is an open-source
distributed real-time computational system for processing data streams. These systems may
be affected by software aging because they usually run for a very long time. In their work,
the measures related to the system resources usage and the user-perceived performance are
collected by vmstat utility and by reading from Storm logs details about emitted requests
and their responses. This information is employed to discover evidence of software aging.
However, software aging is just one of several sources of anomalies. Relying on the
definition of anomaly, we believe that whatever the source of the anomaly is, it makes the
execution’s flow different from the normal situation. Hence, it seems interesting to look
at the problem from a more general point of view and try to find the deviations of the
execution’s flow, regardless of the source of the anomaly. In addition, LTTng can gather
kernel events as well as the userspace events without imposing much overhead to the
system. LTTng has several features that make it usable for most Linux-based environments.
For instance, the LTTng relay daemon enables us to trace distributed systems.

Our work distinguishes from the previous related literature since:

• Unlike most previous works, which did not provide a solution for data collection, we
defined our data collection module using LTTng and Trace Compass. Using various
LTTng features makes our proposed framework applicable in most Linux-based
environments without much change. For instance, the LTTng relay daemon enables
us to trace distributed systems and cloud environments. In addition, no special
settings are employed while collecting the data. We used tracing in our proposed
framework because tracing enables us to examine the execution flow using tools such
as Trace Compass.

• Statistical metrics can not be used to find the cause of the anomaly after detecting
an anomaly. Compared to statistical techniques, our proposed framework has no
assumption and is not dependent on the existence of any threshold. This fact and the

Entropy 2021, 23, 1011 5 of 24

way we use the system calls increase the generality of our method and make it usable
for any application and environment.

• Achieving high performance using Bayesian networks and Markov chain techniques
depends on the quality of the data. These techniques are not robust to outliers and
perform better when the amount of noise in data is low. Besides, these models have
better performance for small datasets. These problems were solved in our work by
carefully choosing the learning method so that the presence of noise or new data points
does not cause much change in the model and works appropriately for large data.

• Many of the available performance anomaly detection approaches use supervised
methods, which require labeled data. However, labeled data is not always available.
While proposing an unsupervised approach is desirable, it is a great challenge to
achieve high accuracy by means of an unsupervised method. We have provided a
package of supervised, unsupervised, and semi-supervised methods that can be used
according to the volume of available labeled data. All these three methods use the
same data structure, and no special settings are employed while collecting the data.
After training the model in our proposed method, the detection is done very quickly
and without high computational cost.

• Unlike methods that compare a pattern to all normal patterns in a database to de-
termine if it is abnormal, our method is not limited to a primary database. Finally,
presenting events that occurred during the anomaly helps the developer not spend
much time examining the entire events in a trace or log file in order to discover the
anomaly’s cause.

3. Performance Anomaly in Processes

Performance anomalies are the most significant obstacles to the system to perform
confidently and predictably in enterprise applications. Many sources can cause anomalies,
such as varying application load, application bugs, updates, and hardware failure. In
a situation where the workload is the source of the anomaly, the application imposes
continuous and more than expected average workload intensity to the system. Faults in
system resources and components may considerably affect application performance at a
high cost [21]. In addition, software bugs, operator errors, hardware faults, and security
violations may cause system failures.

The preliminary performance profiling of a process that reflects its typical behavior
can be done using synthetic workloads or benchmarks. At a higher level, the performance
of computer systems is delineated by measuring the duration of performing a given set of
tasks or the amount of system resources consumed within a time interval [22].

There exist many metrics for measuring the performance of a system. Latency and
throughput are the most used ones. They are used to describe the operation state of a
computer system. The time that passes between the beginning of an operation and its
completion is the latency, (e.g., the delay between when a user clicks to open a webpage
and when the browser displays that webpage). Throughput is a measure of how many
jobs a system can perform in a given amount of time (e.g., the number of users’ requests
completed within a time interval). In addition, resource utilization of an application
indicates the amount of resources (e.g., number of CPUs, and the size of physical memory
or disk) used by that application. The CPU utilization is the percentage of time in which
the CPU is executing a process whereas the memory utilization is the amount of storage
capacity dedicated to a particular process.

Figure 1a shows an example of the CPU utilization of a process during its lifetime.
When an application is running normally, the CPU used by that application is conventional.
Hence an expected maximum CPU utilization threshold can be defined for each application.
In this case, if the CPU usage exceeds the threshold value, the process behavior is prone
to the existence of an anomaly. Furthermore, as represented in Figure 1b, during the
anomalous running of a process, the latency is usually increased while this curve has a
relatively steady trend during normal behavior [23].

Entropy 2021, 23, 1011 6 of 24

Figure 1. (a) CPU usage of an application during the time. (b) an anomalous latency growth
pattern [24].

From another perspective, data anomalies can be defined in various forms. Two
principal forms of anomalies are point anomalies and collective anomalies. Point anomalies
are data points that are different from normal data. For example, consider a situation
where data is generated from different data distributions, each one defining a cluster. In
this case, data points which do not seem to have been generated by the data distributions
are considered as point anomalies. While searching this type of anomalies, performance
metrics such as CPU utilization or throughput can be used to determine if abnormal
behavior has occurred at a particular timestamp. In the case of collective anomalies, we
cannot detect individual data points as anomalies by themselves; however, their collective
occurrence together may be an anomalous behavior. In this method, instead of detecting
an anomaly at a particular timestamp, the system’s behavior during a sequence of events
is investigated. Due to the use of tracing data and the fact that a single event obtained
from tracing does not contain enough information to detect an anomaly, we search mostly
for collective anomalies in this work. Besides, looking at the sequence of events provides
insightful information about the system behaviors over a period of time, which is essential
for analyzing the root cause of an anomaly. Finally, by targeting the collective anomalies,
our framework can even handle rare system call invocation paths. For example, a user
never opens FTP connections on Chrome, but one day decides to do so. This will lead to
a significantly different invocation path. In practice, observing a new system call is not
a reason for an anomaly to occur, and we cannot consider a subsequence of events to be
abnormal only due to the presence of a new system call. The subsequence in which the
rare system call occurs is considered abnormal not only because of that system call but
also because of the effects the system call has on the surrounding system calls. This system
call may also be ignored during the feature selection process, in which case its effect is still
present in the subsequence.

Entropy 2021, 23, 1011 7 of 24

Anomalies can be defined from the user experience aspect, and in many situations,
anomalies happen on the server-side, but their effect can be realized on the user side.
Moreover, a physical or virtual node is often not dedicated to a unique particular service.
So, latency or throughput in a sampling period cannot help to find anomalies in a program
execution while several programs are running on the node. In this case, separating the
normal and the abnormal behavior is very difficult, and the result depends on the hardware.
Furthermore, the latency or throughput does not contain execution details, while the
sequence of events such as system calls reveals many details about program execution.

