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Abstract: Linear regression (LR) is a core model in supervised machine learning performing a
regression task. One can fit this model using either an analytic/closed-form formula or an iterative
algorithm. Fitting it via the analytic formula becomes a problem when the number of predictors
is greater than the number of samples because the closed-form solution contains a matrix inverse
that is not defined when having more predictors than samples. The standard approach to solve this
issue is using the Moore–Penrose inverse or the L2 regularization. We propose another solution
starting from a machine learning model that, this time, is used in unsupervised learning performing
a dimensionality reduction task or just a density estimation one—factor analysis (FA)—with one-
dimensional latent space. The density estimation task represents our focus since, in this case, it
can fit a Gaussian distribution even if the dimensionality of the data is greater than the number
of samples; hence, we obtain this advantage when creating the supervised counterpart of factor
analysis, which is linked to linear regression. We also create its semisupervised counterpart and
then extend it to be usable with missing data. We prove an equivalence to linear regression and
create experiments for each extension of the factor analysis model. The resulting algorithms are
either a closed-form solution or an expectation–maximization (EM) algorithm. The latter is linked to
information theory by optimizing a function containing a Kullback–Leibler (KL) divergence or the
entropy of a random variable.

Keywords: more predictors than samples; linear regression; factor analysis; semisupervised regression;
missing data

1. Introduction

In machine learning, models can be grouped into two categories: probabilistic and
nonprobabilistic. Probabilistic models can be classified as generative and discriminative [1].
Examples of classic generative models are naive Bayes and Gaussian mixture models
(GMM). Examples of classic discriminative models are linear regression (LR) and logistic
regression. The key difference is whether they model the joint probability of the input
and the output—generative models—or they just model the conditional probability of the
output given the input—discriminative models. For a classification or a regression task, one
may argue that what you need is just a discriminative model, but the generative models
have their advantages: they can sometimes handle missing data, can easily generate new
data, can be extended to be unsupervised or semisupervised, etc. ([2] p. 268).

As one may notice, there are generative models for unsupervised learning that have
counterparts in supervised learning, even though this is not widely discussed in the
literature. One such example is the GMM ([2] p. 339) with its counterpart, the Gaussian
joint Bayes model ([2] p. 102), also known as quadratic discriminant analysis. Their
training/fitting algorithms are similar, as one may notice, for example, in [3,4]:

• for Gaussian joint Bayes:

πj =
1
n

n

∑
i=1

1{zi=j}
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µj =
∑n

i=1 1{zi=j}xi

∑n
i=1 1{zi=j}

Σj =
∑n

i=1 1{zi=j}(xi − µj)(xi − µj)
>

∑n
i=1 1{zi=j}

where xi is an input observation, (πj, µj, Σj) are the parameters of a GMM, observable
zi is the class index corresponding to xi, j is a class index, and 1{zi=j} is the indicator
function, which returns 1 if the condition zi = j is true and 0 otherwise.

• for expectation–maximization (EM) for the GMM, which optimizes a function concern-
ing a Kullback–Leibler (KL) divergence or the entropy of a random variable—check
Appendix A for these details—:
E step:

wij = p(zi = j|xi; π′, µ′, Σ′)

=
p(xi|zi = j; µ′, Σ′)p(zi = j; π′)

∑K
l=1 p(xi|zi = l; µ′, Σ′)p(zi = l; π′)

M step:

πj =
1
n

n

∑
i=1

wij

µj =
∑n

i=1 wijxi

∑n
i=1 wij

Σj =
∑n

i=1 wij(xi − µj)(xi − µj)
>

∑n
i=1 wij

where xi is an input observation, (πj, µj, Σj) are the parameters of a GMM, unobserv-
able zi is the cluster index corresponding to xi, j is a cluster index, and wij is the
probability that xi belongs to cluster j.

This similarity between GMM and Gaussian joint Bayes is intriguing; hence, we decided
to further explore this aspect but starting from other supervised–unsupervised counterparts.
As a result, we changed the root model into factor analysis (FA) [5] ([2] p. 381), which is nor-
mally used for dimensionality reduction or for density estimation when the dimensionality
of the data is greater than the number of samples. Factor analysis is a Gaussian generative
model used in unsupervised learning. We aimed at creating its supervised counterpart in
order to handle a regression task and then exploit it as much as possible.

After creating the supervised counterpart, we proved a significant property, namely
that linear regression is equivalent to (supervised) factor analysis—with one-dimensional
latent space—when no constraints are imposed on the covariance matrices.

A linear regression model can be fitted via a closed-form solution or an iterative
algorithm. When the number of predictors is greater than the number of samples, there is
no closed-form solution. There are other solutions to this problem, as we will see.

We were at the point where we knew that factor analysis was linked to linear regression
and that it could be used when the number of samples was lower than the dimensionality
of the data—from now on, this is denoted as D >> n or n << D. As a result, we shifted
our focus from solely exploiting the factor analysis model to highlighting novel linear
regression versions applicable in the D >> n regime—linear regression being a widely
known and used model—:
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• linear regression when D >> n,
• semisupervised linear regression when D >> n,
• (semisupervised) linear regression when D >> n with missing data.

The structure of this paper is as follows. In Section 2, we include some theoretical
background to enhance the readability of this paper. Section 3 contains related work. In
Section 4, we include the models we proposed, starting from factor analysis. Section 5
contains experiments using the proposed models. In Section 6, we conclude the paper and
show future directions.

We include the full algorithms in the appendices in a pseudocode format, two of them
being instances of the expectation–maximization schema.

2. Theoretical Background

We started our analysis from two core models in machine learning: linear regression
and factor analysis. We will discuss the aspects of those two models that are relevant to
understanding the next sections of this paper.

2.1. Linear Regression

Proposition 1. Let {(x(i), y(i))|x(i) ∈ RD×1, y(i) ∈ R, i ∈ {1, . . . , n}} be a data set where D is
the dimensionality of the input data, {x(i)|i ∈ {1, . . . , n}} is the input, and {y(i)|i ∈ {1, . . . , n}}
is the output. The linear regression model is as follows:

Y(i) = wx(i) + b + ε(i)

where Y(i) is a random variable corresponding to y(i), ε(i) ∼ N (0, σ2), σ ∈ R∗+, w ∈ R1×D,
b ∈ R. Then, the parameters w and b can be estimated via maximum likelihood as follows:

ŵLR =
(

nȳx̄> −YX>
)(

nx̄x̄> − XX>
)−1

(1)

b̂LR = ȳ− ŵLR x̄, (2)

or, equivalently, as follows: [
ŵ>LR
b̂LR

]
= (X̃X̃>)−1X̃Y> (3)

where x̄ =
x(1) + · · ·+ x(n)

n
, ȳ =

y(1) + · · ·+ y(n)

n
,

X =
[

x(1) . . . x(n)
]
∈ RD×n, X̃ =

[
x̃(1) . . . x̃(n)

]
∈ R(D+1)×n,

x̃(i) =
[

x(i)

1

]
=


x(i)1

...
x(i)D
1

 ∈ RD+1, and Y =
[
y(1) . . . y(n)

]
∈ R1×n.

A potential problem with Equation (3) is when X̃X̃> is not invertible. Such case arises
when D + 1 > n, i.e., there are more predictors than samples. Two standard solutions to
this problem are the following:

• Let A ∈ Ra×b be a matrix. Then, the Moore–Penrose inverse of A can be defined as
A+ = limα→0+(A>A+ αI)−1 A>, which, algorithmically, is computed via the singular
value decomposition of A ([6] Section 2.9). One may notice that the matrix (X̃X̃>)−1X̃
from Equation (3) is just (X̃>)+ when X̃X̃> is invertible. When it is not, the solution
is to replace the matrix (X̃X̃>)−1X̃ from Equation (3) with (X̃>)+.
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• L2 regularization, which results in ridge regression ([2] p. 225). The matrix (X̃X̃>)−1X̃

from Equation (3) is replaced with

X̃X̃> +


α . . . 0 0
...

. . .
...

...
0 . . . α 0
0 . . . 0 0



−1

X̃, with α > 0; the

bigger the α, the more regularization we add to the model, i.e., move away from
overfitting. From this point of view, the first solution using the Moore–Penrose inverse
can be interpreted as achieving the asymptotically lowest L2 regularization.