4. The Automatic Integrated Anomaly Detection Framework

In this work, we propose an automatic anomaly detection framework to process the
large volume of tracing data by taking advantage of machine learning technologies. The
system architecture of the proposed framework is shown in Figure 2. The generality of
the framework is extremely important, and it must be capable of working along with any
program or system with different settings.

As illustrated in Figure 2, the entire framework is divided into several modules. First,
kernel tracing is done to gather the system calls information during the execution of a
program. We employ LTTng (Linux Trace Toolkit Next Generation) in this module, a
system software package for correlated tracing of the Linux kernel, applications, and
libraries. The raw tracing data is fed into the data extraction module that processes it with
a windowing method that will be introduced later in this paper. Data transformation and
feature extraction is done in the Trace Compass application. This module is responsible for
preparing data for the detection module in both the training and detection phases. This
data contains feature vectors extracted from the tracing data. When the model is trained,
the data extraction module sends new feature vectors to the detection module at detection
time. We discuss each module in the following sections.

Figure 2. The system architecture of the proposed framework.

Our anomaly detection framework’s design aims to provide high accuracy and time
efficiency in analyzing tracing data and detect anomalous performance behaviors in large
scale systems. By investigating the required framework specifications it seems challenging
to apply an anomaly detection framework in practice because of two issues. The first is
that continuously collecting system calls for machine learning methods is computationally
expensive and of rapid storage increase. Furthermore, the machine learning model itself
takes a long time to train. To address the latter issue, we assume that once the model has
been trained for an application, there is no need to retrain it, and periodic updates are
enough. However, continuously collecting system calls is still needed. Hence, we propose

Entropy 2021, 23, 1011 8 of 24

using LTTng-rotate for increasing data collection efficiency, thus reducing the size of the
tracing file.

5. Kernel Tracing and Data Extraction

In this section, the data extraction technique is explained in which two data sets
are created by tracing the underlying system kernel by means of a sliding windowing
technique. We use our data collection instead of using many existing systems calls data
sets. Our data extraction technique allows us to collect our own fields (name, index, and
especially duration) and trace any program. Furthermore, we can consider the time of data
collection in the overall process because the data collection is not free as it is considered in
many existing works, and finally, the collaborations required to handle a request can be
considered, which is not the case in the existing data sets.

Tracing is a popular technique to analyze, debug, and monitor processes running
on a system. Furthermore, it is an efficient way of gaining information on a system
while minimizing the monitoring influence. The instrumentation of the traced application
provides as output timestamp-matched events and intuition on the execution of various
parts of a system. Thus, the precision of the monitored events is equal to the internal clock
of the device.

Traces are massive data which can be fed into a machine learning framework. Fortu-
nately, several standard tools and tracing methodologies exist in different environments.
Here, in order to analyze the behavior of each process and find out the performance status,
each system is equipped with a lightweight tracing tool called the Linux Trace Toolkit
Next Generation(LTTng) [6]. It is implemented for high throughput tracing and includes
multiple modules for Linux kernel and userspace tracing with minimal cost. Tracing the
OS or user applications requires the ability to record thousands of low-level events per
second which imposes some overhead to the system that may affect the performance of the
target application. Hence, LTTng is a proper tool to be used in our experiment as we would
like a tracer to have a low overhead on the monitored systems. Figure 3 represents the
process of collecting kernel events in a trace file and transferring it into the Trace Analysis
module. As illustrated in this figure, the userspace application sends requests to the Linux
kernel using system calls which are recorded by LTTng Tracer on .ctf trace files. In the
sequel, the trace file is fed into the trace analysis module to create the dataset and perform
more investigation.

Figure 3. Data extraction steps using kernel tracing.

We implemented the trace analyzer module within the Trace Compass open source
tool [25], with visualization mechanisms to promote the analysis of the system performance
anomalies with different perspectives. Actually, the LTTng tool is applied to collect system
calls originated by the monitored processes, and Trace Compass is employed to read the

Entropy 2021, 23, 1011 9 of 24

LTTng trace files and to produce a sequence of events with all their associated information
(e.g., system call name, timestamp, and duration). Our methodology focuses on system
calls, so while the Trace Compass code is reading the trace file, it only collects system
calls and skips other events. In the obtained dictionary, each system call entry contains
a timestamp, process ID, and some additional run-time information associated with that
system call, which is depicted in Figure 4.

Figure 4. Reading trace file and extracting vectors using windowing method.

First, the processes other than the one under study (e.g., MySQL and Chrome) are
filtered out considering the process ID field. Then, instead of working with system call
names, an index is assigned to each system call. The system calls indices, the corresponding
execution times, and other related information are listed for all threads of the target process.
Since a single process can produce a huge amount of system calls, considering all system
calls at once is not practical in real applications. Therefore, a sliding window is used to
continuously extract data from subsequences of system calls. For each subsequence, we
define a compact representation that yields two separate feature vectors containing the
frequency (x f requency) and the duration (xduration) of the system calls inside the current
sliding window. Thus, our methodology can handle large and varying volumes of data.
Since we monitor 318 different system calls of the Linux operating system, each feature
vector has 318 dimensions, one per system call type. This feature extraction strategy is
shown in Figure 4.

The pseudocode for extracting the feature vectors is represented in Algorithm 1. The
algorithm receives the windowing size α, the windowing step β, a Trace τ which contains
a sequence of events, and the target process m as input. Some factors must be considered
when selecting α and β values. Windows must contain sufficient information about the
status of the system over a period of time. In one hand, choosing a small amount as the
length of the window reduces the useful information volume of the subsequence and
increases the number of subsequences. Furthermore, it may even increase sparsity. In the
other hand, if a large α value is selected, it is likely that the screened subsequences contain
both normal and abnormal events. Moreover, small β values make the subsequences
very similar, and larger values also ignore many possible subsequences. There is no need
to worry about calculating these values. It can be a manual trial-and-error process to

Entropy 2021, 23, 1011 10 of 24

performed at training-validation time. It does not impose much computation cost to the
whole framework.

Algorithm 1 Feature extraction procedure.

Input: Trace τ, Process m, α, β
Output: D, F

1: D ← ∅, F ← ∅
2: SP = {e ∈ τ| type(e) = systemcall and process(e) = m}
3: W ←MakeSubsequences(SP, α, β)
4: for all i ∈ {1, 2, ..., |W|} do
5: FV ← ∑α

j=1 Ri,j

6: DV ← ∑α
j=1 Si,j

7: F ← F ∪ (FV)
8: D ← D ∪ (DV)
9: end for

Algorithm 1 first obtains the set of frequency based feature vectors (F) and the set of
duration based feature vectors (D). At the beginning of the algorithm, the system calls
belonging to the process m are extracted from the total events in the trace file and a set
SP is built (line 2). The function type(e) determines if the event e is a system call or not.
Then in line 3 the function MakeSubsequences() obtains all possible subsequences in SP by
considering the widowing size α and the windowing step β. For each subsequence Wi two
data structures of size (α× 318) are built: Ri and Si. Let Ri,j be a (1× 318) one-hot vector
which corresponds to the j-th system call done in the i-th subsequence. In this vector, the
k-th cell where k=index(wi,j) is equal to one. The vector FV is calculated by the sum of all
the one-hot vectors Ri,j for all j ∈ {1, 2, ..., α}. In a similar way, Si,j represents a (1× 318)
one-hot vector which corresponds to the j-th system call done in the i-th subsequence.. In
this vector, all the cells have zero value except the k-th cell where k=index(wi,j). The value
of this cell is equal to the duration of that system call. The vector DV is computed by the
sum of all the one-hot vectors Si,j for all j ∈ {1, 2, ..., α}. Finally, D and F provide a set of
duration vectors and a set of frequency vectors, correspondingly (lines 7 and 8).