2.2. Factor Analysis

The formulas stated in the conclusion of the following Proposition were proved in [5]
and are relevant for the factor analysis algorithm—although the matrix Ψ is considered as
being diagonal there, the formulas stay the same even if Ψ is not diagonal.

Proposition 2. Let us consider the following factor analysis model:
z ∼ N (0, I)-latent variable, z ∈ Rd×1

x|z ∼ N (µ + Λz, Ψ), x ∈ RD×1, µ ∈ RD×1, Λ ∈ RD×d, and Ψ ∈ RD×D a diagonal
matrix. Then:[

x
z

]
∼ N

([
µ
0

]
,
[

ΛΛ> Λ
Λ> I

])
x ∼ N (µ, ΛΛ> + Ψ)
z|x ∼ N (Λ>(ΛΛ> + Ψ)−1(x− µ), I −Λ>(ΛΛ> + Ψ)−1Λ).

A factor analysis model can be fitted via an EM algorithm using the maximum likeli-
hood estimation (MLE) principle, and factor analysis can be used as a density estimation
technique when the dimensionality of the data is greater than the number of samples [5].

For the algorithms we developed, we will let z ∼ N (µz, Σz) and not z ∼ N (0, I),
because z becomes observed data, and we want to learn its parameters, and not impose
something unrealistic like z ∼ N (0, I). This generalization leads to the following result.

Proposition 3. Let us consider the following linear Gaussian system:
z ∼ N (µz, Σz)-latent variable, z ∈ Rd×1, µz ∈ Rd×1, Σz ∈ Rd×d a symmetric and positive

definite matrix,
x|z ∼ N (µ + Λz, Ψ), x ∈ RD×1, µ ∈ RD×1, Λ ∈ RD×d, and Ψ ∈ RD×D a symmetric and

positive definite matrix. (If Ψ is a diagonal matrix, then we say that we are in the FA case. If Ψ is
a scalar matrix, Ψ = η I, η ∈ R∗+, then we are in the probabilistic principal component analysis
(PPCA) case [7]. If Ψ is any symmetric and positive definite matrix, then we say we are in the
unconstrained factor analysis (UncFA) case. If the first two terms are standard (FA and PPCA), the
third one is proposed by us—UncFA.) Then:[

x
z

]
∼ N

([
µ + Λµz

µz

]
,
[

ΛΣzΛ> + Ψ ΛΣz
(ΛΣz)> Σz

])
x ∼ N (µ + Λµz, ΛΣzΛ> + Ψ)
z|x ∼ N (µz + ΣzΛ>(ΛΣzΛ> + Ψ)−1(x− µ−Λµz),

Σz − ΣzΛ>(ΛΣzΛ> + Ψ)−1ΛΣ>z ).
(4)

The proof can be found in ([8] pp. 9–11).

3. Related Work

Although factor analysis is widely used for dimensionality reduction, its supervised
counterpart is, to the best of our knowledge, not present in the literature. What is present
is a model called supervised principal component analysis or latent factor regression ([2]
p. 405). The idea is that not only the input, for a regression task, is generated by a
latent variable, as one applies factor analysis to replace the input in the problem with a
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low dimensional embedding, but also the output. The key idea is that the purpose of
supervised principal component analysis is still dimensionality reduction and not at all
regression, which is where we want to push the factor analysis model.

There is also a term called linear Gaussian system ([2] p. 119). This was already pre-
sented in Section 2, and it generalizes the factor analysis generative process by considering
that z has a learnable mean and covariance matrix, but it does not go further.

Factor analysis is strongly related to principal component analysis (PCA) [9] because
by imposing a certain constraint in factor analysis, we get a model called probabilistic
principal component analysis [7] that can be fitted using a closed-form solution, which, in
an asymptotic case, is also the solution for PCA. Probabilistic PCA can be kernelized using
a model called the Gaussian process latent variable model (GPLVM) [10]. This model also
has supervised counterparts [11], but, as in the case of FA, the supervised extension targets
dimensionality reduction, and the idea is similar to the one in supervised PCA.

4. Proposed Models

In this section, we propose three models starting from the FA model, each in a new
subsection: simple-supervised factor analysis (S2.FA), simple-semisupervised factor analy-
sis (S3.FA), and missing simple-semisupervised factor analysis (MS3.FA). While S2.FA is
applicable in the supervised case, regression, S3.FA is meant to be used in a semisupervised
context. MS3.FA handles missing input data in a (semi)supervised scenario.

One important remark that will not be restated in this paper is that all the models (FA,
S2.FA, S3.FA, MS3.FA) are fitted by maximizing the likelihood (the MLE principle) of the
observed data. Another important observation is regarding the names of our proposed
algorithms: the algorithms are called “simple-”—S2 = simple-supervised; S3 = simple-
semisupervised; MS3 = missing simple-semisupervised—not only because they constitute a
simple adaptation of the factor analysis model, but mostly because we created an adaptation
of the (simple-)supervised FA model called (simple-)supervised PPCA, and we did not want
this model to be confused with the already existing supervised PCA model in the literature.
Simple-supervised probabilistic principal component analysis (S2.PPCA) is not discussed
in this paper, but it is implemented and usable in the R package that we developed (https:
//github.com/aciobanusebi/s2fa; accessed on 31 July 2021) along with other undiscussed
but related models: Simple-semisupervised unconstrained factor analysis (S3.UncFA),
Simple-semisupervised probabilistic principal component analysis (S3.PPCA), Missing
simple-semisupervised unconstrained factor analysis (MS3.UncFA), and Missing simple-
semisupervised probabilistic principal component analysis (MS3.PPCA).

4.1. The S2.FA Model

The core of this subsection regards the S2.FA model, but in order to link it with LR,
we need to also introduce a similar model to S2.FA: S2.UncFA. This link will make S2.FA a
good candidate for replacing LR when D >> n. These three ideas—S2.FA and S2.UncFA,
S2.UncFA-LR link, and replacing LR via S2.FA—will be expanded below.

4.1.1. The S2.FA Model. S2.FA and S2.UncFA

The first model that we propose is called simple-supervised factor analysis. It is a
linear Gaussian system with slight changes:

z ∼ N (µz, σ2
z )-observed variable, z ∈ R, µz ∈ R, σz ∈ R∗+

x|z ∼ N (µ + Λz, Ψ), x ∈ RD×1, µ ∈ RD×1, Λ ∈ RD×1, and Ψ ∈ RD×D a diagonal
matrix.

If we do not impose the constraint of Ψ being diagonal, we arrive at the simple-
supervised unconstrained factor analysis (S2.UncFA):

z ∼ N (µz, σ2
z )-observed variable, z ∈ R, µz ∈ R, σz ∈ R∗+

x|z ∼ N (µ + Λz, Ψ), x ∈ RD×1, µ ∈ RD×1, Λ ∈ RD×1, and Ψ ∈ RD×D a symmetric
and positive definite matrix.

https://github.com/aciobanusebi/s2fa
https://github.com/aciobanusebi/s2fa
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In contrast with the factor analysis model, which is fitted via an EM algorithm,
S2.UncFA and S2.FA are fitted via analytic formulas (see Propositions 4 and 5).

Proposition 4. Let {(x(i), z(i))|x(i) ∈ RD×1, z(i) ∈ Rd×1, i ∈ {1, . . . , n}} be a data set where D
is the dimensionality of the input data, d is the dimensionality of the output data (although in the
context of this paper d = 1, we decided to expose more general results—d ≥ 1—in order for the

reader to gain more insight; this is the reason why we write Σz and not just σ2
z , or z(i)

>
and not

just z(i), or z̄> and not just z̄, etc.), {x(i)|i ∈ {1, . . . , n}} is the input, and {z(i)|i ∈ {1, . . . , n}}
is the output. We suppose that the data was generated as follows:

z(i) ∼ N (µz, Σz), z(i) ∈ Rd×1, µz ∈ Rd×1, Σz ∈ Rd×d a symmetric and positive definite
matrix and

x(i)|z(i) ∼ N (µ + Λz, Ψ), x(i) ∈ RD×1, µ ∈ RD×1, Λ ∈ RD×d, while Ψ ∈ RD×D is a
symmetric and positive definite matrix.

Then, the parameters in the S2.UncFA algorithm (training phase) can be estimated via maxi-
mum likelihood using the following closed-form formulas:

µ̂z =
∑n

i=1 z(i)

n
(5)

Σ̂z =
∑n

i=1(z
(i) − µ̂z)(z(i) − µ̂z)>

n
(6)

Λ̂ =

(
nx̄z̄> −

n

∑
i=1

x(i)z(i)
>
)(

nz̄z̄> −
n

∑
i=1

z(i)z(i)
>
)−1

(7)

µ̂ = x̄− Λ̂z̄ (8)

Ψ̂ =
∑n

i=1(x(i) − µ̂−Λz(i))(x(i) − µ̂−Λz(i))>

n
(9)

where x̄ =
∑n

i=1 x(i)

n
and z̄ = µ̂z. For the testing/prediction phase, one uses the formula for z|x

from (4).

For more elaborate notations and the proof, see [8] pp. 13–17.

Proposition 5. [We will denote the parameter Ψ̂ in (9) as Ψ̂S2.UncFA.]
For the S2.FA algorithm, (9) is replaced by

Ψ̂ = diag
(
Ψ̂S2.UncFA

)
(10)

where “diag" takes the diagonal of a matrix and returns the corresponding diagonal matrix.

The proof of Equation (10) is relatively simple, and we skip it for brevity. It can be
found in [8] pp. 21–23.

For the step-by-step S2.FA algorithm and also for the matrix form of the algorithm,
see Appendix B.

4.1.2. The S2.FA Model. The Link between LR and S2.UncFA

Linear regression and S2.UncFA have the same prediction function after fitting, as we
claim and prove below.

Proposition 6. Let {(x(i), z(i))|x(i) ∈ RD×1, z(i) ∈ Rd, i ∈ {1, . . . , n}} be a data set where D is
the dimensionality of the input data, d is the dimensionality of the output data (The same observation
as earlier: in the context of this paper, only the “d = 1" case is relevant.), {x(i)|i ∈ {1, . . . , n}} is
the input, and {z(i)|i ∈ {1, . . . , n}} is the output.
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One can fit an S2.UncFA model and obtain—via the relationships (5)–(9)—µ̂z, Σ̂z, Ψ̂, Λ̂, µ̂.
Remember that at the test phase (see (4)), the predicted value is

predictedS2.UncFA(x∗) = µ̂z + Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1(x∗ − µ̂− Λ̂µ̂z), ∀x∗ ∈ RD×1.

One can fit a linear regression model and obtain ŵ, b̂ from (1) and (2). Remember that at the
test phase, the predicted value is

predictedLR(x∗) = ŵx∗ + b̂, ∀x∗ ∈ RD×1.

Then:
predictedS2.UncFA(x∗) = predictedLR(x∗), ∀x∗ ∈ RD×1.

Proof. Let X =
[

x(1) . . . x(n)
]
∈ RD×n and Z =

[
z(1) . . . z(n)

]
∈ Rd×n.

We begin by computing Ψ̂.

Ψ̂
(9)
=

1
n

n

∑
i=1

(x(i) − µ̂− Λ̂z(i))(x(i) − µ̂− Λ̂z(i))>

=
1
n

n

∑
i=1

(x(i)x(i)
>
− x(i)µ̂> − x(i)z(i)

>
Λ̂> − µ̂x(i)

>
+ µ̂µ̂> + µ̂z(i)

>
Λ̂>−

− Λ̂z(i)x(i)
>
+ Λ̂z(i)µ̂> + Λ̂z(i)z(i)

>
Λ̂>)

=
1
n

XX> − x̄µ̂> − 1
n

XZ>Λ̂> − µ̂x̄> + µ̂µ̂> + µ̂z̄>Λ̂> − 1
n

Λ̂ZX>+

+ Λ̂z̄µ̂> +
1
n

Λ̂ZZ>Λ̂>

=
1
n

XX> − 1
n

XZ>Λ̂> − 1
n

Λ̂ZX> +
1
n

Λ̂ZZ>Λ̂> − x̄µ̂> − µ̂x̄> + µ̂µ̂>+

+ Λ̂z̄µ̂> + µ̂z̄>Λ̂>.

We substitute µ̂ with x̄− Λ̂z̄.
x̄µ̂> = x̄(x̄− Λ̂z̄)> = x̄x̄> − x̄z̄>Λ̂>

µ̂x̄> = (x̄− Λ̂z̄)x̄> = x̄x̄> − Λ̂z̄x̄>

µ̂µ̂> = (x̄− Λ̂z̄)(x̄− Λ̂z̄)> = x̄x̄> − x̄z̄>Λ̂> − Λ̂z̄x̄> + Λ̂z̄z̄>Λ̂>

Λ̂z̄µ̂> = Λ̂z̄(x̄− Λ̂z̄)> = Λ̂z̄x̄> − Λ̂z̄z̄>Λ̂>

µ̂z̄>Λ̂> = (x̄− Λ̂z̄)z̄>Λ̂> = x̄z̄>Λ̂> − Λ̂z̄z̄>Λ̂>

We return to compute Ψ̂:

Ψ̂ =
1
n

XX> − 1
n

XZ>Λ̂> − 1
n

Λ̂ZX> +
1
n

Λ̂ZZ>Λ̂> − x̄x̄> +����x̄z̄>Λ̂> −��x̄x̄>+

+���Λ̂z̄z̄> +��x̄x̄> −����x̄z̄>Λ̂> −���Λ̂z̄z̄> +�����
Λ̂z̄z̄>Λ̂> + Λ̂z̄x̄> −�����

Λ̂z̄z̄>Λ̂>+

+ x̄z̄>Λ̂> − Λ̂z̄z̄>Λ̂>

=
1
n

XX> − 1
n

XZ>Λ̂> − 1
n

Λ̂ZX> +
1
n

Λ̂ZZ>Λ̂> − x̄x̄> + Λ̂z̄x̄>+

+ x̄z̄>Λ̂> − Λ̂z̄z̄>Λ̂>. (11)

We continue by computing Λ̂Σ̂zΛ̂>.

Λ̂Σ̂zΛ̂>
(6)
= Λ̂

(
1
n

ZZ> − z̄z̄>
)

Λ̂> =
1
n

Λ̂ZZ>Λ̂> − Λ̂z̄z̄>Λ̂>. (12)
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We observe that the above term (see (12)) is also included in Ψ̂ (see (11)).

Σ̂zΛ̂>
(7)
=

(
1
n

ZZ> − z̄z̄>
)
(nz̄z̄> − ZZ>)−1(nz̄x̄> − ZX>)

=

(
1
n

ZZ> − z̄z̄>
)
−1
n

(
1
n

ZZ> − z̄z̄>
)−1

(nz̄x̄> − ZX>)

=
1
n

ZX> − z̄x̄>. (13)

Since (Λ̂Σ̂zΛ̂>)> = Λ̂Σ̂>z Λ̂> = Λ̂Σ̂zΛ̂> ⇒ Λ̂Σ̂zΛ̂> is symmetric.
We have that:

Λ̂Σ̂zΛ̂> = Λ̂(Σ̂zΛ̂>)
(13)
= Λ̂

(
1
n

ZX> − z̄x̄>
)
=

1
n

Λ̂ZX> − Λ̂z̄x̄>. (14)

We also have that:

Λ̂Σ̂zΛ̂> = (Λ̂Σ̂zΛ̂>)>
(13)
=

(
1
n

Λ̂ZX> − Λ̂z̄x̄>
)>

=
1
n

XZ>Λ̂> − x̄z̄>Λ̂>. (15)

We continue by computing Λ̂Σ̂zΛ̂> + Ψ̂.
As we have already noticed above, Λ̂Σ̂zΛ̂> is also included in Ψ̂ (see (11) and (12)).