6. Preprocessing of the Extracted Data

Data preprocessing is an essential stage for the success of any machine learning model.
In almost all knowledge discovery tasks, the data preprocessing step takes the major part
of the overall development effort, even more than the data mining task [26].

6.1. Problem of Sparsity

Each subsequence of events present in a window is represented by a frequency (du-
ration) vector with the size of total number of system calls (i.e., 318). Naturally, most of
the values in each vector will be zero due to the large number of system calls. Besides, a
specific process utilizes special system calls during its execution. In other words, some
columns of the data sample will consist of zero values. This characteristic dramatically
impacts calculating sample similarities. Moreover, it is hard to understand the relationships
between different feature vectors when the training set is not large enough in the presence
of sparsity [27]. Thus, in this paper, we reduce the sparsity of the collected data by elimi-
nating all unused features related to system calls that never occur during the execution of
the monitored process.

6.2. Data Normalization

Data normalization is a fundamental phase of data preprocessing. Data normalization
is employed to reduce the dominating effect of some attributes measured in different scales.

Entropy 2021, 23, 1011 11 of 24

Here, data standardization is applied on the dataset as a normalization preprocessing step.
Let, Γ = {X1, X2, ..., Xn} denote the d-dimensional data set. Thus, Γ is a n× d matrix:

Γ =

x11 ... x1d
...

xn1 ... xnd

 (1)

Given a dataset Γ, the Z-score standardization formula is defined as:

xij = Z
(
xij
)
=

xij − µj

σj
, (2)

where µj and σj are, respectively, the samples mean and the standard deviation of the jth
attribute. This method rescales the features in a way that they have a standard normal
distribution with mean of 0 and standard deviation of 1.

7. Performance Anomaly Detection

In this section, first, we assume that enough labeled training samples are available.
Thus, we propose a supervised monitoring framework that classifies the system perfor-
mance into three separated classes: normal, CPU issue, and Memory issue. Although a
supervised approach could usually produce acceptable detection results, it requires enough
labeled data. Since providing labeled data for the whole data distribution is not always
possible, we propose to use an unsupervised approach in Section 7.2. The unsupervised
approach does not require any labeled data and clusters the input data into separate cat-
egories, which could represent different groups of normal, CPU issue, or Memory issue.
However, unsupervised approaches usually present worse classification performance than
supervised methods in practice given that no priori information is exploited. Therefore,
in order to introduce a from of supervision into the unsupervised approach and improve
the detection performance, we propose a semi-supervised approach in Section 7.3. In this
method, we assume that a subset of data is labeled and can be used to guide the feature
selection procedure. In this way, the benefits of the supervised and unsupervised learning
strategy are combined into a semi-supervised anomaly detection approach.

7.1. Supervised Performance Anomaly Detection

Once the system call feature vectors are collected per subsequence, the purpose of
the anomaly detection algorithm becomes to train a model with normal and abnormal
data from the provided labeled training dataset. Later, the task would be to determine
whether a test sample vector belongs to a normal or abnormal behavior. Here, we describe
a supervised monitoring framework that classifies the system performance into three
separate classes. If a vector has a normal behavior, it will be assigned to the first category.
The second class is defined as a CPU issue or, in other words, insufficient CPU allocation
problem, which may happen when the system is running a CPU intensive process. Finally,
the vectors extracted from a system running a memory-intensive process are assigned to
the third category. This class indicates an insufficient memory allocation issue.

7.1.1. Iterative Feature Selection

Feature selection is the process of finding the most discriminative subset of features
for performing classification. In the case of supervised learning, this selection is performed
based on the available labeled data. A proper feature selection can improve the learning
accuracy and reduce the learning time. Here, the Fisher score along with a correlation
filtering strategy [28] are applied to determine the best subset of features in the dataset. In
this algorithm, a subset of features are found in a way that the distances between samples
in different classes become as large as possible, while the distances between data points
in the same class stay as small as possible. The Fisher Score FSj, for j = 1, . . . , d, can be
calculated as follows:

Entropy 2021, 23, 1011 12 of 24

FSj =
∑k

c=1 nc
(
µjc − µj

)2

∑k
c=1 ncσ2

jc

, (3)

where nc is the number of samples in class c, for c = 1, . . . , k (number of classes), and µjc
corresponds to the average value of feature j restricted to the samples in class c. Further,
σ2

jc is the variance of feature j for samples in class c.
The computed Fisher scores of each feature are sorted in non-increasing order and

scanned iteratively to select the ` features that have low correlation together. A feature is
selected to compose the list of ` features if its pairwise correlation with one of the features
already selected in superior to a given threshold. This procedure continues iteratively until
` features are selected. Here, the correlation between two features j1 and j2 is computed
as follows:

Cov(j1, j2) =
∑n

i (xij1 − µj1)(xij2 − µj2)

n− 1
(4)

7.1.2. Supervised Multi-Class Anomaly Detection

Once the top-ranked features are selected, we employ a multi-class support vector
machine (SVM) [29] classification model. We choose SVM considering its generalization
ability and its successful utilization in different pattern recognition applications, such
as anomaly detection tasks [30]. SVM finds the hyperplane with the largest margin that
classifies the training set samples into two classes. Then the unseen test samples are labeled
by checking the sign of the hyperplane’s function.

Considering each sample Xi, for i = 1, . . . , n of the training data and its associated
label yi, SVM finds the optimal hyperplan by solving the following problem:

min
ω,d

1
2

ωTω + C
n

∑
i=1

ξi (5)

s.t. yi

(
ωTφ(Xi) + c

)
≥ 1− ξi , ξi ≥ 0 , i = 1, ..., n (6)

where ω is d-dimensional vector and ξi is a measure of the distance between the mis-
classified point and the separating hyperplane. The function φ(xi) projects the original
data sample xi into a higher dimensional space and d is the bias. C controls the penalty
associated with the training samples that lie on the wrong side of the decision boundary.
The radial basis function (RBF) of φ(x) = eγ‖(x−xi)‖2

is applied to map the data into the
non-linear high-dimensional space. The term γ is a parameter that controls the width of
the Gaussian kernel. The accuracy of the classification is then dependent on the value of
the parameters C and γ.