In the computation of Λ̂Σ̂zΛ̂> + Ψ̂, we replace Λ̂Σ̂zΛ̂> once with (14) and then with (15).
We get:

Λ̂Σ̂zΛ̂> + Ψ̂
(11)(12)
=

(14)(15)

1
n

XX> −
�

����1
n

XZ>Λ̂> −
���

��1
n

Λ̂ZX> − x̄x̄> +���Λ̂z̄x̄>+

+����x̄z̄>Λ̂> +
�

����1
n

Λ̂ZX> −���Λ̂z̄x̄> +
�

����1
n

XZ>Λ̂> −����x̄z̄>Λ̂>

=
1
n

XX> − x̄x̄>. (16)

Observation: The result is exactly the maximum likelihood estimate of the covariance
matrix Σ of the input data set if x ∼ N (µ, Σ): ΣMLE = 1

n XX>− x̄x̄>. This is natural because
according to the relationship (4) we have x ∼ N (µ, ΛΣzΛ> + Ψ), and there are enough
free parameters in ΛΣzΛ> + Ψ, i.e., dD + d2−d

2 + d + D2−D
2 + D free parameters—dD in Λ,

d2−d
2 in Σz, D2−D

2 in Ψ, for it to become ΣMLE = 1
n XX> − x̄x̄>, since Σ has D2−D

2 + D free
parameters.

We return to the initial computation:
predictedS2.UncFA(x∗) =
(4)
= µ̂z + Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1(x∗ − µ̂− Λ̂µ̂z)
(5)(13)(16)

= z̄ +
(

1
n ZX> − z̄x̄>

)(
1
n XX> − x̄x̄>

)−1
(x∗ − x̄ +��̂Λz̄−��̂Λz̄)

=
(

1
n ZX> − z̄x̄>

)(
1
n XX> − x̄x̄>

)−1
x∗ + z̄−

(
1
n ZX> − z̄x̄>

)(
1
n XX> − x̄x̄>

)−1
x̄

=
(
nz̄x̄> − ZX>

)(
nx̄x̄> − XX>

)−1x∗ + z̄−
(
nz̄x̄> − ZX>

)(
nx̄x̄> − XX>

)−1 x̄
(1)
= ŵx∗ + z̄− ŵx̄
(2)
= ŵx∗ + b̂
= predictedLR(x∗), ∀x∗ ∈ RD×1.

4.1.3. The S2.FA Model. A New Approach for LR When D >> n

Since FA can be used to estimate the density of a data set when D >> n, and S2.UncFA
is equivalent to LR, we consider S2.FA as a new approach to extend LR when D >> n
besides the two solutions mentioned in Section 2.
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4.2. The S3.FA Model

Factor analysis is a classic generative unsupervised model. Its supervised counterpart
is S2.FA as shown in the previous subsection. Those two can be merged into a semisuper-
vised model that we propose here, named simple-semisupervised factor analysis:

z ∼ N (µz, σ2
z )-either observed or latent variable, z ∈ R, µz ∈ R, σz ∈ R∗+

x|z ∼ N (µ + Λz, Ψ), x ∈ RD×1, µ ∈ RD×1, Λ ∈ RD×1, and Ψ ∈ RD×D a diagonal
matrix.

If we were to speak about Gaussian naive Bayes and the GMM, good hints for combining
these two supervised–unsupervised counterparts into a semisupervised model can be found
in [12]. We applied those hints for our supervised–unsupervised counterparts—S2.FA and
FA—and created an EM algorithm to fit an S3.FA model. For the step-by-step algorithm and
the matrix form of the algorithm, see Appendix C. For more elaborate notations and the proof,
see [8] pp. 26–34.

4.3. The MS3.FA Model

The algorithm that fits an S3.FA model can be adapted also for the case when not all
the components of x are known. We call the resulted model missing simple-semisupervised
factor analysis:

z ∼ N (µz, σ2
z )-either observed or latent variable, z ∈ R, µz ∈ R, σz ∈ R∗+

x|z ∼ N (µ + Λz, Ψ), x ∈ RD×1, µ ∈ RD×1, Λ ∈ RD×1, and Ψ ∈ RD×D a diagonal
matrix; each component of x: x1, . . . , xD is either observed or latent.

The resulting algorithm that fits a MS3.FA model is an EM algorithm. For the step-
by-step algorithm, see Appendix D. For more elaborate notations and the proof, see [8]
pp. 34–37.

5. Experiments

In this section, we include the experiments we carried out on data with D >> n using
the S2.FA, S3.FA, and MS3.FA models, comparing them with other methods. In all the
experiments, we computed errors between the real values and the predicted values; the
metric we used is mean squared error (MSE):

MSE =
1
N

N

∑
i=1

(reali − predictedi)
2,

where N is the number of the unknown elements whose real and predicted values are reali
and predictedi, respectively; an unknown element represents an output number for S2.FA
and S3.FA or an input/output number for MS3.FA. We ran each experiment five times
and computed a 95% confidence interval using the t-distribution. Furthermore, in each
experiment we used the same three data sets:

• Gas sensor array under flow modulation data set (http://archive.ics.uci.edu/ml/
datasets/Gas+sensor+array+under+flow+modulation; accessed on 31 July 2021) [13]:
58 observations, 432 input attributes;

• atp1d—the airline ticket price; 1D refers to the fact that the target price is in the
next day—(https://www.openml.org/d/41475; accessed on 31 July 2021) [14]: 337
observations, 411 input attributes; 370 after preprocessing: see below;

• m5spec—corn measured on a NIR spectrometer: mp5 instrument—(http://www.
eigenvector.com/data/Corn; accessed on 31 July 2021): 80 observations, 700 input
attributes.

All three of these data sets have multiple outputs, but for each data set, we selected
only the first output column that appears in the text data file and used it as the output:
ace_conc for gas sensor array under flow modulation data set, LBL_ALLminpA_fut_001 for
atp1d, the first column in the propvals file for m5spec.

We preprocessed each data set simply by dropping the constant columns. Only the
second data set has constant columns: from 432 columns, we obtain 370.

http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation
https://www.openml.org/d/41475
http://www.eigenvector.com/data/Corn
http://www.eigenvector.com/data/Corn
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5.1. The S2.FA Model: Experiment

The experiment concerning S2.FA covers the comparison of the three solutions pre-
sented so far for LR when D >> n:

• Moore–Penrose inverse
• ridge regression—L2 regularization
• S2.FA.

Each data set was split into a training part—80%—and a testing part—20%. If the
model had hyperparameters, ridge regression, the training part was also split into a
new training part—60% of the whole data set—and a validation part—20% of the whole
data set—in order to be able to set the hyperparameters (for ridge regression, we used a
simple technique: pick α ∈ {102, 101.9, 101.8, . . . , 10−1.9, 10−2}, which attains the minimum
validation error); after setting the hyperparameters, we train a new model on the initial
training part—80% of the whole data set—and obtain the final model. All of the MSE errors
are reported on the testing part and shown in Table 1.

As one may notice, the best method is different for each data set, so our general advice
is to use all the methods on a given data set and pick the best one.

Table 1. Simple-supervised factor analysis (S2.FA) experiment: mean squared error (MSE) 95% confidence intervals on three
data sets using three methods for regression when D >> n; the best MSE means are marked in bold.

Data Set/Method Moore–Penrose Ridge Regression S2.FA

Gas sensor array under flow
modulation 0.0251 ± 0.0254 0.0062 ± 0.007 0.0452 ± 0.0208

atp1d 94,627.7239 ± 80,183.0076 27,770.9253 ± 42,887.5216 4724.2957 ± 1616.3341

m5spec 0.00004 ± 0.00001 0.02676 ± 0.01372 0.37344 ± 0.25025

5.2. The S3.FA Model: Experiment

The experiment concerning S3.FA includes an analysis of algorithms for semisuper-
vised regression when D >> n:

• Moore–Penrose inverse—a supervised method
• S2.FA—a supervised method
• S3.FA—a semisupervised method
• label propagation [15]—a semisupervised method: we used the function

sslLabelProp in the SSL R package [16] with the parameter alpha set to 1.

Each data set was split into a training part—80%—and a testing part—20%. We
retained from the training part 5%, 10%, 15%, 20%, 25%, . . . , 100% of the output labels.
For the supervised methods, we used only the labeled data in the training set, and for
the semisupervised methods, we used the full training set when fitting the model. We
initialized the S3.FA method with the fitted parameters returned by the S2.FA algorithm.
All of the MSE errors are reported on the testing part and shown in Figures 1–3—inspired
from [17]—and Table 2. The figures contain all the results from using 5% to 100% of the
output labels, but we include less information in the table for brevity.