In this work, we generalize the binary classification model by means of a one-versus-
one approach. In this approach, one classifier per pair of classes is built. In our case, it
fits three classifiers for three possible pairs of classes: (1) samples with memory issues
from the samples with CPU issues, (2) samples with memory issues from the normal
samples, (3) samples with CPU issues from the normal samples. The class which received
the most votes is selected at prediction time. In the case that two classes have an equal
number of votes, it selects the class with the highest aggregate classification confidence by
summing over the pairwise classification confidence levels computed by the underlying
binary classifiers.

Entropy 2021, 23, 1011 13 of 24

7.2. Unsupervised Learning of the Performance Anomalies

Most current anomaly detection systems use labeled training data. As mentioned
before, producing this kind of training data is usually expensive. Besides, the definition
of normal and anomalous behaviours may change over time. To address these problems,
we propose to use an unsupervised system call based anomaly detection scheme. This
technique segments unlabelled data vectors into distinct clusters. The proposed unsu-
pervised approach should be able to categorize previously unseen types of anomalies. A
wide variety of models for cluster analysis exists; however, the initial choices are usually
representative-based algorithms such as K-Means, which directly uses the distances be-
tween the data points to cluster a dataset. Another clustering approach based on data
density used in this work is DBSCAN which can group clusters of varied complex shapes.
In the following, we briefly describe the K-Means and the DBSCAN algorithms.

7.2.1. K-Means Clustering

K-Means is a clustering algorithm that groups samples based on their feature values
into k different clusters. Data samples which are assigned to the same cluster are supposed
to have similar feature values. In this clustering technique, the sum of the squares of the
Euclidean distances of data points to their closest representatives is used as an objective
function [31,32]:

Dist
(
Xi, Xj

)
=
∥∥Xi − Xj

∥∥2
2 (7)

where Xi = (xi1, ..., xid) and Xj = (xj1, ..., xjd) are two input vectors with d features and
‖·‖p represents the Lp − norm. K-Means begins by initializing the k centroids using a
straightforward heuristic like random sampling from the dataset and then refines the
centroids in the following steps until stability is reached:

• Assign each vector to the closest centroid using the similarity function (Equation (7))
• Determine the optimal centroid for each cluster Cj

7.2.2. Dbscan Clustering

The use of K-Means clustering has some limitations. First, it requires the user to set the
number of clusters a priori. Second, the presence of outliers has an undeniable impact on
K-means. Besides, K-means works better for spherical clusters considering the Euclidean
space as the underlying data space. To further reveal this point, consider the clusters
represented in Figure 5. These plots depict the frequency-based vectors extracted from a
chrome process use case along with their real labels. Since the original data has more than
120 attributes, two separate dimensionality reduction approaches were applied to better
visualize the data. In Figure 5a we present data obtained with the t-distributed Stochastic
Neighbor Embedding (t-SNE) [33] while Figure 5b presents the data projected in the plane
by means of PCA [34]. Both figures reveal that the K-means algorithm is not appropriate to
correctly cluster the illustrated dataset. Here there are three clusters of arbitrary shape in
the data, and thus density-based algorithms are preferable.

Hence, our proposal uses the DBSCAN algorithm [35], in which the individual data
points in dense regions are used as building blocks after grouping them according to
their density.

DBSCAN algorithm requires two parameters. The first parameter is ε, which defines
the neighborhood around a data point. Two points are considered as neighbors if the
distance between them is lower or equal to ε. If the ε value is chosen too small, then a large
part of the data will be considered as outliers. On the other hand, if it is chosen very large
then the clusters will merge, and the majority of the data points will be in the same cluster.
The second parameter is MinPts, which indicates the minimum number of neighbors (data

Entropy 2021, 23, 1011 14 of 24

points) within ε radius. The density of a point is the number of points that lie within a
radius ε of that point which can be obtained by the following formula :

Nε(Xi) =
{

Xj ∈ Dataset | Dist
(
Xi, Xj

)
≤ ε

}
(8)

DBSCAN classifies the data points into three categories of core, border, and outliers
based on the hyperparameters ε and MinPts. A point is a core one if it has more than
MinPts points within ε, and a border point is a point that has fewer than MinPts within ε,
but it is in the neighborhood of a core point. A point that is not a core point or border point
is considered as an outlier. Also, three terms required for understanding the DBSCAN
algorithm: (1) point A is “directly density reachable” from point B if A is within distance ε
from core point B. (2) A point A is “density reachable” from B if there is a set of core points
leading from B to A. (3) Two points A and B are “density connected” if there is a core
point C, such that both A and B are density reachable from C. A density-based cluster is
defined as a group of density connected points. By considering these definitions, DBSCAN
algorithm can be described in the following steps:

• For each point xi, compute the distance between xi and the other points. Finds all
neighbor points within distance ε of the starting point xi. Each point, with a neighbor
count greater than or equal to MinPts, is marked as core point or visited.

• For each core point, if it is not already assigned to a cluster, create a new cluster. Find
all its density connected points recursively and assign them to the same cluster as the
core point.

• Iterate through the remaining unvisited points in the dataset.

Those points that do not belong to any cluster are considered as outliers. DBSCAN is
able to cluster points into distinct categories without setting the number of clusters.

Figure 5. Frequency-based samples extracted from Chrome process. Red, yellow and green points refer to normal, CPU
problems, and memory problems, respectively. (a) uses t-SNE and (b) utilizes PCA to map data points onto 2D subspaces.

7.3. Semi-Supervised Learning of the Performance Anomalies

Although unsupervised approaches allow one to tackle a massive amount of unla-
belled data, they might present worse classification performance than supervised learning
methods in practice due to the lack of knowledge about the application itself. In this sense,
feature extraction can improve the performance of these methods to a great extent. The pri-
mary purpose of feature selection is to remove the attributes that do not cluster well which
is specially useful for distance-based clustering due to the curse of dimensionality [36].
In unsupervised problems, feature selection is usually more complicated since external
validation criteria (such as labels in the underlying data) are not available. Nevertheless,
if we have the label of some of the data points, supervised feature extraction methods
help discover subsets of features that maximize the underlying clustering tendency. As
mentioned before, we benefit from labelled data in this project. Therefore, a variety of
supervised criteria can be used, such as the Fisher score. The Fisher score, discussed in

Entropy 2021, 23, 1011 15 of 24

Section 7.1, measures the ratio of the intercluster variance to the intracluster variance on
any attribute. Our proposed semi-supervised learning method selects the most discrimina-
tive features from a small set of labelled data by means of the iterative selection method
of Section 7.1. In the sequel, the DBSCAN clustering algorithm is applied to group the
remaining data into the sought number of classes.