We notice that on the selected data sets, S3.FA returns poorer results even than S2.FA,
which uses only the labeled data. As in the previous experiment, the best method is also
data-dependent. The models that show a greater amount of variability compared to the
others are S3.FA—in two data sets—and Moore–Penrose—in one data set. Moreover, as
expected, the errors tend to decrease as the percentage of labeled training data points
increases; the plots do not help us in this regard, but this decrease can be seen numerically
in Table 2.
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Dataset: Gas sensor array under flow modulation

Figure 1. Simple-semisupervised factor analysis (S3.FA) experiment: MSE 95% confidence intervals
on the gas sensor array under flow modulation data set using four methods for semisupervised
regression when D >> n; p ∈ {5%, 10%, 15%, . . . , 100%} of the training output labels are retained.
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Dataset: atp1d

Figure 2. S3.FA experiment: MSE 95% confidence intervals on the atp1d data set using four methods
for semisupervised regression when D >> n; p ∈ {5%, 10%, 15%, . . . , 100%} of the training output
labels are retained.
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Figure 3. S3.FA experiment: MSE 95% confidence intervals on the m5spec data set using four methods
for semisupervised regression when D >> n; p ∈ {5%, 10%, 15%, . . . , 100%} of the training output
labels are retained.

Table 2. S3.FA experiment: MSE 95% confidence intervals on three data sets using four methods for semisupervised
regression when D >> n; p ∈ {5%, 10%, 15%, 30%, 50%, 70%} of the training output labels are retained; the best MSE means
are marked in bold.

Data Set Method p = 5% p = 10% p = 15%

Gas sensor
array under

flow modulation

Moore–Penrose 0.034 ± 0.0437 0.0292 ± 0.0421 0.0267 ± 0.0326
S2.FA 0.2511 ± 0.3953 0.0899 ± 0.2367 0.0285 ± 0.0333
S3.FA 3.9799 ± 6.7087 0.349 ± 0.6626 0.2294 ± 0.1561

Label Propagation 0.0853 ± 0.0073 0.0825 ± 0.0051 0.0708 ± 0.013

atp1d

Moore–Penrose 3763.2939 ± 749.0966 3079.5042 ± 1842.7676 3428.7567 ± 1722.6437
S2.FA 2706.9906 ± 477.3245 2339.3504 ± 324.8581 2279.0802 ± 99.5443
S3.FA 3771.605 ± 1563.6543 2972.1137 ± 639.6724 2633.0816 ± 274.7409

Label Propagation 110,820.3235 ± 0 110,820.3235 ± 0 110,820.3235 ± 0

m5spec

Moore–Penrose 0.4602 ± 0.354 0.3609 ± 0.7631 0.0187 ± 0.0221
S2.FA 0.7003 ± 0.3834 0.4269 ± 0.5441 0.4999 ± 0.5172
S3.FA 0.8133 ± 0.6366 1.653 ± 3.9497 0.5118 ± 0.5503

Label Propagation 0.2175 ± 0.0707 0.1939 ± 0.0706 0.2343 ± 0.0624

Data Set Method p = 30% p = 50% p = 70%

Gas sensor
array under

flow modulation

Moore–Penrose 0.0313 ± 0.0259 0.0192 ± 0.0145 0.0132 ± 0.0075
S2.FA 0.0588 ± 0.0576 0.0233 ± 0.0224 0.0279 ± 0.0116
S3.FA 0.645 ± 1.3044 0.1666 ± 0.1059 0.0912 ± 0.0443

Label Propagation 0.0668 ± 0.0086 0.0675 ± 0.018 0.0605 ± 0.0122

atp1d

Moore–Penrose 6401.7587 ± 3602.9182 7907.484 ± 4449.2312 36,041.874 ± 21,300.704
S2.FA 2444.9001 ± 404.2393 2439.162 ± 108.3605 2399.7948 ± 160.1038
S3.FA 2760.6602 ± 391.9217 2659.6472 ± 112.9795 2521.9861 ± 222.3765

Label Propagation 110,820.3235 ± 0 110,820.3235 ± 0 110,820.3235 ± 0

m5spec

Moore–Penrose 0.00057 ± 0.00085 0.00009 ± 0.00008 0.00009 ± 0.00004
S2.FA 0.37449 ± 0.12508 0.35796 ± 0.07275 0.3995 ± 0.03164
S3.FA 0.37865 ± 0.12808 0.36181 ± 0.07463 0.40419 ± 0.03415

Label Propagation 0.19391 ± 0.02754 0.17424 ± 0.00857 0.17752 ± 0.01545
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5.3. The MS3.FA Model: Experiment

The experiment concerning MS3.FA includes a comparison of two different types of
algorithms for data imputation when D >> n:

• Mean imputation: for a given attribute (input column), compute its mean ignoring
the missing values, then replace the missing data on that attribute with this com-
puted mean

• MS3.FA.

We also tried two other R packages: mice [18] and Amelia [19], but they could not be
applied successfully on our data sets perhaps because they have a peculiarity: D >> n.

For each data set, we removed 10%, 20%, 30%, 40%, 50%, and 60% of the input (We
could have added missing data also in the output, but we wanted to focus on the missing
input data scenario and not on the semisupervised case.) cells and imputed those via the
above mentioned algorithms. The results are presented in Figures 4–6 and in Table 3.

From these results, we discover that MS3.FA is better than mean imputation on two
data sets, and, as expected, the error increases as the percentage of missing data increases.

●

●

●

●

●

●

0.02

0.04

0.06

20 40 60
p = Percentage of removed data

Te
st

 e
rr

or method
● Mean

MS3.FA

Dataset: Gas sensor array under flow modulation

Figure 4. Missing simple-semisupervised factor analysis (MS3.FA) experiment: MSE 95% confidence
intervals on the gas sensor array under flow modulation data set using two methods for imputing
missing data when D >> n; p ∈ {10%, 20%, 30%, 40%, 50%, 60%} of the input data are removed.



Entropy 2021, 23, 1012 14 of 24

●

●

●

●

●

●

5000

10,000

15,000

20,000

20 40 60
p = Percentage of removed data

Te
st

 e
rr

or method
● Mean

MS3.FA

Dataset: atp1d

Figure 5. MS3.FA experiment: MSE 95% confidence intervals on the atp1d data set using two methods
for imputing missing data when D >> n; p ∈ {10%, 20%, 30%, 40%, 50%, 60%} of the input data
are removed.
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Figure 6. MS3.FA experiment: MSE 95% confidence intervals on the m5spec data set using two
methods for imputing missing data when D >> n; p ∈ {10%, 20%, 30%, 40%, 50%, 60%} of the input
data are removed.
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Table 3. MS3.FA experiment: MSE 95% confidence intervals on three data sets using two methods for imputing missing data
when D >> n; p ∈ {10%, 20%, 30%, 40%, 50%, 60%} of the input data are removed; the best MSE means are marked in bold.

Data Set Method p = 10% p = 20% p = 30%

Gas sensor array under
flow modulation

Mean 0.0108 ± 0.0022 0.0241 ± 0.0027 0.0359 ± 0.0011
MS3.FA 0.00603 ± 0.00029 0.01176 ± 0.00081 0.01747 ± 0.00094

atp1d Mean 3239.9757 ± 68.2511 6831.0884 ± 105.6119 10,077.1798 ± 117.4693
MS3.FA 1807.7748 ± 105.03 3697.1146 ± 124.2197 5276.899 ± 104.6252

m5spec Mean 0.00013 ± 0.00001 0.00026 ± 0 0.00039 ± 0.00001
MS3.FA 0.14835 ± 0.000002 0.148433 ± 0.000002 0.148518 ± 0.000002

Data Set Method p = 40% p = 50% p = 60%

Gas sensor array under
flow modulation

Mean 0.0494 ± 0.0042 0.0597 ± 0.0015 0.0731 ± 0.0012
MS3.FA 0.02372 ± 0.00159 0.0299 ± 0.00047 0.0364 ± 0.0011

atp1d Mean 13,423.3625 ± 252.7735 16,899.3166 ± 223.6971 20,156.2493 ± 62.1299
MS3.FA 7071.6793 ± 143.3232 8921.5319 ± 165.5759 10,558.5723 ± 53.1182

m5spec Mean 0.000521 ± 0.000005 0.000658 ± 0.000008 0.00080 ± 0.000005
MS3.FA 0.1486 ± 0.00001 0.14869 ± 0.00001 0.148781 ± 0.000001

6. Conclusions and Future Work

The initial purpose of this paper was to extend an already existing model: factor anal-
ysis. We developed its supervised counterpart (S2.FA) and noticed that the unconstrained
version (S2.UncFA) is equivalent to linear regression. Because FA is applied in density
estimation when the dimensionality of the data is greater than the number of samples, and
because of the already mentioned equivalence, the purpose of the paper became to analyze
this new method of applying LR when D >> n, i.e., via S2.FA. Since FA and S2.FA are
generative models and are unsupervised–supervised counterparts, we combined both into
a new model S3.FA as an extension of LR to semisupervised learning when D >> n. The
final extension regards missing data; it is called MS3.FA. We developed an R package (s2fa)
with these algorithms; it can be found on GitHub. The experimental parts included several
comparisons in the D >> n scenario:

• of S2.FA with other techniques extending LR to the D >> n case,
• of S3.FA with other (semi)supervised regression methods,
• of MS3.FA with another data imputation algorithm.

The bottom line is that we do not necessarily recommend S3.FA for semisupervised
regression since our results suggest that it gives poor results, but we encourage the consid-
eration of S2.FA for regression and MS3.FA for missing data imputation as algorithms to
be compared with others on a given data set.

As for future work, we could further explore the S2.FA, S3.FA, and MS3.FA algorithms
when z is a real vector, not just a real number. Moreover, we can experiment with the
PPCA version of the algorithms. Questions regarding the time complexity—empirical or
not—can be also addressed; we expect the fitting time to be impractical if the number of
columns is large. Because there are models such as mixture of factor analyzers [20] and
mixture of linear regression models ([21] Section 14.5.1), another research direction involves
mixtures of S2.FAs. Another idea would be to investigate the memory resources required
by the algorithms when the data set increases and also to consider scalable systems such as
Spark [22] for implementation.

Author Contributions: Conceptualization, S.C. and L.C.; methodology, S.C. and L.C.; software, S.C.;
validation, S.C.; formal analysis, S.C.; investigation, S.C.; resources, L.C.; data curation; writing—
original draft preparation, S.C.; writing—review and editing, S.C. and L.C.; visualization, S.C. and
L.C.; supervision, L.C.; project administration, S.C. and L.C.; funding acquisition. Both authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Entropy 2021, 23, 1012 16 of 24

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available data sets were analyzed in this study. This data can
be found here: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation
(accessed on 31 July 2021) for the gas sensor array under flow modulation data set, https://www.
openml.org/d/41475 (accessed on 31 July 2021) for atp1d, http://www.eigenvector.com/data/Corn
(accessed on 31 July 2021) for m5spec.
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Abbreviations
The following abbreviations are used in this manuscript:

GMM Gaussian mixture model
LR Linear regression
EM Expectation–maximization
KL Kullback–Leibler
FA Factor analysis
PCA Principal component analysis
PPCA Probabilistic principal component analysis
GPLVM Gaussian process latent variable model
MLE Maximum likelihood estimation
UncFA Unconstrained factor analysis
S2.UncFA Simple-supervised unconstrained factor analysis
S2.FA Simple-supervised factor analysis
S2.PPCA Simple-supervised probabilistic principal component analysis
S3.UncFA Simple-semisupervised unconstrained factor analysis
S3.FA Simple-semisupervised factor analysis
S3.PPCA Simple-semisupervised probabilistic principal component analysis
MS3.UncFA Missing simple-semisupervised unconstrained factor analysis
MS3.FA Missing simple-semisupervised factor analysis
MS3.PPCA Missing simple-semisupervised probabilistic principal component analysis
MSE Mean squared error
ELBO Evidence lower bound

Appendix A. On the Expectation–Maximization Algorithm

This section provides theoretical details on the EM algorithm [23]. These are relevant
in order to establish a link between EM and the information theory field.

A latent variable model assumes that the data we observed—usually, denoted by the
random variable X—is not complete: there is also some latent data modeled via random
variables—usually, denoted by Z. Often, pairs consisting of an observed point and a latent
one constitute the complete dataset, e.g., in a GMM the latent data is the cluster number
and such a number is assigned to each point in the observed dataset.

Usually, in a latent variable model the likelihood of the observed data is not tractable—
although there are exceptions, like in GMM or factor analysis—and therefore we cannot
maximize it directly. Instead we maximize a lower bound for the log-likelihood function
called ELBO (evidence lower bound). To simplify the discussion, we consider that we have
one single observed datapoint, x. We will also consider the case where Z is continuous;
when Z is discrete the

∫
sign is replaced by the ∑ sign.

http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation
https://www.openml.org/d/41475
https://www.openml.org/d/41475
http://www.eigenvector.com/data/Corn
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Let q be any distribution over z, where the z values are the possible values of the
random variable Z. The log-likelihood of the observed datapoint x is:

log p(x; θ)
marginal

= log
∫

z
p(x, z; θ)dz

= log
∫

z

q(z)
q(z)

p(x, z; θ)dz

= log
∫

z
q(z)

p(x, z; θ)

q(z)
dz

= logEq

[
p(x, z; θ)

q(z)

]
Jensen
≥ Eq

[
log

p(x, z; θ)

q(z)

]
︸ ︷︷ ︸

ELBO(θ,q)

.

Furthermore, the following relationships important for the E step of the EM algorithm—
see below—can be proven:

log p(x; θ)− ELBO(θ, q) = KL(q(·)||p(·|x; θ))

m
log p(x; θ) = ELBO(θ, q) + KL(q(·)||p(·|x; θ))

m
ELBO(θ, q) = log p(x; θ)−KL(q(·)||p(·|x; θ)).

Moreover, the following relationships important for the M step of the EM algorithm—
see below—can be proven:

ELBO(θ, q) def.
= Eq

[
log

p(x, z; θ)

q(z)

]
=
∫

z
q(z) log

p(x, z; θ)

q(z)
dz

=
∫

z
q(z) log p(x, z; θ)dz−

∫
z

q(z) log q(z)dz

= Eq[log p(x, z; θ)] + H(q).

Now, instead of carrying out maxθ log p(x; θ) we will execute maxθ,q ELBO(θ, q), since
ELBO is a lower bound for the log-likelihood of x and hence its maximization will not hurt
the process of maximizing log p(x; θ).

The ELBO can be maximized in at least two ways:

• via (block) coordinate ascent
The resulting meta-algorithm is the EM algorithm.
In fact this is the case for many classic models—EM for GMM [3], EM for factor
analysis [5] etc.—.
EM is an iterative algorithm and an iteration encompasses two steps:

1. E step:
q(t) = arg maxq ELBO(θ(t−1), q) for θ(t−1) fixed—from the previous iteration.
Since ELBO(θ, q) = log p(x; θ)−KL(q(·)||p(·|x; θ)), we have:
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q(t) = arg max
q

ELBO(θ(t−1), q)

= arg max
q

(log p(x; θ(t−1))−KL(q(·)||p(·|x; θ(t−1))))

= arg min
q

KL(q(·)||p(·|x; θ(t−1)))
KL property

= p(·|x; θ(t−1)).

(In this case, we have log p(x; θ(t−1)) = ELBO(θ(t−1); q(t)).)
So, we obtained the distribution q(t) as a posterior distribution. Although
in classic models where conjugate priors are used it is tractable to compute
p(·|x; θ(t−1))—this type of inference is called analytical inference—, in other
models this is not the case and a solution to this shortcoming is represented by
approximate/variational inference.

2. M step:
θ(t) = arg maxθ ELBO(θ, q(t)) for q(t) fixed—from the E step.
Since ELBO(θ, q) = Eq[log p(x, z; θ)] + H(q), we have:

θ(t) = arg max
θ

ELBO(θ, q(t))

= arg max
θ

(Eq(t) [log p(x, z; θ)] + H(q(t)))

= arg max
θ

Eq(t) [log p(x, z; θ)].