Figure 6 summarizes the proposed anomaly detection technique. The kernel tracing
data extraction module, which utilized LTTng, Trace Compass, and our windowing method,
has the duty of generating vectors. Then in the preprocessing module, some refinements on
data are done, and the vectors of more informative features are obtained. Finally, DBSCAN
clustering is applied to the obtained dataset.

Figure 6. The architecture of the proposed Semi-supervised framework.

8. Evaluation

We evaluated both proposed supervised and semi-supervised anomaly detection
approaches on two real system performance anomaly datasets generated based on dif-
ferent faults from Mysql and Chrome applications. Our experimental setup and dataset
generation is explained in Section 8.1. Then, we analyzed a practical use-case in Section 8.2.
Finally, the results of the performance anomaly detection approaches are examined in
Section 8.3.

8.1. Setup and Dataset Generation

Our experiments were performed on a group of virtual machines (VMs) allowing
us to better manage system resource allocation. The host machine had an Intel Core i7
4 GHz × 8 CPU and 32 GB of memory. The VMs were equipped with different number of
CPU cores and memory allocations depending on the workload simulation, running Linux
Kernel version 4.15.0. As the first use case, we used the open-source MySQL synthetic
benchmark tool, Sysbench 0.4.12, with OLTP test in complex mode. In order to generate the
performance anomaly dataset for MySQL processes, different faults are simulated on the
VMs. For example, to create a CPU issue, CPU resources allocated to a VM are limited (e.g.,
one CPU core, while running eight threads of MySQL). Likewise, a memory issue is created
by limiting the amount of memory resources assigned to a VM (e.g., 256 MB memory, while
the MySQL table is of size 6 GB). The second use case regards tracing Chrome processes.
The ChromeUnderStress 1.0 chrome extension is used to open, close, and refresh many light
and heavy pages in Chrome with configurable speed. Faults are simulated by running
this Chrome extension on the VMs with different amount of CPU and memory resources.

Entropy 2021, 23, 1011 16 of 24

The traces are collected using LTTng 2.10.5. The generated datasets include three classes:
normal, CPU issue, and memory issue. Moreover, both MySQL and Chrome datasets
are made to contain the same number of samples (i.e., 6000) from each class. We injected
faults into the system for each use case using the tools we introduced. However, for other
applications injecting faults is possible using two scenarios. The first scenario is injecting
faults as intentional software bugs into the code. In this case, we can pause the code for n
milliseconds and then continue, calculate π with m bits of precision, or other scenarios. In
the second scenario of fault injection, the target is the system in which the code runs using a
workload generator tool designed to subject the system to a configurable measure of CPU,
memory, I/O, disk, and network stress such as Stress or Stress-ng [37] and PUMBA [38].
Besides, we must keep in mind that whether with a label or without a label, the data
collection step is such that all system calls in Linux are considered. We have presented a
straightforward method based on kernel tracing using LTTng, which is very light and easy
to install in the system to gather all system calls information. The most informative system
calls are selected in the next step, the data extraction module. Therefore, the operator does
not need to know how useful each system call is, as this will be done automatically later by
the framework.

8.2. Analysis of Practical Use-Cases

In this experiment, we analyzed the performance vulnerability due to resource Denial-
of-Service (DoS) attacks. The goal of DoS attacks is to disrupt fair access to system resources.
We aim to identify a class of DoS attacks in which an application consumes most of the
resources so that no other useful work can be done. Thus, it maliciously destroys, for
example, the memory-related performance of other applications using shared resources.

In our test scenarios, we investigate the effect of such attack on the performance of
Mysql. The machine on which the Mysql is executed is made subject to attacks in few short
time intervals. In order to simulate such an attack, the Stress tool has been used to keep
the system’s resources in an intentionally induced state of overload or deadlock so that
the system is unable to perform any other work. In another test, we simulated attacks on
compression programs (zip bombs) that can involve highly recursive compressed files for
which their decompression result in an uncontrolled consumption of CPU time and file
descriptors. Our proposed detection scheme proves to be effective in locating the windows
in which the attacks actually take place.

Similar to the data collection phase, the trace file is read by our script in Trace Compass.
Then, the whole set of system calls are formatted into windows, which are in turn analyzed
by the detection module which highlights the anomalous ones. Our proposed anomaly
detection framework represents the output of the detection module in a Trace Compass
time chart view. Figures 7a,c demonstrate the effectiveness of our proposed method in
locating the attacks that have been simulated by Stress and zip bombs. In these time charts,
the normal and anomalous windows are illustrated in green and red colors, respectively.
The proposed framework helps system experts to focus at just a few small windows instead
of the whole trace that may include millions of events. The resulting time charts can be
zoomed in and zoomed out in specific areas (Figure 7b).

More detailed data can be computed from the trace as the user zooms in using the
mouse wheel or right-clicking and dragging in the time scale. The time axis in the time
chart is aligned with other views that support automatic time axis alignment. The other
capability of our framework is its events editor view (Figure 8a), which presents the
events in a tabular format. Filtering or searching of events in the table can be done by
entering matching conditions in one or multiple columns in the header row. As can be
seen in Figure 8, in addition to the original events fields, a new field has been added
to each event. The field category determines whether the event belonged to a normal
or abnormal window. Finally, the statistics view (Figure 8b) is provided to display the
various event counters. Time synchronization is enabled between the time chart view,
events editor, and statistics view. When a filter is applied in the events table, the non-

Entropy 2021, 23, 1011 17 of 24

matching ticks are removed from the Time Chart view (and vice versa) [25]. Moreover,
the currently selected time range’s event type distribution is shown by selecting a time
range in the time chart. Figure 8b shows the statistics view of the selected anomalous
area detected by our tool. The distribution of events in the selected area led us to identify
that the attack created by the zip bombs caused the system not to respond to Mysql
requests appropriately during this period. The implementation of this visualization module
which can be run using the scripting plugin in Trace Compass, is available on Github
https://github.com/kohyar/syscall_anomaly_tracecompass_visualization.git (accessed
on 28 July 2021).

Figure 7. The visualized results of the test scenarios in Trace Compass time charts. (a) The visualized anomaly detection
output where zip bombs simulated DoS attack. (b) the time chart provides the ability to zoom in and zoom out a specific
area. (c) The visualized anomaly detection output where DoS attack was simulated by Stress.

Figure 8. Different features our framework has offered. (a) The events editor table for the selected
anomalous area, (b) The statistics chart for the selected anomalous area.

8.3. Results

In this section, we evaluate the performance of the proposed anomaly detection
approaches with respect to two different extracted feature spaces, one based on the duration
and another based on the frequency of system calls. We deploy MySQL and Chrome
processes on VMs and extract system calls from tracing the Linux kernel events to construct
the feature vectors. In all experiments, the window size is α = 104 with β = 102 of
overlapping. At first, we conduct an experimental study on the supervised method

https://github.com/kohyar/syscall_anomaly_tracecompass_visualization.git
https://github.com/kohyar/syscall_anomaly_tracecompass_visualization.git

Entropy 2021, 23, 1011 18 of 24

described in Section 7.1. Then, the experimental results of the semi-supervised method
are reported.