So, we obtained a relatively simpler term to maximize. Note that the maximiza-
tion is further customized using the probabilistic assumptions at hand.

• via gradient ascent: this is the case of Variational Autoencoder [24] which will not be
discussed since it is not necessarily relevant to this study.

Appendix B. S2.FA

Algorithm A1 S2.FA—nonmatrix form.

1: function TRAIN({(x(i), z(i))|i ∈ {1, . . . , n}})
2: x̄ = ∑n

i=1 x(i)

n

3: µ̂z =
∑n

i=1 z(i)

n = z̄

4: Σ̂z =
∑n

i=1(z
(i)−µ̂z)(z(i)−µ̂z)>

n

5: Λ̂ =
(

nx̄z̄> −∑n
i=1 x(i)z(i)

>)(
nz̄z̄> −∑n

i=1 z(i)z(i)
>)−1

6: µ̂ = x̄− Λ̂z̄

7: Ψ̂ = diag
(

∑n
i=1(x(i)−µ̂−Λz(i))(x(i)−µ̂−Λz(i))>

n

)
8: return (µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂)
9: function TEST(x∗,(µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂))

10: value = µ̂z + Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1(x∗ − µ̂− Λ̂µ̂z)
11: covarianceMatrix = Σ̂z − Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1Λ̂Σ̂>z
12: return (value, covarianceMatrix)
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Algorithm A2 S2.FA—matrix form.

1: function TRAIN(X,Z) . X =
[
x(1) . . . x(n)

]
2: . Z =

[
z(1) . . . z(n)

]
3: x̄ = ∑n

i=1 X:i
n

4: µ̂z =
∑n

i=1 Z:i
n = z̄

5: Σ̂z =
1
n

Z− µ̂z
[
1 1 . . . 1

]︸ ︷︷ ︸
∈R1×n

(Z− µ̂z
[
1 1 . . . 1

])>
= 1

n ZZ> − µ̂zµ̂>z . 2

ways to compute
6: Λ̂ = (nx̄µ̂>z − XZ>)(nµ̂zµ̂>z − ZZ>)−1

7: µ̂ = x̄− Λ̂z̄

8: Ψ̂ = diag

 1
n

X− µ̂
[
1 1 . . . 1

]︸ ︷︷ ︸
∈R1×n

−Λ̂Z

(X− µ̂
[
1 1 . . . 1

]
− Λ̂Z

)>
9: return (µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂)

10: function TEST(x∗,(µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂))
11: value = µ̂z + Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1(x∗ − µ̂− Λ̂µ̂z)
12: covarianceMatrix = Σ̂z − Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1Λ̂Σ̂>z
13: return (value, covarianceMatrix)
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Appendix C. S3.FA

The algorithms below are more general: z is not just a real number, as we state in the
paper, but a real vector.

Algorithm A3 S3.FA—nonmatrix form.

1: function LOGLIKELIHOOD({(x(1), z(1)), . . . , (x(a), z(a)), x(a+1), . . . , x(n)},
(µz, Σz, µ, Λ, Ψ))

2: return ∑a
i=1

(
ln
(
N (z(i)|µz, Σz)

)
+ ln

(
N (x(i)|µ + Λz(i), Ψ)

))
+

∑n
i=a+1 ln

(
N (x(i)|µ + Λµz, ΛΣzΛ> + Ψ)

)
3: function TRAIN({(x(1), z(1)), . . . , (x(a), z(a)), x(a+1), . . . , x(n)},nMaxIterations,eps)

4: x̄ = ∑n
i=1 x(i)

n
5: θ(0) = initializeParameters({(x(1), z(1)), . . . , (x(a), z(a)), x(a+1), . . . , x(n)})
6: l(0)RV_Do = LOGLIKELIHOOD({(x(1), z(1)), . . . , (x(a), z(a)), x(a+1), . . . , x(n)},θ(0))
7: for t = 0:nMaxIterations do
8: E step: Compute E[Z(i)], E[Z(i)Z(i)>], i ∈ {a + 1, . . . , n}:
9: EZ(i) |X(i)=x(i),θ(t) [Z

(i)] = µ
(t)
z + Σ(t)

z Λ(t)>(Λ(t)Σ(t)
z Λ(t)> + Ψ(t))−1(x(i) − µ(t) −

Λ(t)µ
(t)
z )

10: EZ(i) |X(i)=x(i),θ(t) [Z
(i)Z(i)>] = Σ(t)

z + EZ(i) |X(i)=x(i),θ(t) [Z
(i)]EZ(i) |X(i)=x(i),θ(t) [Z

(i)]>

11: M Step: Compute θ(t+1) = (µ
(t+1)
z , Σ(t+1)

z , µ(t+1), Λ(t+1), Ψ(t+1)):

12: µ
(t+1)
z =

∑a
i=1 z(i)+∑n

a+1 E[Z(i) ]
n

13: Σ(t+1)
z = 1

n (∑
a
i=1(z

(i) − µ
(t+1)
z )(z(i) − µ

(t+1)
z )> + ∑n

i=a+1(E[Z(i)Z(i)>] −

E[Z(i)]µ
(t+1)
z

>
− µ

(t+1)
z E[Z(i)]> + µ

(t+1)
z µ

(t+1)
z

>
))

14: Λ(t+1) =

(
nx̄µ

(t+1)
z

>
−∑a

i=1 x(i)z(i)
> −∑n

i=a+1 x(i)E[Z(i)]>
)

(
nµ

(t+1)
z µ

(t+1)
z

>
−∑a

i=1 z(i)z(i)
> −∑n

i=a+1 E[Z(i)Z(i)>]

)−1

15: µ(t+1) = x̄−Λ(t+1)µ
(t+1)
z

16: Ψ(t+1) = diag( 1
n (∑

a
i=1(x(i) − µ(t+1) −Λ(t+1)z(i))(x(i) − µ(t+1) −Λ(t+1)z(i))> +

∑n
i=a+1((x(i) − µ(t+1))(x(i) − µ(t+1))> − (x(i) − µ(t+1))E[Z(i)]>Λ(t+1)> −

Λ(t+1)E[Z(i)](x(i) − µ(t+1))> + Λ(t+1)E[Z(i)Z(i)>]Λ(t+1)>)))

17: l(t+1)
RV_Do = LOGLIKELIHOOD({(x(1), z(1)), . . . , (x(a), z(a)), x(a+1), . . . , x(n)},θ(t+1))

18: if ‖θ(t)−θ(t+1)‖2
2

‖θ(t)‖2
2

≤eps or
|l(t)RV_Do−l(t+1)

RV_Do|

|l(t)RV_Do|
≤eps then

19: break
20: return θ(t)

21: function TEST(x∗,(µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂)) . The same as in S2.FA
22: value = µ̂z + Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1(x∗ − µ̂− Λ̂µ̂z)
23: covarianceMatrix = Σ̂z − Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1Λ̂Σ̂>z
24: return (value, covarianceMatrix)
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Algorithm A4 S3.FA—matrix form.

1: function LOGLIKELIHOOD(X,Z,(µz, Σz, µ, Λ, Ψ)) . X =
[
x(1) . . . x(n)

]
2: . Z =

[
z(1) . . . z(a)

]
3: return ∑a

i=1(ln(N (Z:i|µz, Σz)) + ln(N (X:i|µ + ΛZ:i, Ψ))) +

∑n
i=a+1 ln

(
N (X:i|µ + Λµz, ΛΣzΛ> + Ψ)

)
4: function TRAIN(X,Z,nMaxIterations,eps) . X =

[
x(1) . . . x(n)

]
5: . Z =

[
z(1) . . . z(a)

]
6: x̄ = ∑n

i=1 X:i
n

7: θ(0) = initializeParameters(X, Z)
8: l(0)RV_Do = LOGLIKELIHOOD(X,Z,θ(0))
9: for t = 0:nMaxIterations do

10: E step: Compute E[Z(i)], E[Z(i)Z(i)>], i ∈ {a + 1, . . . , n}:
11: E_Z = µ

(t)
z + Σ(t)

z Λ(t)>(Λ(t)Σ(t)
z Λ(t)> + Ψ(t))−1(X:,(a+1):n −

µ(t) [1 1 . . . 1
]︸ ︷︷ ︸

∈R1×(n−a)

−Λ(t)µ
(t)
z
[
1 1 . . . 1

]︸ ︷︷ ︸
∈R1×(n−a)

)

12: E_Z_Z_T = Σ(t)
z + E_ZE_Z>

13: E_Z =
[
Z E_Z

]
14: E_Z_Z_T = ZZ> + E_Z_Z_T
15: M Step: Compute θ(t+1) = (µ

(t+1)
z , Σ(t+1)

z , µ(t+1), Λ(t+1), Ψ(t+1)):

16: µ
(t+1)
z = ∑n

i=1 E_Z:i
n

17: Σ(t+1)
z = 1

n E_Z_Z_T − µ
(t+1)
z µ

(t+1)
z

>

18: Λ(t+1) =

(
nx̄µ

(t+1)
z

>
− XE_Z>

) (
nµ

(t+1)
z µ

(t+1)
z

>
− E_Z_Z_T

)−1

19: µ(t+1) = x̄−Λ(t+1)µ
(t+1)
z

20: Ψ(t+1) = diag( 1
n ((X − µ(t+1) [1 1 . . . 1

]︸ ︷︷ ︸
∈R1×n

)(X − µ(t+1) [1 1 . . . 1
]︸ ︷︷ ︸

∈R1×n

)> −

(X− µ(t+1) [1 1 . . . 1
]︸ ︷︷ ︸

∈R1×n

)E_Z>Λ(t+1)> −Λ(t+1)E_Z(X− µ(t+1) [1 1 . . . 1
]︸ ︷︷ ︸

∈R1×n

)> +

Λ(t+1)E_Z_Z_TΛ(t+1)>))

21: l(t+1)
RV_Do = LOGLIKELIHOOD(X,Z,θ(t+1))

22: if ‖θ(t)−θ(t+1)‖2
2

‖θ(t)‖2
2

≤eps or
|l(t)RV_Do−l(t+1)

RV_Do|

|l(t)RV_Do|
≤eps then

23: break
24: return θ(t)

25: function TEST(x∗,(µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂)) . The same as in S2.FA
26: value = µ̂z + Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1(x∗ − µ̂− Λ̂µ̂z)
27: covarianceMatrix = Σ̂z − Σ̂zΛ̂>(Λ̂Σ̂zΛ̂> + Ψ̂)−1Λ̂Σ̂>z
28: return (value, covarianceMatrix)
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Appendix D. MS3.FA

The algorithms below are more general: z is not just a real number, as we state in the
paper, but a real vector.

Algorithm A5 MS3.FA—Other functions.

1: function CONDNORMALNA(y,(µ,Σ))
2: I = {i|yi = NA} . I = Indexes
3: OI = {i|yi 6= NA} . OI = Other Indexes
4: mean = µI + ΣI,OIΣ−1

OI (yOI − µOI)

5: covarianceMatrix = ΣI − ΣI,OIΣ−1
OI Σ>I,OI

6: E[Y]I = mean
7: E[Y]OI = yOI
8: E[YY>] = E[Y]E[Y]>

9: E[YY>]I,I = E[YY>]I,I + covarianceMatrix
10: return (E[Y], E[YY>])
11: function FULLNORMAL(µz, Σz, µ, Λ, Ψ)

12: mean =
[

µ + Λµz
µz

]
13: covarianceMatrix =

[
ΛΣzΛ> + Ψ ΛΣz
(ΛΣz)> Σz

]
14: return (mean,covarianceMatrix)
15: function LOGLIKELIHOOD({(x(1), z(1)), . . . , (x(n), z(n))}, (µz, Σz, µ, Λ, Ψ))
16: (mean,cov) = FULLNORMAL(µz, Σz, µ, Λ, Ψ)
17: result = 0
18: for i = 1:n do

19: y(i) =
[

x(i)

z(i)

]
20: OI = {j|y(i)j 6= NA} . OI = Other indexes

21: result = result + lnN (y(i)OI |meanOI , covOI,OI)

22: return result
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Algorithm A6 MS3.FA—Train.

1: function TRAIN({(x(1), z(1)), . . . , (x(n), z(n))},nMaxIterations,eps) . data can have
NAs

2: θ(0) = INITIALIZEPARAMETERS({(x(1), z(1)), . . . , (x(n), z(n))})
3: l(0)RV_Do = LOGLIKELIHOOD({(x(1), z(1)), . . . , (x(n), z(n))}, θ(0))
4: for t = 0:nMaxIterations do
5: E step: Compute the following for all i ∈ {1, . . . , n}:

6: y(i) =
[

x(i)

z(i)

]
7: fullNormal = FULLNORMAL(µ

(t)
z , Σ(t)

z , µ(t), Λ(t), Ψ(t))

8: (E[Y(i)], E[Y(i)Y(i)>]) = CONDNORMALNA(y(i), fullNormal)
9: E[X(i)] = E[Y(i)]1:D . D = dim(x(i))

10: E[Z(i)] = E[Y(i)](D+1):(D+d) . d = dim(z(i))

11: E[X(i)X(i)>] = E[Y(i)Y(i)>]1:D,1:D

12: E[X(i)Z(i)>] = E[Y(i)Y(i)>]1:D,(D+1):(D+d)

13: E[Z(i)X(i)>] = E[X(i)Z(i)>]>

14: E[Z(i)Z(i)>] = E[Y(i)Y(i)>](D+1):(D+d),(D+1):(D+d)

15: M Step: Compute θ(t+1) = (µ
(t+1)
z , Σ(t+1)

z , µ(t+1), Λ(t+1), Ψ(t+1)):

16: µ
(t+1)
z = ∑n

i=1 E[Z(i) ]
n

17: Σ(t+1)
z = ∑n

i=1(E[Z(i)Z(i)> ]−E[Z(i) ]µ
(t+1)
z

>
−µ

(t+1)
z E[Z(i)> ]+µ

(t+1)
z µ

(t+1)
z

>
)

n

18: x̄ = ∑n
i=1 E[X(i) ]

n

19: Λ(t+1) =

(
nx̄µ

(t+1)
z

>
−∑n

i=1 E[X(i)Z(i)>]

)(
nµ

(t+1)
z µ

(t+1)
z

>
−∑n

i=1 E[Z(i)Z(i)>]

)−1

20: µ(t+1) = x̄−Λ(t+1)µ
(t+1)
z

21: Ψ(t+1) = diag( 1
n ∑n

i=1(E[X(i)X(i)>] − E[X(i)]µ(t+1)> − µ(t+1)E[X(i)]> +

µ(t+1)µ(t+1)> − E[X(i)Z(i)>]Λ(t+1)> + µ(t+1)E[Z(i)]>Λ(t+1)> − Λ(t+1)E[Z(i)X(i)>] +

Λ(t+1)E[Z(i)]>µ(t+1)> + Λ(t+1)E[Z(i)Z(i)>]Λ(t+1)>))

22: l(t+1)
RV_Do = LOGLIKELIHOOD({(x(1), z(1)), . . . , (x(n), z(n))}, θ(t+1))

23: if ‖θ(t)−θ(t+1)‖2

2

‖θ(t)‖2
2

≤eps or
|l(t)RV_Do−l(t+1)

RV_Do|
|l(t)RV_Do|

≤eps then

24: break
25: return θ(t)

Algorithm A7 MS3.FA—Test and Impute.

1: function TEST(y∗ = (x∗, z∗) partially known, (µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂))
2: fullNormal = FULLNORMAL(µ̂z, Σ̂z, µ̂, Λ̂, Ψ̂)

3: (E[Y∗], E[Y∗Y∗>]) = CONDNORMALNA(y∗, fullNormal)
4: value = E[Y∗]
5: covarianceMatrix = E[Y∗Y∗>]− E[Y∗]E[Y∗]>

6: return (value,covarianceMatrix)
7: function IMPUTE(y∗ = (x∗, z∗) partially known, (µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂))
8: (value, covarianceMatrix) = TEST(y∗,(µ̂z,Σ̂z,Λ̂,µ̂,Ψ̂))
9: return value
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