8.3.1. Experimental Results of the Supervised Method

To tune the hyperparameters of our supervised model, 10-fold cross-validation strat-
egy is used. One fold is used as validation and the union of other folds as training data.
This process is repeated ten times for an unbiased evaluation. Fisher scores of the system
calls are calculated in each run over the training set. As expected, results show that in both
frequency and duration based feature spaces, some system calls have high Fisher scores,
and therefore, play a more important role in separating the classes. Figure 9 shows the
accuracy of the supervised anomaly detection approach during 10-fold cross-validation by
varying the number ` of selected features. The experiment on MySQL processes reveals
that ` = 17 and ` = 8 should be selected for the frequency and duration feature space,
respectively. The same experiment on Chrome processes shows that the best number
of features is ` = 103 regarding frequency-based features and ` = 112 regarding the
duration-based features.

Figure 9. SVM-based anomaly detection accuracy versus the different number of top-ranked features. (a) Mysql dataset (b)
Chrome dataset.

As mentioned before, we employ a multi-class SVM with Radial Basis Function (RBF)
kernel on our dataset to classify the input sequences into three classes: normal, CPU issue,
and memory issue. The accuracy of the classification method depends on the value of
two hyperparameters, C and γ, of the Radial Basis Function kernel SVM. Intuitively, the
gamma parameter determines how far the influence of a single training example reaches,
with low values meaning ‘far’ and high values meaning ‘close’. The gamma parameters
can be seen as the inverse of the radius of influence of samples selected by the model
as support vectors [39]. The parameter C is the regularization term, which controls the
penalty forced on the margin for the misclassified data points. In order to optimize these
hyperparameters, a grid search algorithm is performed. Figures 10 and 11 depict the effect
of using different combination of parameters on the average accuracy over the validation
set. According to Figure 10, the pairs (C = 104, γ = 1) and (C = 105, γ = 1) yield the best
SVM performance for the MySQL data set in the frequency and duration feature spaces,
respectively. Likewise, we observe in Figure 11 that the pair of values (C = 103, γ = 10)
and (C = 105, γ = 10) are the best for SVM on the Chrome dataset for the frequency and
the duration feature spaces, respectively.

After optimizing the SVM hyperparameters, we evaluate our proposed supervised
anomaly detection method on unseen test data. The accuracy, precision, and recall of the
proposed RBF-SVM anomaly detection framework is reported in Table 1. These results
show that both frequency and duration of system calls are useful features to perform
multi-class anomaly detection, being SVM able to obtain good classification metrics by
using either of them.

Entropy 2021, 23, 1011 19 of 24

Table 1. The performance of the proposed supervised anomaly detection approach.

Number of features Accuracy Precision Recall

MySQL Process Frequency (` = 17) 0.928 0.989 0.968
Duration (` = 8) 0.937 0.988 0.978

Chrome Process Frequency (` = 103) 0.951 0.990 0.994
Duration (` = 112) 0.959 0.991 0.985

Figure 10. Heat map of the frequency-based and duration-based supervised anomaly detection accuracy using different
parameters γ and C for Mysql dataset. (a) The heat map for frequency feature space, (b) The heat map for duration feature
space.

8.3.2. Experimental Results of the Semi-Supervised Method

Following the experiment setting mentioned before, we conduct clustering experi-
ments using K-Means algorithm and DBSCAN to evaluate the performance of unsuper-
vised and semi-supervised performance anomaly detection. For the case of clustering, ARI
(Adjusted Rand Score) is used to measure the performance [40]. ARI computes a similarity
measure between two clustering solutions by considering all pairs of samples and counting
pairs that are assigned in the same or different clusters in the predicted and true clusterings.

Figure 11. Heat map of the frequency-based and duration-based supervised anomaly detection accuracy using different
parameters γ and C for Chrome dataset. (a) The heat map for frequency feature space, (b) The heat map for duration feature
space.

Entropy 2021, 23, 1011 20 of 24

We study in Table 2 how the iterative feature selection method of Section 7.3 impacts
the performance of K-Means. This table shows that the ARI of the K-Means clustering
method for the frequency-based dataset by selecting the 17 and 103 features with the
highest Fisher scores (i.e., ` = 17 and ` = 103) is 0.003 and 0.128 on MySQL and Chrome,
respectively. On the other hand, for the duration-based dataset, using ` = 8 leads to the
ARI of 0.038 for MySQL samples, and the ARI of 0.018 is obtained for the Chrome samples
by selecting ` = 112. The values of ` used are the same of the previous section obtained
with the supervised model.

Table 2. Validation of K-Means based semi-supervised technique on original features versus where
the Fisher score feature selection method is applied.

Frequency-Based Duration-Based
Data Set Data Set

MySQL Process Original Features 0.000 Original Features 0.000
Fisher Score (` = 17) 0.003 Fisher Score (` = 8) 0.038

Chrome Process Original Features 0.084 Original Features 0.001
Fisher Score (` = 103) 0.128 Fisher Score (` = 112) 0.018

To better explain the output of K-Means clustering, Figure 12 presents the result of
this method visually. In general, these results reveal that the K-Means framework does not
perform well in both duration-based and frequency-based feature spaces. This comes from
the fact that the distributions of data samples in the different clusters do not have a spherical
shape. In the next experiment, we analyze the performance of the DBSCAN algorithm.

The clustering results using the DBSCAN algorithm on the original feature space are
shown in Table 3 for both MySQL and Chrome datasets. The parameter ε determines the
maximum distance between two samples for one to be considered as in the neighborhood
of the other. The performance of the DBSCAN method is evaluated by varying ε, thus
obtaining different number of clusters.

Figure 12. The visual result of K-Means clustering after choosing ` = 103 features with the highest fisher score on frequency-
based data set for the Chrome process; each color refers to a cluster. The left plot uses PCA, and the right plot utilizes
t-SNE to map data points onto 2D subspaces.

The comparison results of DBSCAN are shown in Table 3. By examining the ARI
using values of ` obtained in the supervised model, the DBSCAN yields an ARI of 0.874
by selecting ` = 17 on frequency-based data set for MySQL process for which three large

Entropy 2021, 23, 1011 21 of 24

and five small clusters are detected. Similarly, on frequency-based data set for the Chrome
process, the DBSCAN leads to an ARI of 0.823 when 103 features are selected based on the
highest Fisher scores. Three large and six small clusters are obtained in this experiment.
The results show that three much larger clusters are obtained in both use cases, and each of
these clusters ideally contains one type of data we introduced before (normal data, memory
problems, and CPU problem). The comparison of Figure 5, which shows the data points
with the actual labels, and Figure 13, which illustrates the data points with labels obtained
from the semi-supervised method, confirm this claim. From this table, it is clear that
the performance of DBSCAN is superior to that of K-means. Moreover, the classification
performance of DBSCAN clustering largely benefits from the supervised feature selection
procedure. Finally, Table 3 displays that the proposed semi-supervised anomaly detection
on the frequency-based feature space shows better ARI than the duration-based space
for the mentioned processes. Interestingly, the evidence from this study intimates that by
selecting the most discriminative features, the number of identified clusters by DBSCAN is
decreased. This finding highlights the role of the mentioned feature selection method for
mitigating the effects of the curse of dimensionality and overfitting.

Table 3. Validation of DBSCAN based semi-supervised technique on original features versus where the Fisher score feature
selection method is applied.

Frequency-Based Number Duration-Based Number
Data Set ARI of Clusters Data Set ARI of Clusters

MySQL Process Original Features (ε = 10−3) 0.281 17 Original Features (ε = 10−3) 0.278 18
Fisher Score (` = 17 and ε = 10−3) 0.874 8 Fisher Score (` = 8 and ε = 10−3) 0.855 8

Chrome Process Original Features (ε = 5× 10−4) 0.254 21 Original Features (ε = 10−3) 0.127 27
Fisher Score (` = 103 and ε = 5× 10−4) 0.823 9 Fisher Score (` = 112 and ε = 10−3) 0.701 11

To better understand the output of DBSCAN clustering model, Figure 13 displays the
result of this model visually on frequency-based data set for the Chrome process. In the
first plot, two principal components of PCA are used, and similarly, the second plot utilizes
t-SNE [33] to map data points onto 2D subspaces.

Figure 13. The visual result of DBSCAN clustering with ε = 5× 10−4 after choosing ` = 103 features with the highest fisher
score on frequency-based data set for the Chrome process; each color refers to a cluster. The left plot uses PCA, and the
right plot utilizes t-SNE to map data points onto 2D subspaces.

Entropy 2021, 23, 1011 22 of 24

9. Conclusions

In this paper, a framework for monitoring of processes and detecting performance
anomalies was proposed. The framework is able to distinguish normal behavior, CPU
shortage, and memory shortage in monitored traced systems. The proposed methodology
works based on recording the stream of system calls using the Linux kernel tracing. From
that, short sequences of system calls are extracted, and two feature vectors of duration and
frequency are created to be exploited by machine learning techniques. The way we defined
the data collection module makes this framework general enough to work with any specific
application. Collecting system calls can be simply done on any system. Also, no special
settings are used in the data collection module. Then, the extracted feature vectors are
exploited by supervised, unsupervised, and semi-supervised techniques depending on
the volume of available labeled data. In the supervised case, Fisher Score was applied to
select the most discriminative features, and a three-class SVM algorithm was employed to
detect classes. The classification performance of the method is very good, with accuracy
never below 0.92. The performance of unsupervised clustering methods (i.e., K-means
and DBSCAN) was also evaluated for the case when no prior knowledge is used. Our
experiments revealed that the performance of DBSCAN is superior to that of K-means
but not as good as that of the proposed supervised approach. Our research underlined
the importance of supervised feature selection procedure (Fisher score feature selection),
which is used in the proposed semi-supervised approach. Our experiments revealed
that the supervised selection of features is able to boost considerably the performance
of unsupervised clustering algorithms, with ARI measures as good as 0.874 regarding
partition agreement. Taken together, these findings suggest that our framework is an
effective tool for automated anomaly detection from traced system calls. The proposed
framework along with other works done by our team will be integrated as an open-source
Trace Compass extension. In the future, we will explore the performance anomalies in
microservice systems using tracing data and Machine Learning. Furthermore, it would be
interesting to investigate other learning models for detection of anomalies to achieve better
detection performance.

Author Contributions: Conceptualization, I.K. and D.A.; methodology, I.K., D.A. and M.S.; software,
I.K.; validation, I.K., D.A. and M.S.; formal analysis, I.K., D.A. and M.S.; investigation, I.K.; resources,
I.K.; writing—original draft preparation, I.K.; writing—review and editing, I.K., D.A., M.R.D. and
M.S.; visualization, I.K.; supervision, D.A. and M.R.D.; project administration, D.A. and M.R.D.; All
authors have read and agreed to the published version of the manuscript.

Funding: We would like to gratefully acknowledge the Natural Sciences and Engineering Research
Council of Canada (NSERC), Ericsson, Ciena, and EffciOS for funding this project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, C.; Lao, N.; Wen, J.R.; Li, J.; Zhang, Z.; Wang, Y.M.; Ma, W.Y. Automated known problem diagnosis with event traces. In

ACM SIGOPS Operating Systems Review; ACM: New York, NY, USA, 2006; Volume 40, pp. 375–388
2. Liu, D.; Zhao, Y.; Xu, H.; Sun, Y.; Pei, D.; Luo, J.; Jing, X.; Feng, M. Opprentice: Towards practical and automatic anomaly

detection through machine learning. In Proceedings of the 2015 Internet Measurement Conference, Tokyo, Japan, 28–30 October
2015; pp. 211–224

3. Forrest, S.; Hofmeyr, S.A.; Somayaji, A.; Longstaff, T.A. A sense of self for unix processes. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 6–8 May 1996; pp. 120–128.

4. Varghese, S.M.; Jacob, K.P. Anomaly detection using system call sequence sets. J. Softw. 2007, 2, 14–21. [CrossRef]

http://doi.org/10.4304/jsw.2.6.14-21

Entropy 2021, 23, 1011 23 of 24

5. Suratkar, S.; Kazi, F.; Gaikwad, R.; Shete, A.; Kabra, R.; Khirsagar, S. Multi Hidden Markov Models for Improved Anomaly
Detection Using System Call Analysis. In Proceedings of the 2019 IEEE Bombay Section Signature Conference (IBSSC), Mumbai,
India, 26–28 July 2019; pp. 1–6.

6. Desnoyers, M.; Dagenais, M.R. The Lttng Tracer: A Low Impact Performance and Behavior Monitor for gnu/linux. 2006.
Available online: https://lttng.org/files/papers/desnoyers-ols2006.pdf (accessed on 3 May 2021).

7. Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput.
Netw. 2007, 51, 3448–3470. [CrossRef]

8. Wang, W.; Battiti, R. Identifying intrusions in computer networks with principal component analysis. In Proceedings of the First
International Conference on Availability, Reliability and Security (ARES’06), Vienna, Austria, 20–22 April 2006; pp. 270–279.

9. Garcia-Teodoro, P.; Diaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Comput. Secur. 2009, 28, 18–28. [CrossRef]

10. Ye, N. Probabilistic networks with undirected links for anomaly detection. In Proceedings of the IEEE SMC Information
Assurance and Security Workshop, West Point, NY, USA, 29 July 2000; pp. 175–179

11. Ye, N.; Zhang, Y.; Borror, C.M. Robustness of the Markov-chain model for cyber-attack detection. IEEE Trans. Reliab. 2004,
53, 116–123. [CrossRef]

12. MacDonald, I.L.; Zucchini, W. Hidden Markov and Other Models for Discrete-Valued Time Series; CRC Press: New York, NY, USA,
1997; Volume 110.

13. Syarif, I.; Prugel-Bennett, A.; Wills, G. Data mining approaches for network intrusion detection: From dimensionality reduction
to misuse and anomaly detection. J. Inf. Technol. Rev. 2012, 3, 70–83.

14. Kaur, N. Survey paper on data mining techniques of intrusion detection. Int. J. Sci. Eng. Technol. Res. 2013, 2, 799–804.
15. Agrawal, S.; Agrawal, J. Survey on anomaly detection using data mining techniques. Procedia Comput. Sci. 2015, 60, 708–713.

[CrossRef]
16. Canzanese, R.; Mancoridis, S.; Kam, M. System call-based detection of malicious processes. In Proceedings of the 2015 IEEE

International Conference on Software Quality, Reliability and Security, Washington, DC, USA, 3–5 August 2015; pp. 119–124.
17. Kolosnjaji, B.; Zarras, A.; Webster, G.; Eckert, C. Deep learning for classification of malware system call sequences. In Proceedings

of the Australasian Joint Conference on Artificial Intelligence, Hobart, Australia, 5–9 December 2016; Springer: Berlin, Germany,
2016; pp. 137–149.

18. Hou, S.; Saas, A.; Chen, L.; Ye, Y. Deep4maldroid: A deep learning framework for android malware detection based on linux
kernel system call graphs. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW), Omaha, NE, USA, 13–16 October 2016; pp. 104–111.

19. Huang, Y.; Kintala, C.; Kolettis, N.; Fulton, N.D. Software rejuvenation: Analysis, module and applications. In Proceedings of the
Twenty-Fifth International Symposium on Fault-Tolerant Computing, Digest of Papers, Pasadena, CA, USA, 27–30 June 1995;
pp. 381–390.

20. Ficco, M.; Pietrantuono, R.; Russo, S. Aging-related performance anomalies in the apache storm stream processing system. Future
Gener. Comput. Syst. 2018, 86, 975–994. [CrossRef]

21. Muppala, J.K.; Woolet, S.P.; Trivedi, K.S. Real-time systems performance in the presence of failures. Computer 1991, 24, 37–47.
[CrossRef]

22. Gregg, B. Systems Performance: Enterprise and The Cloud; Pearson Education: London, UK, 2013.
23. Cherkasova, L.; Ozonat, K.; Mi, N.; Symons, J.; Smirni, E. Automated anomaly detection and performance modeling of enterprise

applications. ACM Trans. Comput. Syst. (TOCS) 2009, 27, 6. [CrossRef]
24. Ibidunmoye, O.; Hernández-Rodriguez, F.; Elmroth, E. Performance anomaly detection and bottleneck identification. ACM

Comput. Surv. (CSUR) 2015, 48, 1–35. [CrossRef]
25. Compass, E.T. Trace Compass. 2017. Available online: https://www.eclipse.org/tracecompass/ (accessed on 28 July 2021)
26. Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79.

[CrossRef]
27. Sayfullina, L. Reducing Sparsity in Sentiment Analysis Data Using Novel Dimensionality Reduction Approaches. Ph.D. Thesis,

Aalto University, Espoo, Finland, 2014.
28. Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science + Business Media: Berlin, Germany, 2006.
29. Kreßel, U.H.G. Advances in kernel methods, chapter Pairwise classification and support vector machines. In Advances in Kernel

Methods: Support Vector Learning; MIT Press: Cambridge, MA, USA, 1999; pp. 255–268.
30. Cid-Fuentes, J.A.; Szabo, C.; Falkner, K. Adaptive Performance Anomaly Detection in Distributed Systems Using Online SVMs.

IEEE Trans. Dependable Secur. Comput. 2020, 17, 928–941. [CrossRef]
31. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
32. Aytekin, C.; Ni, X.; Cricri, F.; Aksu, E. Clustering and unsupervised anomaly detection with l 2 normalized deep auto-encoder

representations. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil,
8–13 July 2018; pp. 1–6.

33. Campbell, A.; Caudle, K.; Hoover, R.C. Examining Intermediate Data Reduction Algorithms for use with t-SNE. In Proceedings
of the 2019 3rd International Conference on Compute and Data Analysis, Kahului, HI, USA, 14–17 March 2019; pp. 36–42.

34. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]

https://lttng.org/files/papers/desnoyers-ols2006.pdf
http://dx.doi.org/10.1016/j.comnet.2007.02.001
http://dx.doi.org/10.1016/j.cose.2008.08.003
http://dx.doi.org/10.1109/TR.2004.823851
http://dx.doi.org/10.1016/j.procs.2015.08.220
http://dx.doi.org/10.1016/j.future.2017.08.051
http://dx.doi.org/10.1109/2.76285
http://dx.doi.org/10.1145/1629087.1629089
http://dx.doi.org/10.1145/2791120
https://www.eclipse.org/tracecompass/
http://dx.doi.org/10.1016/j.neucom.2017.11.077
http://dx.doi.org/10.1109/TDSC.2018.2821693
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1016/0169-7439(87)80084-9

Entropy 2021, 23, 1011 24 of 24

35. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
Kdd 1996, 96, 226–231.

36. Aggarwal, C.C. Data Mining: The Textbook; Springer: New York, NY, USA, 2015.
37. King, C.I. Stress-ng. 2017. Available online: http://kernel.ubuntu.com/git/cking/stressng.git/ (accessed on 28 March 2018).
38. ledenev, A. Pumba-Chaos Testing and Network Emulation Tool for Docker. 2019. Available online: https://github.com/alexei-

led/pumba (accessed on 23 August 2020)
39. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
40. Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]

http://kernel.ubuntu.com/git/cking/stressng.git/
https://github.com/alexei-led/pumba
https://github.com/alexei-led/pumba
http://dx.doi.org/10.1080/01621459.1971.10482356

	Introduction
	Previous Work
	Performance Anomaly in Processes
	The Automatic Integrated Anomaly Detection Framework
	Kernel Tracing and Data Extraction
	Preprocessing of the Extracted Data
	Problem of Sparsity
	Data Normalization

	Performance Anomaly Detection
	Supervised Performance Anomaly Detection
	Iterative Feature Selection
	Supervised Multi-Class Anomaly Detection

	Unsupervised Learning of the Performance Anomalies
	K-Means Clustering
	Dbscan Clustering

	Semi-Supervised Learning of the Performance Anomalies

	Evaluation
	Setup and Dataset Generation
	Analysis of Practical Use-Cases
	Results
	Experimental Results of the Supervised Method
	Experimental Results of the Semi-Supervised Method

	Conclusions
	References

